# Introduction to chiral perturbation theory II Higher orders, loops, applications

Gilberto Colangelo



UNIVERSITÄT BERN

Zuoz 18. July 06

## Outline

Introduction Why loops?

Loops and unitarity

Renormalization of loops

Applications NLO Calculations

Summary

# The chiral Lagrangian to higher orders

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_2 + \mathcal{L}_4 + \mathcal{L}_6 + \dots$$

The number in parentheses are for an SU(N) theory with N = (2,3)

# The $\mathcal{L}_4$ Lagrangian

$$\begin{split} \mathcal{L}_{4} &= L_{1} \langle D_{\mu} U^{\dagger} D^{\mu} U \rangle^{2} + L_{2} \langle D_{\mu} U^{\dagger} D_{\nu} U \rangle \langle D^{\mu} U^{\dagger} D^{\nu} U \rangle \\ &+ L_{3} \langle D_{\mu} U^{\dagger} D^{\mu} U D_{\nu} U^{\dagger} D^{\nu} U \rangle + L_{4} \langle D_{\mu} U^{\dagger} D^{\mu} U \rangle \langle \chi^{\dagger} U + \chi U^{\dagger} \rangle \\ &+ L_{5} \langle D_{\mu} U^{\dagger} D^{\mu} U (\chi^{\dagger} U + U^{\dagger} \chi) \rangle + L_{6} \langle \chi^{\dagger} U + \chi U^{\dagger} \rangle^{2} \\ &+ L_{7} \langle \chi^{\dagger} U - \chi U^{\dagger} \rangle^{2} + L_{8} \langle \chi^{\dagger} U \chi^{\dagger} U + \chi U^{\dagger} \chi U^{\dagger} \rangle \\ &- i L_{9} \langle F_{R}^{\mu\nu} D_{\mu} U D_{\nu} U^{\dagger} + F_{L}^{\mu\nu} D_{\mu} U^{\dagger} D_{\nu} U \rangle \\ &+ L_{10} \langle U^{\dagger} F_{R}^{\mu\nu} U F_{L \mu \nu} \rangle \end{split}$$

$$D_{\mu}U = \partial_{\mu}U - ir_{\mu}U + iUl_{\mu} \qquad \chi = 2B(s + ip)$$
  

$$F_{R}^{\mu\nu} = \partial^{\mu}r^{\nu} - \partial^{\nu}r^{\mu} - i[r^{\mu}, r^{\nu}]$$
  

$$r_{\mu} = v_{\mu} + a_{\mu} \qquad l_{\mu} = v_{\mu} - a_{\mu}$$

• Why not? Chiral Symmetry forbids  $O(p^0)$  interactions between pions, but allows for all higher orders

- Why not? Chiral Symmetry forbids O(p<sup>0</sup>) interactions between pions, but allows for all higher orders
- Unitarity requires that if an amplitude at order p<sup>2</sup> is purely real, at order p<sup>4</sup> its imaginary part is nonzero.
   Take the ππ scattering amplitude. The elastic unitarity relation for the partial waves t<sup>1</sup><sub>ℓ</sub> of isospin I and angular momentum ℓ reads:

$$Im t_{\ell}^{I} = \sqrt{1 - \frac{4M_{\pi}^{2}}{s}} |t_{\ell}^{I}|^{2}$$
 (1)

- Why not? Chiral Symmetry forbids O(p<sup>0</sup>) interactions between pions, but allows for all higher orders
- Unitarity requires that if an amplitude at order p<sup>2</sup> is purely real, at order p<sup>4</sup> its imaginary part is nonzero.
   Take the ππ scattering amplitude. The elastic unitarity relation for the partial waves t<sup>1</sup><sub>ℓ</sub> of isospin I and angular momentum ℓ reads:

$$Im t_{\ell}^{I} = \sqrt{1 - \frac{4M_{\pi}^{2}}{s}} |t_{\ell}^{I}|^{2}$$
 (1)

 The correct imaginary parts are generated automatically by loops

- Why not? Chiral Symmetry forbids O(p<sup>0</sup>) interactions between pions, but allows for all higher orders
- Unitarity requires that if an amplitude at order p<sup>2</sup> is purely real, at order p<sup>4</sup> its imaginary part is nonzero.
   Take the ππ scattering amplitude. The elastic unitarity relation for the partial waves t<sup>l</sup><sub>ℓ</sub> of isospin I and angular momentum ℓ reads:

$$Im t_{\ell}^{I} = \sqrt{1 - \frac{4M_{\pi}^{2}}{s}} |t_{\ell}^{I}|^{2}$$
 (1)

- The correct imaginary parts are generated automatically by loops
- The divergences occuring in the loops can be disposed of just like in a renormalizable field theory

The method of effective quantum field theory provides a rigorous framework to compute Green functions that respect all the good properties we require: symmetry, analyticity, unitarity

The method of effective quantum field theory provides a rigorous framework to compute Green functions that respect all the good properties we require: symmetry, analyticity, unitarity

The method yields a systematic expansion of the Green functions in powers of momenta and quark masses

The method of effective quantum field theory provides a rigorous framework to compute Green functions that respect all the good properties we require: symmetry, analyticity, unitarity

The method yields a systematic expansion of the Green functions in powers of momenta and quark masses

In the following I will discuss in detail how this works when you consider loops:

I will consider the finite, analytically nontrivial part of the loops and discuss in detail its physical meaning

The method of effective quantum field theory provides a rigorous framework to compute Green functions that respect all the good properties we require: symmetry, analyticity, unitarity

The method yields a systematic expansion of the Green functions in powers of momenta and quark masses

In the following I will discuss in detail how this works when you consider loops:

- I will consider the finite, analytically nontrivial part of the loops and discuss in detail its physical meaning
- I will consider the divergent part of the loops and discuss how the renormalization program works

# Scalar form factor of the pion

$$\langle \pi^{i}(p_{1})\pi^{j}(p_{2})|\hat{m}(\bar{u}u+\bar{d}d)|0
angle =:\delta^{ij}\Gamma(t) \ , \quad t=(p_{1}+p_{2})^{2} \ ,$$

At tree level:

$$\Gamma(t) = 2\hat{m}B = M_\pi^2 + O(\rho^4) \quad ,$$

# Scalar form factor of the pion

$$\langle \pi^{i}(p_{1})\pi^{j}(p_{2})|\hat{m}(\bar{u}u+\bar{d}d)|0
angle =:\delta^{ij}\Gamma(t)~,~t=(p_{1}+p_{2})^{2}~,$$

At tree level:

$$\Gamma(t) = 2\hat{m}B = M_\pi^2 + O(p^4) \ ,$$

in agreement with the Feynman–Hellman theorem:

the expectation value of the perturbation in an eigenstate of the total Hamiltonian determines the derivative of the energy level with respect to the strength of the perturbation:

$$\hat{m}rac{\partial M_{\pi}^2}{\partial \hat{m}} = \langle \pi | \hat{m} ar{q} q | \pi 
angle = \Gamma(0)$$
 .

# Scalar form factor of the pion

$$\langle \pi^{i}(p_{1})\pi^{j}(p_{2})|\hat{m}(\bar{u}u+\bar{d}d)|0
angle =:\delta^{ij}\Gamma(t)~,~t=(p_{1}+p_{2})^{2}~,$$

At tree level:

$$\Gamma(t) = 2\hat{m}B = M_\pi^2 + O(p^4) \ ,$$

in agreement with the Feynman–Hellman theorem:

the expectation value of the perturbation in an eigenstate of the total Hamiltonian determines the derivative of the energy level with respect to the strength of the perturbation:

$$\hat{m}rac{\partial M_{\pi}^2}{\partial \hat{m}} = \langle \pi | \hat{m} ar{q} q | \pi 
angle = \Gamma(0)$$
 .

This matrix element is relevant for the decay  $h \rightarrow \pi \pi$ , which, for a light Higgs would have been the main decay mode

Donoghue, Gasser & Leutwyler (90)

Dispersion relation for  $\Gamma(t)$ For  $t \ge 4M_{\pi}^2 \operatorname{Im} \Gamma(t) \ne 0$ .  $\Gamma(t)$  is analytic everywhere else in the complex *t* plane, and obeys the following dispersion relation:  $\overline{\Gamma}(t) = \Gamma(t)/\Gamma(0)$ 

$$\bar{\Gamma}(t) = 1 + bt + \frac{t^2}{\pi} \int_{4M_\pi^2}^\infty \frac{dt'}{t'^2} \frac{\mathrm{Im}\,\bar{\Gamma}(t')}{t'-t}$$

Dispersion relation for  $\Gamma(t)$ For  $t \ge 4M_{\pi}^2 \operatorname{Im} \Gamma(t) \ne 0$ .  $\Gamma(t)$  is analytic everywhere else in the complex *t* plane, and obeys the following dispersion relation:  $\overline{\Gamma}(t) = \Gamma(t)/\Gamma(0)$ 

$$\bar{\Gamma}(t) = 1 + bt + \frac{t^2}{\pi} \int_{4M_\pi^2}^{\infty} \frac{dt'}{t'^2} \frac{\mathrm{Im}\,\bar{\Gamma}(t')}{t'-t}$$

Unitarity implies  $[\sigma(t) = \sqrt{1 - 4M_{\pi}^2/t}]$ 

$$\operatorname{Im}\bar{\Gamma}(t) = \sigma(t)\bar{\Gamma}(t)t_0^{0^*}(t) = \bar{\Gamma}(t)e^{-i\delta_0^0}\sin\delta_0^0 = |\bar{\Gamma}(t)|\sin\delta_0^0$$

where  $t_0^0$  is the S–wave,  $I = 0 \pi \pi$  scattering amplitude

Dispersion relation for  $\Gamma(t)$ For  $t \ge 4M_{\pi}^2 \operatorname{Im} \Gamma(t) \ne 0$ .  $\Gamma(t)$  is analytic everywhere else in the complex *t* plane, and obeys the following dispersion relation:  $\overline{\Gamma}(t) = \Gamma(t)/\Gamma(0)$ 

$$ar{\Gamma}(t)=1+bt+rac{t^2}{\pi}\int_{4M_\pi^2}^\infty rac{dt'}{t'^2}rac{{
m Im}\,ar{\Gamma}(t')}{t'-t}$$

Unitarity implies  $[\sigma(t) = \sqrt{1 - 4M_{\pi}^2/t}]$ 

$$\operatorname{Im}\bar{\Gamma}(t) = \sigma(t)\bar{\Gamma}(t)t_0^{0^*}(t) = \bar{\Gamma}(t)e^{-i\delta_0^0}\sin\delta_0^0 = |\bar{\Gamma}(t)|\sin\delta_0^0$$

where  $t_0^0$  is the S–wave,  $I = 0 \pi \pi$  scattering amplitude

Strictly speaking, the above unitarity relation is valid only for  $t \le 16M_{\pi}^2$ . To a good approximation, however, it holds up to the  $K\bar{K}$  threshold

# Dispersion relation and chiral counting

$$\bar{\Gamma}(t) = 1 + bt + \frac{t^2}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{dt'}{t'^2} \frac{|\bar{\Gamma}(t')| \sin \delta_0^0(t')}{t' - t} b \sim O(1) \left( 1 + O(M_{\pi}^2) \right) \delta_0^0 \sim O(p^2) \left( 1 + O(p^2) \right)$$

## Dispersion relation and chiral counting

$$\begin{split} \bar{\Gamma}(t) &= 1 + bt + \frac{t^2}{\pi} \int_{4M_\pi^2}^\infty \frac{dt'}{t'^2} \frac{|\bar{\Gamma}(t')| \sin \delta_0^0(t')}{t' - t} \\ b &\sim O(1) \left( 1 + O(M_\pi^2) \right) \\ \delta_0^0 &\sim O(p^2) \left( 1 + O(p^2) \right) \end{split}$$

#### There are two $O(p^2)$ correction to $\overline{\Gamma}$ :

1. O(1) contribution to *b*;

2. the dispersive integral containing the  $O(p^2)$  phase  $\delta_0^0$ . Notice that the latter is fixed by unitarity and analyticity

## Dispersion relation and chiral counting

$$\begin{split} \bar{\Gamma}(t) &= 1 + bt + \frac{t^2}{\pi} \int_{4M_\pi^2}^\infty \frac{dt'}{t'^2} \frac{|\bar{\Gamma}(t')| \sin \delta_0^0(t')}{t' - t} \\ b &\sim O(1) \left( 1 + O(M_\pi^2) \right) \\ \delta_0^0 &\sim O(p^2) \left( 1 + O(p^2) \right) \end{split}$$

There are two  $O(p^2)$  correction to  $\overline{\Gamma}$ :

1. O(1) contribution to *b*;

2. the dispersive integral containing the  $O(p^2)$  phase  $\delta_0^0$ . Notice that the latter is fixed by unitarity and analyticity

#### Are these respected by the one loop calculation?

#### Dispersion relation and one–loop CHPT The full one–loop expression of $\overline{\Gamma}(t)$ reads as follows:

$$\bar{\Gamma}(t) = 1 + \frac{t}{16\pi^2 F_{\pi}^2} (\bar{l}_4 - 1) + \frac{2t - M_{\pi}^2}{2F_{\pi}^2} \bar{J}(t)$$
$$\bar{J}(t) = \frac{1}{16\pi^2} \left[ \sigma(t) \ln \frac{\sigma(t) - 1}{\sigma(t) + 1} + 2 \right]$$

#### Dispersion relation and one–loop CHPT The full one–loop expression of $\overline{\Gamma}(t)$ reads as follows:

$$ar{\Gamma}(t) = 1 + rac{t}{16\pi^2 F_\pi^2} (ar{l}_4 - 1) + rac{2t - M_\pi^2}{2F_\pi^2} ar{J}(t)$$
 $ar{J}(t) = rac{1}{16\pi^2} \left[ \sigma(t) \ln rac{\sigma(t) - 1}{\sigma(t) + 1} + 2 
ight]$ 

To prove that unitarity and analyticity are respected at this order is sufficient to add:

$$\delta_0^0(t) = \sigma(t) \frac{2t - M_\pi^2}{32\pi F_\pi^2} + O(p^4) \qquad \qquad \bar{J}(t) = \frac{t}{16\pi^2} \int_{4M_\pi^2}^\infty \frac{dt'}{t'} \frac{\sigma(t')}{t' - t}$$

# Bierfrage: Beweis?

Hints:

Subtract  $\overline{J}(t)$  once more

$$ar{J}(t) = rac{t}{96\pi^2} + rac{t^2}{16\pi^2} \int_{4M_\pi^2}^\infty rac{dt'}{t'^2} rac{\sigma(t')}{t'-t}$$

## Bierfrage: Beweis?

Hints:

Subtract  $\overline{J}(t)$  once more

$$ar{J}(t) = rac{t}{96\pi^2} + rac{t^2}{16\pi^2} \int_{4M_\pi^2}^\infty rac{dt'}{t'^2} rac{\sigma(t')}{t'-t}$$

Trick to pull out a linear term from the dispersive integral:

$$\int_{4M_{\pi}^{2}}^{\infty} \frac{dt'}{t'^{2}} \frac{t'\sigma(t')}{t'-t} = t \int_{4M_{\pi}^{2}}^{\infty} \frac{dt'}{t'^{2}} \frac{\sigma(t')}{t'-t} + \int_{4M_{\pi}^{2}}^{\infty} \frac{dt'}{t'^{2}} \sigma(t')$$

Renormalization at one loop

$$\int \frac{d^4 l}{(2\pi)^4} \frac{\{p^2, p \cdot l, l^2\}}{(l^2 - M^2)((p - l)^2 - M^2)} , \qquad p = p_1 + p_2$$

$$\sim \underbrace{\int \frac{d^4 I}{(2\pi)^4} \frac{1}{(I^2 - M^2)}}_{T(M^2)} + p^2 \underbrace{\int \frac{d^4 I}{(2\pi)^4} \frac{1}{(I^2 - M^2)((p - I)^2 - M^2)}}_{J(p^2)}_{J(p^2)}$$
  
$$T(M^2) = a + bM^2 + \bar{T}(M^2) \qquad J(t) = J(0) + \bar{J}(t)$$

Renormalization at one loop

$$\int \frac{d^4 l}{(2\pi)^4} \frac{\{p^2, p \cdot l, l^2\}}{(l^2 - M^2)((p - l)^2 - M^2)} , \qquad p = p_1 + p_2$$

$$\sim \underbrace{\int \frac{d^4 I}{(2\pi)^4} \frac{1}{(I^2 - M^2)}}_{T(M^2)} + p^2 \underbrace{\int \frac{d^4 I}{(2\pi)^4} \frac{1}{(I^2 - M^2)((p - I)^2 - M^2)}}_{J(p^2)}$$

 $T(M^2) = a + bM^2 + \overline{T}(M^2)$   $J(t) = J(0) + \overline{J}(t)$  $\overline{T}(M^2)$  and  $\overline{J}(t)$  are finite

$$\Gamma(t) \sim M^2 \left[ 1 + \underbrace{bM^2 + tJ(0)}_{} + \overline{T}(M^2) + \overline{J}(t) \right]$$

divergent part

# Counterterms

$$\mathcal{L}_2 \;\; \Rightarrow \;\; \Gamma^{(2)}(t) \sim M^2$$

$$\mathcal{L}_4 \ \Rightarrow \ \Gamma^{(4)}(t) \sim l_3 M^4 + l_4 M^2 t$$

#### Counterterms

$$\mathcal{L}_2 \ \Rightarrow \ \Gamma^{(2)}(t) \sim M^2$$

$$\mathcal{L}_4 \hspace{0.2cm} \Rightarrow \hspace{0.2cm} \Gamma^{(4)}(t) \sim \mathit{I}_3 \mathit{M}^4 + \mathit{I}_4 \mathit{M}^2 t$$

To remove the divergences one only needs to properly define the couplings  $(I_{3,4})$  in the lagrangian at order  $O(p^4)$ 

#### Counterterms

$$\mathcal{L}_2 \ \Rightarrow \ \Gamma^{(2)}(t) \sim M^2$$

$$\mathcal{L}_4 \ \Rightarrow \ \Gamma^{(4)}(t) \sim l_3 M^4 + l_4 M^2 t$$

To remove the divergences one only needs to properly define the couplings  $(I_{3,4})$  in the lagrangian at order  $O(p^4)$ 

Quote from Weinberg's book on QFT, vol. I: "(...) as long as we include every one of the infinite number of interactions allowed by symmetries, the so-called non-renormalizable theories are actually just as renormalizable as renormalizable theories."

Chiral logarithms Scalar radius of the pion

$$\Gamma(t) = \Gamma(0) \left[ 1 + \frac{1}{6} \langle r^2 \rangle_{S}^{\pi} t + O(t^2) \right]$$
$$\langle r^2 \rangle_{S}^{\pi} \sim J(0) = \int \frac{d^4 I}{(2\pi)^4} \frac{1}{(I^2 - M^2)^2} \sim \ln \frac{M^2}{\Lambda^2}$$

Chiral logarithms Scalar radius of the pion

$$\Gamma(t) = \Gamma(0) \left[ 1 + \frac{1}{6} \langle r^2 \rangle_S^{\pi} t + O(t^2) \right]$$
  
  $\langle r^2 \rangle_S^{\pi} \sim J(0) = \int \frac{d^4 I}{(2\pi)^4} \frac{1}{(I^2 - M^2)^2} \sim \ln \frac{M^2}{\Lambda^2}$ 

The integral is UV divergent, but also IR divergent if  $M \rightarrow 0$ :

$$\lim_{M^2 \to 0} \langle \boldsymbol{r}^2 \rangle_{\boldsymbol{S}}^{\pi} \sim \ln M^2 \ ,$$

Chiral logarithms Scalar radius of the pion

$$\begin{split} \Gamma(t) &= \Gamma(0) \left[ 1 + \frac{1}{6} \langle r^2 \rangle_{S}^{\pi} t + O(t^2) \right] \\ \langle r^2 \rangle_{S}^{\pi} \sim J(0) &= \int \frac{d^4 I}{(2\pi)^4} \frac{1}{(I^2 - M^2)^2} \sim \ln \frac{M^2}{\Lambda^2} \end{split}$$

The integral is UV divergent, but also IR divergent if  $M \rightarrow 0$ :

$$\lim_{M^2 \to 0} \langle r^2 \rangle_{S}^{\pi} \sim \ln M^2 \ ,$$

The extension of the cloud of pions surrounding a pion (or any other hadron) goes to infinity if pions become massless (Li and Pagels '72)

# Chiral perturbation theory

- Chiral perturbation theory provides a rigorous framework to compute Green functions that respect all the good properties we require: symmetry, applyticity, unitority.
  - symmetry, analyticity, unitarity

# Chiral perturbation theory

- Chiral perturbation theory provides a rigorous framework to compute Green functions that respect all the good properties we require: symmetry, analyticity, unitarity
- The method yields a systematic expansion of the Green functions in powers of momenta and quark masses

# Chiral perturbation theory

- Chiral perturbation theory provides a rigorous framework to compute Green functions that respect all the good properties we require: symmetry, analyticity, unitarity
- The method yields a systematic expansion of the Green functions in powers of momenta and quark masses
- The method has been rigorously established and can be formulated as a set of calculational rules:
### Chiral perturbation theory

- Chiral perturbation theory provides a rigorous framework to compute Green functions that respect all the good properties we require: symmetry, analyticity, unitarity
- The method yields a systematic expansion of the Green functions in powers of momenta and quark masses
- The method has been rigorously established and can be formulated as a set of calculational rules:

LO tree level diagrams with  $\mathcal{L}_2$ 

### Chiral perturbation theory

- Chiral perturbation theory provides a rigorous framework to compute Green functions that respect all the good properties we require: symmetry, analyticity, unitarity
- The method yields a systematic expansion of the Green functions in powers of momenta and quark masses
- The method has been rigorously established and can be formulated as a set of calculational rules:

LO tree level diagrams with  $\mathcal{L}_2$ NLO tree level diagrams with  $\mathcal{L}_4$ 1-loop diagrams with  $\mathcal{L}_2$ 

# Chiral perturbation theory

- Chiral perturbation theory provides a rigorous framework to compute Green functions that respect all the good properties we require: symmetry, analyticity, unitarity
- The method yields a systematic expansion of the Green functions in powers of momenta and quark masses
- The method has been rigorously established and can be formulated as a set of calculational rules:

e.g.  $\langle D_{\mu}U^{\dagger}D^{\mu}U\rangle\langle B\mathcal{M}(U+U^{\dagger})\rangle\sim\ldots+M^{2}\phi^{2}\partial_{\mu}\phi^{4}\partial^{\mu}\phi^{6}+\ldots$ 

e.g. 
$$\langle D_{\mu}U^{\dagger}D^{\mu}U\rangle\langle B\mathcal{M}(U+U^{\dagger})\rangle\sim\ldots+M^{2}\phi^{2}\partial_{\mu}\phi^{4}\partial^{\mu}\phi^{6}+\ldots$$

Chiral symmetry implies that after calculating the divergent part of  $\Gamma(s)$  I also know the divergent part of the  $6\pi \rightarrow 6\pi$  scattering amplitude

e.g. 
$$\langle D_{\mu}U^{\dagger}D^{\mu}U\rangle\langle B\mathcal{M}(U+U^{\dagger})\rangle\sim\ldots+M^{2}\phi^{2}\partial_{\mu}\phi^{4}\partial^{\mu}\phi^{6}+\ldots$$

1. Do we have a proof that quantum effects do not introduce violations of the chiral symmetry? Or that one can build a chiral invariant generating functional only with a path integral over a chiral invariant classical action?

e.g. 
$$\langle D_{\mu}U^{\dagger}D^{\mu}U\rangle\langle B\mathcal{M}(U+U^{\dagger})\rangle\sim\ldots+M^{2}\phi^{2}\partial_{\mu}\phi^{4}\partial^{\mu}\phi^{6}+\ldots$$

- 1. Do we have a proof that quantum effects do not introduce violations of the chiral symmetry? Or that one can build a chiral invariant generating functional only with a path integral over a chiral invariant classical action?
- 2. Is there a tool that allows one to calculate the divergences keeping chiral invariance explicit in every step of the calculation?

### **Generating functional**

Consider a system with a spontaneously broken symmetry
 G. Define the generating functional as:

$$e^{iZ\{f\}} = \sum_{n=0} \frac{i^n}{n!} \int dx_1 \dots dx_n f_{\mu_1}^{i_1} \dots f_{\mu_n}^{i_n} \langle 0|TJ_{i_1}^{\mu_1} \dots J_{i_n}^{\mu_n}|0\rangle \ ,$$

where  $J^i_{\mu}$  are the Noether's currents associated to the spontaneously broken symmetry *G* of the system, and  $f^{\mu}_i$  external fields coupled to them

### Generating functional

Consider a system with a spontaneously broken symmetry
 G. Define the generating functional as:

$$e^{iZ\{f\}} = \sum_{n=0} \frac{i^n}{n!} \int dx_1 \dots dx_n f_{\mu_1}^{i_1} \dots f_{\mu_n}^{i_n} \langle 0| T J_{i_1}^{\mu_1} \dots J_{i_n}^{\mu_n} |0\rangle \ ,$$

The generating functional is invariant under gauge transformations of the external fields:

$$Z\{T(g)f\}=Z\{f\} \ ,$$

where:

$$T(g)f_{\mu} = D(g_x)f_{\mu}(x)D^{-1}(g_x) - i\partial_{\mu}D(g_x)D^{-1}(g_x)$$

#### Leutwyler's theorem

What is the most general way of constructing a chiral-invariant generating functional out of a path integral over the Goldstone boson degrees of freedom?

#### Leutwyler's theorem

What is the most general way of constructing a chiral-invariant generating functional out of a path integral over the Goldstone boson degrees of freedom?

For Lorentz-invariant theories in 4 dimensions, a path integral constructed with gauge-invariant lagrangians is a necessary and sufficient condition to obtain a gauge-invariant generating functional

#### Leutwyler's theorem

What is the most general way of constructing a chiral-invariant generating functional out of a path integral over the Goldstone boson degrees of freedom?

For Lorentz-invariant theories in 4 dimensions, a path integral constructed with gauge-invariant lagrangians is a necessary and sufficient condition to obtain a gauge-invariant generating functional

The theorem also includes the case in which the symmetry is anomalous and the case in which the symmetry is explicitly broken

#### Chiral invariant renormalization

Gasser & Leutwyler (84) have shown that, using the background field method and heat kernel techniques, the calculation of the divergences at one loop – and the corresponding renirmalization – can be performed in an explicitly chiral invariant manner

#### Chiral invariant renormalization

- Gasser & Leutwyler (84) have shown that, using the background field method and heat kernel techniques, the calculation of the divergences at one loop – and the corresponding renirmalization – can be performed in an explicitly chiral invariant manner
- The method has been extended and applied to two loops (Bijnens, GC & Ecker 98). After a long and tedious calculation, the divergent parts of all the counterterms at O(p<sup>6</sup>) has been provided

#### Chiral invariant renormalization

- Gasser & Leutwyler (84) have shown that, using the background field method and heat kernel techniques, the calculation of the divergences at one loop – and the corresponding renirmalization – can be performed in an explicitly chiral invariant manner
- The method has been extended and applied to two loops (Bijnens, GC & Ecker 98). After a long and tedious calculation, the divergent parts of all the counterterms at O(p<sup>6</sup>) has been provided
- The renormalization of CHPT up to two loops has been performed explicitly: the calculation of any amplitude at two loops can be immediately checked by comparing the divergent part of Feynman diagrams to the divergent parts of the relevant counterterms

$$\begin{aligned} a_0^0 &= \frac{7M_\pi^2}{32\pi F_\pi^2} \left[ 1 + \frac{M_\pi^2}{3} \langle r^2 \rangle_S^\pi + \frac{200\pi F_\pi^2 M_\pi^2}{7} (a_2^0 + 2a_2^2) \right. \\ &- \left. \frac{M_\pi^2}{672\pi^2 F_\pi^2} (15\overline{l}_3 - 353) \right] = 0.16 \cdot 1.25 = 0.20 \\ 2a_0^0 - 5a_0^2 &= \left. \frac{3M_\pi^2}{4\pi F_\pi^2} \left[ 1 + \frac{M_\pi^2}{3} \langle r^2 \rangle_S^\pi + \frac{41M_\pi^2}{192\pi^2 F_\pi^2} \right] = 0.624 \end{aligned}$$

Gasser and Leutwyler (83)

 $a_{0}^{0}$ 

$$a_0^0 = \frac{7M_\pi^2}{32\pi F_\pi^2} \left[ 1 + \frac{M_\pi^2}{3} \langle r^2 \rangle_S^\pi + \frac{200\pi F_\pi^2 M_\pi^2}{7} (a_2^0 + 2a_2^2) - \frac{M_\pi^2}{672\pi^2 F_\pi^2} (15\bar{l}_3 - 353) \right] = 0.16 \cdot 1.25 = 0.20$$
$$-a_0^2 = 0.245$$

Gasser and Leutwyler (83)

$$\begin{array}{rcl} a_0^0 &=& 0.26 \pm 0.05 & & \text{Rosselet et al. (77)} \\ a_0^0 &=& 0.216 \pm 0.013 \pm 0.003 & & \text{Pislak et al. (E865) (03)} \\ |a_0^0 - a_0^2| &=& 0.264 \begin{array}{c} +0.033 & & & \\ -0.020 & & & \text{Adeva et al. (DIRAC) (05)} \\ a_0^0 - a_0^2 &=& 0.268 \pm 0.010 \pm 0.013 & & \text{Batley et al. (NA48/2) (06)} \end{array}$$

 $a_{0}^{0}$ 

$$a_0^0 = \frac{7M_\pi^2}{32\pi F_\pi^2} \left[ 1 + \frac{M_\pi^2}{3} \langle r^2 \rangle_S^\pi + \frac{200\pi F_\pi^2 M_\pi^2}{7} (a_2^0 + 2a_2^2) - \frac{M_\pi^2}{672\pi^2 F_\pi^2} (15\overline{l}_3 - 353) \right] = 0.16 \cdot 1.25 = 0.20$$
$$-a_0^2 = 0.245$$

Gasser and Leutwyler (83)

$$\begin{array}{rcl} a_0^0 &=& 0.26 \pm 0.05 & & \text{Rosselet et al. (77)} \\ a_0^0 &=& 0.216 \pm 0.013 \pm 0.003 & & \text{Pislak et al. (E865) (03)} \\ a_0^0 - a_0^2 &=& 0.264 \begin{array}{c} +0.033 & & & \\ -0.020 & & & \text{Adeva et al. (DIRAC) (05)} \\ a_0^0 - a_0^2 &=& 0.268 \pm 0.010 \pm 0.013 & & & \text{Battey et al. (NA48/2) (06)} \end{array}$$

Comparison of NNLO prediction and data  $\Rightarrow$  talk of Leutwyler



$$\langle K^{+} | \bar{u} \gamma_{\mu} s | \pi^{0} \rangle = \frac{1}{\sqrt{2}} \left[ (p' + p)_{\mu} f_{+}(t) + (p' - p)_{\mu} f_{-}(t) \right]$$

$$f_{+,0}(t) = f_{+,0}(0) \left( 1 + \lambda_{+,0} \frac{t}{M_{\pi}^{2}} + \dots \right)$$

$$f_{0} = f_{+} + \frac{t}{M_{K}^{2} - M_{\pi}^{2}} f_{-}$$

$$\lambda_{+} = \frac{M_{\pi}^{2}}{6} \langle r \rangle_{V}^{\pi} + \Delta_{+} = 0.031$$

$$\lambda_{0} = \frac{M_{\pi}^{2}}{M_{K}^{2} - M_{\pi}^{2}} \left( \frac{F_{K}}{F_{\pi}} - 1 \right) + \Delta_{0} = 0.017$$

Gasser and Leutwyler (85)

 $K_{I3}$  decays at NLO

$$\lambda_{+} = \frac{M_{\pi}^{2}}{6} \langle r \rangle_{V}^{\pi} + \Delta_{+} = 0.031$$
  
$$\lambda_{0} = \frac{M_{\pi}^{2}}{M_{K}^{2} - M_{\pi}^{2}} \left(\frac{F_{K}}{F_{\pi}} - 1\right) + \Delta_{0} = 0.017$$

Gasser and Leutwyler (85)

#### **Experimental values:**

| Exp.                                | $10^3\lambda_+$                  | $10^3\lambda_0$ |
|-------------------------------------|----------------------------------|-----------------|
| ISTRA $(K_{\mu 3}^{-})$             | $29.7 \pm 1.6$                   | $19.6\pm1.4$    |
| ISTRA $(K_{e3}^{-})$                | $24.7 \pm 1.6$                   |                 |
| KTeV ( <i>K</i> <sub>L e,μ3</sub> ) | $\textbf{20.6} \pm \textbf{1.8}$ | $13.7\pm1.3$    |
| NA48/2 ( <i>K<sub>L e3</sub></i> )  | $\textbf{28.0} \pm \textbf{1.9}$ |                 |
| NA48/2 ( $K_{L\mu3}$ )              | $26.0\pm1.2$                     | $12.0\pm1.7$    |
| KLOE ( $K_{L e3}$ )                 | $25.5\pm1.5$                     |                 |

# K<sub>13</sub> decays at NLO



Figure by KLOE, hep-ex/0601038

# $K_{13}$ decays at NNLO

K<sub>13</sub> amplitude known at NNLO

Post & Schilcher (02)

Bijnens & Talavera (03)

# $K_{I3}$ decays at NNLO

K<sub>13</sub> amplitude known at NNLO

Post & Schilcher (02)

Bijnens & Talavera (03)

• Interesting relation among  $f_+(0)$ , slope and curvature

$$\begin{split} \widetilde{f}_0(t) &:= f_0(t) + \frac{t}{M_K^2 - M_\pi^2} (1 - F_K / F_\pi) \\ \widetilde{f}_0(t) &= 1 - \frac{8}{F_\pi^4} (C_{12}^r + C_{34}^r) (M_K^2 - M_\pi^2)^2 \\ &+ \frac{8t}{F_\pi^4} (2C_{12}^r + C_{34}^r) (M_K^2 + M_\pi^2) - \frac{8t^2}{F_\pi^4} C_{12}^r + \Delta(t) \end{split}$$

# *K*<sub>/3</sub> decays at NNLO

K<sub>13</sub> amplitude known at NNLO

Post & Schilcher (02)

Bijnens & Talavera (03)

• Interesting relation among  $f_+(0)$ , slope and curvature

$$\begin{split} \widetilde{f}_0(t) &:= f_0(t) + \frac{t}{M_K^2 - M_\pi^2} (1 - F_K / F_\pi) \\ \widetilde{f}_0(t) &= 1 - \frac{8}{F_\pi^4} (C_{12}^r + C_{34}^r) (M_K^2 - M_\pi^2)^2 \\ &+ \frac{8t}{F_\pi^4} (2C_{12}^r + C_{34}^r) (M_K^2 + M_\pi^2) - \frac{8t^2}{F_\pi^4} C_{12}^r + \Delta(t) \end{split}$$

► The value of f<sub>+</sub>(0) can be predicted in terms of measured quantities ⇒ extraction of V<sub>us</sub> from data on K<sub>e3</sub>

# $K_{I3}$ decays at NNLO



Pions, kaons and etas

- Pions, kaons and etas
  - Purely strong interactions ((semi)leptonic decays)

- Pions, kaons and etas
  - Purely strong interactions ((semi)leptonic decays)
  - Weak nonleptonic (radiative) decays

- Pions, kaons and etas
  - Purely strong interactions ((semi)leptonic decays)
  - Weak nonleptonic (radiative) decays
  - Electromagnetic interactions

- Pions, kaons and etas
  - Purely strong interactions ((semi)leptonic decays)
  - Weak nonleptonic (radiative) decays
  - Electromagnetic interactions
  - Decays of electromagnetically bound states

- Pions, kaons and etas
- Nucleons

- Pions, kaons and etas
- Nucleons
  - One nucleon sector:  $\pi N$  or KN scattering

- Pions, kaons and etas
- Nucleons
  - One nucleon sector:  $\pi N$  or KN scattering
  - Electromagnetic interactions

- Pions, kaons and etas
- Nucleons
  - One nucleon sector:  $\pi N$  or KN scattering
  - Electromagnetic interactions
  - ► Two nucleon sector: *NN* scattering, nuclear forces

- Pions, kaons and etas
- Nucleons
- Connections to lattice QCD
- Pions, kaons and etas
- Nucleons
- Connections to lattice QCD
  - (Partially) Quenched Chiral Perturbation Theory

- Pions, kaons and etas
- Nucleons
- Connections to lattice QCD
  - (Partially) Quenched Chiral Perturbation Theory
  - Study of finite-volume and -temperature effects

- Pions, kaons and etas
- Nucleons
- Connections to lattice QCD
  - (Partially) Quenched Chiral Perturbation Theory
  - Study of finite-volume and -temperature effects
  - Extrapolation to the chiral limit

- Pions, kaons and etas
- Nucleons
- Connections to lattice QCD
  - (Partially) Quenched Chiral Perturbation Theory
  - Study of finite-volume and -temperature effects
  - Extrapolation to the chiral limit
  - Extrapolation to zero lattice spacing

- Pions, kaons and etas
- Nucleons
- Connections to lattice QCD
- Condensed-matter systems with spontaneous symmetry breaking

- Pions, kaons and etas
- Nucleons
- Connections to lattice QCD
- Condensed-matter systems with spontaneous symmetry breaking
  - Ferromagnets

- Pions, kaons and etas
- Nucleons
- Connections to lattice QCD
- Condensed-matter systems with spontaneous symmetry breaking
  - Ferromagnets
  - Antiferromagnets in d = 3 or d = 2

- Pions, kaons and etas
- Nucleons
- Connections to lattice QCD
- Condensed-matter systems with spontaneous symmetry breaking
- Electroweak symmetry breaking models in which the electroweak symmetry is broken strongly

- Pions, kaons and etas
- Nucleons
- Connections to lattice QCD
- Condensed-matter systems with spontaneous symmetry breaking
- Electroweak symmetry breaking models in which the electroweak symmetry is broken strongly
- General relativity as an effective field theory

The finite, analytically nontrivial part of the one loop integrals automatically generates the correct imaginary parts, as required by unitarity.

- The finite, analytically nontrivial part of the one loop integrals automatically generates the correct imaginary parts, as required by unitarity.
- Effective quantum field theory is a systematic method to generate a perturbative solution of dispersion relations

- The finite, analytically nontrivial part of the one loop integrals automatically generates the correct imaginary parts, as required by unitarity.
- Effective quantum field theory is a systematic method to generate a perturbative solution of dispersion relations
- The UV divergences encountered in loop integrals can be removed according to standard renormalization methods

- The finite, analytically nontrivial part of the one loop integrals automatically generates the correct imaginary parts, as required by unitarity.
- Effective quantum field theory is a systematic method to generate a perturbative solution of dispersion relations
- The UV divergences encountered in loop integrals can be removed according to standard renormalization methods
- Some loop integrals have also an IR singular behaviour which has a very clear physical meaning, and again shows the necessity of taking loop effects into account

- The finite, analytically nontrivial part of the one loop integrals automatically generates the correct imaginary parts, as required by unitarity.
- Effective quantum field theory is a systematic method to generate a perturbative solution of dispersion relations
- The UV divergences encountered in loop integrals can be removed according to standard renormalization methods
- Some loop integrals have also an IR singular behaviour which has a very clear physical meaning, and again shows the necessity of taking loop effects into account
- Leutwyler's theorem: doing a path integral over an effective Lagrangian is the most general way to construct an invariant generating functional

- The finite, analytically nontrivial part of the one loop integrals automatically generates the correct imaginary parts, as required by unitarity.
- Effective quantum field theory is a systematic method to generate a perturbative solution of dispersion relations
- The UV divergences encountered in loop integrals can be removed according to standard renormalization methods
- Some loop integrals have also an IR singular behaviour which has a very clear physical meaning, and again shows the necessity of taking loop effects into account
- Leutwyler's theorem: doing a path integral over an effective Lagrangian is the most general way to construct an invariant generating functional
- I have illustrated the method discussing two applications:
  - the  $\pi\pi$  S-wave scattering lengths
  - K<sub>e3</sub> decays and the extraction of V<sub>us</sub>