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Intro Unitarity Renormalization Applications Summary Why loops?

The chiral Lagrangian to higher orders

Leff = L2 + L4 + L6 + . . .

L2 contains (2, 2) constants

L4 contains (7, 10) constants Gasser, Leutwyler (84)

L6 contains (53, 90) constants Bijnens, GC, Ecker (99)

The number in parentheses are for an SU(N) theory with
N = (2, 3)
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The L4 Lagrangian

L4 = L1〈DµU†DµU〉2 + L2〈DµU†DνU〉〈DµU†DνU〉
+L3〈DµU†DµUDνU†DνU〉 + L4〈DµU†DµU〉〈χ†U + χU†〉
+L5〈DµU†DµU(χ†U + U†χ)〉 + L6〈χ†U + χU†〉2

+L7〈χ†U − χU†〉2 + L8〈χ†Uχ†U + χU†χU†〉
−iL9〈Fµν

R DµUDνU† + Fµν
L DµU†DνU〉

+L10〈U†Fµν
R UFLµν〉

DµU = ∂µU − irµU + iUlµ χ = 2B(s + ip)

Fµν
R = ∂µrν − ∂νrµ − i[rµ, rν ]

rµ = vµ + aµ lµ = vµ − aµ
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Why go beyond O(p2)? Why loops?

◮ Why not? Chiral Symmetry forbids O(p0) interactions
between pions, but allows for all higher orders

◮ Unitarity requires that if an amplitude at order p2 is purely
real, at order p4 its imaginary part is nonzero.
Take the ππ scattering amplitude. The elastic unitarity
relation for the partial waves t I

ℓ of isospin I and angular
momentum ℓ reads:

Im t I
ℓ =

√

1 − 4M2
π

s
|t I

ℓ|2 (1)



Intro Unitarity Renormalization Applications Summary Why loops?

Why go beyond O(p2)? Why loops?

◮ Why not? Chiral Symmetry forbids O(p0) interactions
between pions, but allows for all higher orders

◮ Unitarity requires that if an amplitude at order p2 is purely
real, at order p4 its imaginary part is nonzero.
Take the ππ scattering amplitude. The elastic unitarity
relation for the partial waves t I

ℓ of isospin I and angular
momentum ℓ reads:

Im t I
ℓ =

√

1 − 4M2
π

s
|t I

ℓ|2 (1)

◮ The correct imaginary parts are generated automatically
by loops



Intro Unitarity Renormalization Applications Summary Why loops?

Why go beyond O(p2)? Why loops?

◮ Why not? Chiral Symmetry forbids O(p0) interactions
between pions, but allows for all higher orders

◮ Unitarity requires that if an amplitude at order p2 is purely
real, at order p4 its imaginary part is nonzero.
Take the ππ scattering amplitude. The elastic unitarity
relation for the partial waves t I

ℓ of isospin I and angular
momentum ℓ reads:

Im t I
ℓ =

√

1 − 4M2
π

s
|t I

ℓ|2 (1)

◮ The correct imaginary parts are generated automatically
by loops

◮ The divergences occuring in the loops can be disposed of
just like in a renormalizable field theory
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consider loops:

◮ I will consider the finite, analytically nontrivial part of the
loops and discuss in detail its physical meaning
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Effective field theory
The method of effective quantum field theory provides a rigorous
framework to compute Green functions that respect all the good
properties we require: symmetry, analyticity, unitarity

The method yields a systematic expansion of the Green func-
tions in powers of momenta and quark masses

In the following I will discuss in detail how this works when you
consider loops:

◮ I will consider the finite, analytically nontrivial part of the
loops and discuss in detail its physical meaning

◮ I will consider the divergent part of the loops and discuss
how the renormalization program works
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Scalar form factor of the pion

〈πi(p1)π
j(p2)|m̂(ūu + d̄d)|0〉 =: δijΓ(t) , t = (p1 + p2)

2 ,

At tree level:
Γ(t) = 2m̂B = M2

π + O(p4) ,
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Scalar form factor of the pion

〈πi(p1)π
j(p2)|m̂(ūu + d̄d)|0〉 =: δijΓ(t) , t = (p1 + p2)

2 ,

At tree level:
Γ(t) = 2m̂B = M2

π + O(p4) ,

in agreement with the Feynman–Hellman theorem:
the expectation value of the perturbation in an eigenstate of the
total Hamiltonian determines the derivative of the energy level
with respect to the strength of the perturbation:

m̂
∂M2

π

∂m̂
= 〈π|m̂q̄q|π〉 = Γ(0) .
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Scalar form factor of the pion

〈πi(p1)π
j(p2)|m̂(ūu + d̄d)|0〉 =: δijΓ(t) , t = (p1 + p2)

2 ,

At tree level:
Γ(t) = 2m̂B = M2

π + O(p4) ,

in agreement with the Feynman–Hellman theorem:
the expectation value of the perturbation in an eigenstate of the
total Hamiltonian determines the derivative of the energy level
with respect to the strength of the perturbation:

m̂
∂M2

π

∂m̂
= 〈π|m̂q̄q|π〉 = Γ(0) .

This matrix element is relevant for the decay h → ππ, which, for
a light Higgs would have been the main decay mode

Donoghue, Gasser & Leutwyler (90)



Intro Unitarity Renormalization Applications Summary

Dispersion relation for Γ(t)
For t ≥ 4M2

π Im Γ(t) 6= 0. Γ(t) is analytic everywhere else in
the complex t plane, and obeys the following dispersion relation:
Γ̄(t) = Γ(t)/Γ(0)

Γ̄(t) = 1 + bt +
t2

π

∫ ∞

4M2
π

dt ′

t ′2
Im Γ̄(t ′)
t ′ − t
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√
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π/t ]

Im Γ̄(t) = σ(t)Γ̄(t)t0
0
∗
(t) = Γ̄(t)e−iδ0

0 sin δ0
0 = |Γ̄(t)| sin δ0

0

where t0
0 is the S–wave, I = 0 ππ scattering amplitude
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Dispersion relation for Γ(t)
For t ≥ 4M2

π Im Γ(t) 6= 0. Γ(t) is analytic everywhere else in
the complex t plane, and obeys the following dispersion relation:
Γ̄(t) = Γ(t)/Γ(0)

Γ̄(t) = 1 + bt +
t2

π

∫ ∞

4M2
π

dt ′

t ′2
Im Γ̄(t ′)
t ′ − t

Unitarity implies [σ(t) =
√

1 − 4M2
π/t ]

Im Γ̄(t) = σ(t)Γ̄(t)t0
0
∗
(t) = Γ̄(t)e−iδ0

0 sin δ0
0 = |Γ̄(t)| sin δ0

0

where t0
0 is the S–wave, I = 0 ππ scattering amplitude

Strictly speaking, the above unitarity relation is valid only for t ≤ 16M2
π

. To a good approximation, however, it holds

up to the K K̄ threshold
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Dispersion relation and chiral counting

Γ̄(t) = 1 + bt +
t2

π

∫ ∞

4M2
π

dt ′

t ′2
|Γ̄(t ′)| sin δ0

0(t ′)
t ′ − t

b ∼ O(1)
(

1 + O(M2
π)

)

δ0
0 ∼ O(p2)

(

1 + O(p2)
)
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Dispersion relation and chiral counting

Γ̄(t) = 1 + bt +
t2

π

∫ ∞

4M2
π

dt ′

t ′2
|Γ̄(t ′)| sin δ0

0(t ′)
t ′ − t

b ∼ O(1)
(

1 + O(M2
π)

)

δ0
0 ∼ O(p2)

(
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There are two O(p2) correction to Γ̄:

1. O(1) contribution to b;

2. the dispersive integral containing the O(p2) phase δ0
0.

Notice that the latter is fixed by unitarity and analyticity
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Dispersion relation and chiral counting

Γ̄(t) = 1 + bt +
t2

π

∫ ∞

4M2
π

dt ′

t ′2
|Γ̄(t ′)| sin δ0

0(t ′)
t ′ − t

b ∼ O(1)
(

1 + O(M2
π)

)

δ0
0 ∼ O(p2)

(

1 + O(p2)
)

There are two O(p2) correction to Γ̄:

1. O(1) contribution to b;

2. the dispersive integral containing the O(p2) phase δ0
0.

Notice that the latter is fixed by unitarity and analyticity

Are these respected by the one loop calculation?
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Dispersion relation and one–loop CHPT
The full one–loop expression of Γ̄(t) reads as follows:

Γ̄(t) = 1 +
t

16π2F 2
π

(̄l4 − 1) +
2t − M2

π

2F 2
π

J̄(t)

J̄(t) =
1

16π2

[

σ(t) ln
σ(t) − 1
σ(t) + 1

+ 2
]
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Dispersion relation and one–loop CHPT
The full one–loop expression of Γ̄(t) reads as follows:

Γ̄(t) = 1 +
t

16π2F 2
π

(̄l4 − 1) +
2t − M2

π

2F 2
π

J̄(t)

J̄(t) =
1

16π2

[

σ(t) ln
σ(t) − 1
σ(t) + 1

+ 2
]

To prove that unitarity and analyticity are respected at this order
is sufficient to add:

δ0
0(t) = σ(t)

2t − M2
π

32πF 2
π

+O(p4) J̄(t) =
t

16π2

∫ ∞

4M2
π

dt ′

t ′
σ(t ′)
t ′ − t
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Bierfrage: Beweis?

Hints:
◮ Subtract J̄(t) once more

J̄(t) =
t

96π2 +
t2

16π2

∫ ∞

4M2
π

dt ′

t ′2
σ(t ′)
t ′ − t
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Bierfrage: Beweis?

Hints:
◮ Subtract J̄(t) once more

J̄(t) =
t

96π2 +
t2

16π2

∫ ∞

4M2
π

dt ′

t ′2
σ(t ′)
t ′ − t

◮ Trick to pull out a linear term from the dispersive integral:
∫ ∞

4M2
π

dt ′

t ′2
t ′σ(t ′)
t ′ − t

= t
∫ ∞

4M2
π

dt ′

t ′2
σ(t ′)
t ′ − t

+

∫ ∞

4M2
π

dt ′

t ′2
σ(t ′)
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Renormalization at one loop

∫
d4l

(2π)4

{p2, p·l , l2}
(l2 − M2)((p − l)2 − M2)

, p = p1 + p2

∼
∫

d4l
(2π)4

1
(l2−M2)

︸ ︷︷ ︸

+ p2
∫

d4l
(2π)4

1
(l2−M2)((p−l)2−M2)

︸ ︷︷ ︸

T (M2) J(p2)

T (M2) = a + bM2 + T̄ (M2) J(t) = J(0) + J̄(t)
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Renormalization at one loop

∫
d4l

(2π)4

{p2, p·l , l2}
(l2 − M2)((p − l)2 − M2)

, p = p1 + p2

∼
∫

d4l
(2π)4

1
(l2−M2)

︸ ︷︷ ︸

+ p2
∫

d4l
(2π)4

1
(l2−M2)((p−l)2−M2)

︸ ︷︷ ︸

T (M2) J(p2)

T (M2) = a + bM2 + T̄ (M2) J(t) = J(0) + J̄(t)

T̄ (M2) and J̄(t) are finite

Γ(t) ∼ M2
[

1 + bM2 + tJ(0)
︸ ︷︷ ︸

+T̄ (M2) + J̄(t)
]

divergent part
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To remove the divergences one only needs to properly define
the couplings (l3,4) in the lagrangian at order O(p4)
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Counterterms

L2 ⇒ Γ(2)(t) ∼ M2

L4 ⇒ Γ(4)(t) ∼ l3M4 + l4M2t

To remove the divergences one only needs to properly define
the couplings (l3,4) in the lagrangian at order O(p4)

Quote from Weinberg’s book on QFT, vol. I: “(...) as long as we
include every one of the infinite number of interactions allowed
by symmetries, the so–called non–renormalizable theories are
actually just as renormalizable as renormalizable theories.”
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Chiral logarithms
Scalar radius of the pion

Γ(t) = Γ(0)

[

1 +
1
6
〈r2〉πSt + O(t2)

]

〈r2〉πS ∼ J(0) =

∫
d4l

(2π)4

1
(l2 − M2)2 ∼ ln

M2

Λ2
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Chiral logarithms
Scalar radius of the pion

Γ(t) = Γ(0)

[

1 +
1
6
〈r2〉πSt + O(t2)

]

〈r2〉πS ∼ J(0) =

∫
d4l

(2π)4

1
(l2 − M2)2 ∼ ln

M2

Λ2

The integral is UV divergent, but also IR divergent if M → 0:

lim
M2→0

〈r2〉πS ∼ ln M2 ,
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Chiral logarithms
Scalar radius of the pion

Γ(t) = Γ(0)

[

1 +
1
6
〈r2〉πSt + O(t2)

]

〈r2〉πS ∼ J(0) =

∫
d4l

(2π)4

1
(l2 − M2)2 ∼ ln

M2

Λ2

The integral is UV divergent, but also IR divergent if M → 0:

lim
M2→0

〈r2〉πS ∼ ln M2 ,

The extension of the cloud of pions surrounding a pion (or any
other hadron) goes to infinity if pions become massless (Li and
Pagels ’72 )
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Chiral perturbation theory
◮ Chiral perturbation theory provides a rigorous framework

to compute Green functions that respect all the good
properties we require:
symmetry, analyticity, unitarity

◮ The method yields a systematic expansion of the Green
functions in powers of momenta and quark masses

◮ The method has been rigorously established and can be
formulated as a set of calculational rules:
LO tree level diagrams with L2

NLO tree level diagrams with L4

1-loop diagrams with L2

NNLO tree level diagrams with L6

2-loop diagrams with L2

1-loop diagrams with one vertex from L4
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Chiral symmetry and renormalization
To remove the divergent part in Γ(t) we have to fix the divergent
part of chiral–invariant operator of order O(p4)

e.g. 〈DµU†DµU〉〈BM(U + U†)〉 ∼ . . . + M2φ2∂µφ4∂µφ6 + . . .
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Chiral symmetry and renormalization
To remove the divergent part in Γ(t) we have to fix the divergent
part of chiral–invariant operator of order O(p4)

e.g. 〈DµU†DµU〉〈BM(U + U†)〉 ∼ . . . + M2φ2∂µφ4∂µφ6 + . . .

Chiral symmetry implies that after calculating the divergent part
of Γ(s) I also know the divergent part of the 6π → 6π scattering
amplitude
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Chiral symmetry and renormalization
To remove the divergent part in Γ(t) we have to fix the divergent
part of chiral–invariant operator of order O(p4)

e.g. 〈DµU†DµU〉〈BM(U + U†)〉 ∼ . . . + M2φ2∂µφ4∂µφ6 + . . .

1. Do we have a proof that quantum effects do not introduce
violations of the chiral symmetry? Or that one can build a
chiral invariant generating functional only with a path
integral over a chiral invariant classical action?
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Chiral symmetry and renormalization
To remove the divergent part in Γ(t) we have to fix the divergent
part of chiral–invariant operator of order O(p4)

e.g. 〈DµU†DµU〉〈BM(U + U†)〉 ∼ . . . + M2φ2∂µφ4∂µφ6 + . . .

1. Do we have a proof that quantum effects do not introduce
violations of the chiral symmetry? Or that one can build a
chiral invariant generating functional only with a path
integral over a chiral invariant classical action?

2. Is there a tool that allows one to calculate the divergences
keeping chiral invariance explicit in every step of the
calculation?
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Generating functional
◮ Consider a system with a spontaneously broken symmetry

G. Define the generating functional as:

eiZ{f} =
∑

n=0

in

n!

∫

dx1 . . . dxnf i1
µ1

. . . f in
µn
〈0|TJµ1

i1
. . . Jµn

in
|0〉 ,

where J i
µ are the Noether’s currents associated to the

spontaneously broken symmetry G of the system, and f µ
i

external fields coupled to them
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Generating functional
◮ Consider a system with a spontaneously broken symmetry

G. Define the generating functional as:

eiZ{f} =
∑

n=0

in

n!

∫

dx1 . . . dxnf i1
µ1

. . . f in
µn
〈0|TJµ1

i1
. . . Jµn

in
|0〉 ,

◮ The generating functional is invariant under
gauge transformations of the external fields:

Z{T (g)f} = Z{f} ,

where:

T (g)fµ = D(gx)fµ(x)D−1(gx) − i∂µD(gx)D−1(gx)
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boson degrees of freedom?
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For Lorentz–invariant theories in 4 dimensions, a path integral
constructed with gauge–invariant lagrangians is a necessary
and sufficient condition to obtain a gauge–invariant generating
functional
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Leutwyler’s theorem
What is the most general way of constructing a chiral-invariant

generating functional out of a path integral over the Goldstone
boson degrees of freedom?

For Lorentz–invariant theories in 4 dimensions, a path integral
constructed with gauge–invariant lagrangians is a necessary
and sufficient condition to obtain a gauge–invariant generating
functional

The theorem also includes the case in which the symmetry is
anomalous and the case in which the symmetry is explicitly bro-
ken
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background field method and heat kernel techniques, the
calculation of the divergences at one loop – and the
corresponding renirmalization – can be performed in an
explicitly chiral invariant manner
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Chiral invariant renormalization
◮ Gasser & Leutwyler (84) have shown that, using the

background field method and heat kernel techniques, the
calculation of the divergences at one loop – and the
corresponding renirmalization – can be performed in an
explicitly chiral invariant manner

◮ The method has been extended and applied to two loops
(Bijnens, GC & Ecker 98). After a long and tedious
calculation, the divergent parts of all the counterterms at
O(p6) has been provided

◮ The renormalization of CHPT up to two loops has been
performed explicitly: the calculation of any amplitude at two
loops can be immediately checked by comparing the
divergent part of Feynman diagrams to the divergent parts
of the relevant counterterms
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ππ scattering at NLO

a0
0 =

7M2
π

32πF 2
π

[

1 +
M2

π

3
〈r2〉πS +

200πF 2
π M2

π

7
(a0

2 + 2a2
2)

− M2
π

672π2F 2
π

(15̄l3 − 353)

]

= 0.16 · 1.25 = 0.20

2a0
0 − 5a2

0 =
3M2

π

4πF 2
π

[

1 +
M2

π

3
〈r2〉πS +

41M2
π

192π2F 2
π

]

= 0.624

Gasser and Leutwyler (83)
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ππ scattering at NLO

a0
0 =

7M2
π

32πF 2
π

[

1 +
M2

π

3
〈r2〉πS +

200πF 2
π M2

π

7
(a0

2 + 2a2
2)

− M2
π

672π2F 2
π

(15̄l3 − 353)

]

= 0.16 · 1.25 = 0.20

a0
0 − a2

0 = 0.245

Gasser and Leutwyler (83)

a0
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0 = 0.26 ± 0.05 Rosselet et al. (77)
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0 = 0.216 ± 0.013 ± 0.003 Pislak et al. (E865) (03)

|a0
0 − a2

0| = 0.264 +0.033
−0.020 Adeva et al. (DIRAC) (05)

a0
0 − a2

0 = 0.268 ± 0.010 ± 0.013 Batley et al. (NA48/2) (06)

Comparison of NNLO prediction and data ⇒ talk of Leutwyler
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ππ scattering at NLO
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NA48 (2005)
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Kl3 decays at NLO

〈K +|ūγµs|π0〉 =
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]
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Gasser and Leutwyler (85)
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Kl3 decays at NLO

λ+ =
M2

π

6
〈r〉πV + ∆+ = 0.031

λ0 =
M2

π

M2
K − M2

π

(
FK

Fπ
− 1

)

+ ∆0 = 0.017

Gasser and Leutwyler (85)

Experimental values:
Exp. 103λ+ 103λ0

ISTRA (K−
µ3) 29.7 ± 1.6 19.6 ± 1.4

ISTRA (K−
e3) 24.7 ± 1.6

KTeV (KL e,µ3) 20.6 ± 1.8 13.7 ± 1.3
NA48/2 (KL e3) 28.0 ± 1.9
NA48/2 (KL µ3) 26.0 ± 1.2 12.0 ± 1.7

KLOE (KL e3) 25.5 ± 1.5
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Kl3 decays at NLO
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Figure by KLOE, hep-ex/0601038
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Kl3 decays at NNLO
◮ Kl3 amplitude known at NNLO Post & Schilcher (02)

Bijnens & Talavera (03)

◮ Interesting relation among f+(0), slope and curvature
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Kl3 decays at NNLO
◮ Kl3 amplitude known at NNLO Post & Schilcher (02)

Bijnens & Talavera (03)

◮ Interesting relation among f+(0), slope and curvature

f̃0(t) := f0(t) +
t

M2
K − M2

π

(1 − FK /Fπ)

f̃0(t) = 1 − 8
F 4

π

(Cr
12 + Cr

34)(M
2
K − M2

π)2

+
8t
F 4

π

(2Cr
12 + Cr

34)(M
2
K + M2

π) − 8t2

F 4
π

Cr
12 + ∆(t)

◮ The value of f+(0) can be predicted in terms of measured
quantities ⇒ extraction of Vus from data on Ke3
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Kl3 decays at NNLO

0.205 0.21 0.215 0.22 0.225 0.23

K+

KS

KL

f+(0) (1-|Vus|2-|Vud|2)
1/2

KL e3   [PDG 2002]

K+
 e3   [new]

KL e3   [new]

KL µ3   [new]

KS e3   [new]

K+
 e3   [PDG 2002]

Leutwyler Roos

Large NC [Cirigliano et al.]

Lattice [Becirevic et al.]

f+(0) |Vus|

From Blucher et al. CKM05-WG1, hep-ph/0512039
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Areas of application
◮ Pions, kaons and etas

◮ Purely strong interactions ((semi)leptonic decays)
◮ Weak nonleptonic (radiative) decays
◮ Electromagnetic interactions
◮ Decays of electromagnetically bound states
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Areas of application
◮ Pions, kaons and etas
◮ Nucleons

◮ One nucleon sector: πN or KN scattering
◮ Electromagnetic interactions
◮ Two nucleon sector: NN scattering, nuclear forces
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Areas of application
◮ Pions, kaons and etas
◮ Nucleons
◮ Connections to lattice QCD

◮ (Partially) Quenched Chiral Perturbation Theory
◮ Study of finite–volume and –temperature effects
◮ Extrapolation to the chiral limit
◮ Extrapolation to zero lattice spacing
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Areas of application
◮ Pions, kaons and etas
◮ Nucleons
◮ Connections to lattice QCD
◮ Condensed–matter systems with spontaneous symmetry

breaking
◮ Ferromagnets
◮ Antiferromagnets in d = 3 or d = 2
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Areas of application
◮ Pions, kaons and etas
◮ Nucleons
◮ Connections to lattice QCD
◮ Condensed–matter systems with spontaneous symmetry

breaking
◮ Electroweak symmetry breaking – models in which the

electroweak symmetry is broken strongly
◮ General relativity as an effective field theory
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Summary
◮ The finite, analytically nontrivial part of the one loop

integrals automatically generates the correct imaginary
parts, as required by unitarity.

◮ Effective quantum field theory is a systematic method to
generate a perturbative solution of dispersion relations

◮ The UV divergences encountered in loop integrals can be
removed according to standard renormalization methods

◮ Some loop integrals have also an IR singular behaviour
which has a very clear physical meaning, and again shows
the necessity of taking loop effects into account

◮ Leutwyler’s theorem: doing a path integral over an effective
Lagrangian is the most general way to construct an
invariant generating functional

◮ I have illustrated the method discussing two applications:
◮ the ππ S-wave scattering lengths
◮ Ke3 decays and the extraction of Vus
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