Experiment

Strategy 00000

Calibration

Theory modeling

Z validation

Result

Measurement of the W boson mass at CMS

Markus Seidel

Oct 31, 2024

Institute of Particle Physics and Accelerator Technologies

xperiment

S

Calibrat 000000 Theory modeling

Z validation

Result

The Standard Model of particle physics

 Masses of top quark, and W, Z and H bosons related via loop corrections

Markus Seidel (RTU, LV)

Measurement of the W boson mass at CMS

 $W \sim$

Oct 31, 2024 2 / 39

riment

Strategy 00000 Calibration 000000000 Theory modeling

Z validation

Result

The W boson mass in the electro-weak fit

In particular, $m_W^2 \left(1 - m_W^2 / m_Z^2\right) = \pi \alpha / \left(\sqrt{2} G_\mu \left(1 + \Delta r\right)\right)$, with Δr containing higher-order SM and possible beyond-SM corrections

eriment 0 Strate 0000 Calibration 00000000 Theory modeling

Z validation

Result

Vector boson production and decay at the LHC

- Neutral-current Drell-Yan process: $pp o q \bar{q} o Z^0/\gamma^* o \ell^+ \ell^-$
- Charged-current Drell-Yan process: $pp o q ar q' o W^\pm o \ell^\pm
 u$

Unpolarized cross section σ_{UL}

eriment 0 egy

0 **Th**

Theory modeling

Z validation

Result

Mass measurements at CMS

Usual strategy: select events, reconstruct invariant mass, compare with prediction

Top quark mass from jets with $0.22\%^*$ precision CMS TOP-20-008 *Using knowledge of W mass. W mass from jets $\sim 0.5 - 1\%$ due to jet energy scale and modeling

- Higgs boson mass from photons with 0.21% precision CMS HIG-19-004
- Higgs boson mass from leptons with 0.10%* precision CMS HIG-21-019
 *Limited by 4µ channel statistics, systematics are down to 0.05% already
- Goal for W mass: 0.02% precision (what ATLAS achieved)

Measurement of m_W at hadron colliders

arXiv 1004.2597 CMS PAS-SMP-14-007

- Leptonic channel: neutrino prevents full reconstruction
 - \rightarrow use lepton $p_{\rm T}$ or transverse mass $m_{\rm T}^2 = 2p_{\rm T}^\ell p_{\rm T}^{\rm miss} \left(1 \cos \Delta \phi \left(\ell, p_{\rm T}^{\rm miss}\right)\right)$

• Lepton p_T : Jacobian peak when W is at rest but smeared out at realistic W p_T • Extreme precision required: 1% change in lepton p_T ratio \rightarrow 100 MeV in m_W

• $m_{\rm T}$ less sensitive to W $p_{\rm T}$ but poor resolution and difficult to calibrate

- Strong magnetic field, excellent tracker and muon systems
- Electromagnetic crystal calorimeter with excellent energy resolution
- Hermetic brass-scintillator hadronic calorimeter
- Particle flow algorithm combines tracking and calorimeter information optimally

Excellent LHC performance

■ Total integrated luminosity from Runs 1, 2, and 3 close to 400 fb⁻¹

Huge number of W bosons produced at each ATLAS and CMS:

$$N_W = 400 \text{ fb}^{-1} \times 20000 \text{ pb} \Rightarrow 8 \text{ billion } W \to \mu \nu \text{ events}$$

CMS LumiPublicResults

Markus Seidel (RTU, LV)

Price to pay: pileup

0000

Experiment

- \blacksquare High instantaneous luminosity \rightarrow multiple pp interactions per bunch crossing
- 8 2024 (13.6 TeV): <µ> = 57 CMS 2023 (13.6 TeV): <up> = 52 Data recorded: 2016-Oct-14 09:56:16.733952 GMT 7 2022 (13.6 TeV): <µ> = 46 - 7 Run / Event / LS: 283171 / 142530805 / 254 2018 (13 TeV): <u> = 37 2017 (13 TeV): <u> = 38 Recorded luminosity (fb⁻¹/1.0) 2016 (13 TeV): <u> = 27 2015 (13 TeV): <u> = 14 2012 (8 TeV): <µ> = 21 2011 (7 TeV): <µ> = 10 4 σ^{EP}(13.6 TeV) = 80.0 mb 3 opp(13 TeV) = 80.0 mb o^{pp}(8 TeV) = 73.0 mb 2 σ^{pp}_{in}(7 TeV) = 71.5 mb 1 0 100 Q4 60 ŵ Mean number of interactions per crossing
- Tracking copes well: tracks assigned to distinct interaction vertices
 - \blacksquare CMS Phase-2 upgrades for High-Lumi LHC will include timing capabilities \rightarrow 4D vertexing
- Calorimeters: energy deposits overlap and cannot be distinguished

Z validation

Result

CMS LumiPublicResults

- Muons are easily identifiable even in high-PU environment
- Calibration possible via multiple known resonances
 - J/Ψ : mass uncertainty: 2×10^{-6}
 - **Z** boson mass uncertainty: 2×10^{-5}
- \blacksquare Target precision for W mass: 1×10^{-4}

Experiment

Strategy •0000 Calibration

Theory modeling

Z validation

Result

CMS measurement strategy

- Largest-ever dataset for m_W : 16.8 fb⁻¹ from second part of 2016 run
 - 30 interactions per crossing $\rightarrow p_{T}^{miss}$ and m_{T} resolution degraded
- \blacksquare Focus on muon kinematics \rightarrow minimize experimental uncertainties
 - Calibration from J/Ψ resonance, **reserve Z data** as independent cross check
 - Electron channel more difficult to calibrate, not needed with large statistics
- Profile likelihood fit to muon $p_{\rm T}$, η , charge
 - Based on Tensorflow to handle thousands of bins and systematic variations
 - In-situ constraints on theory modeling from W data

nent

Calibra 00000 Theory modeling

Z validation

Result

Key idea: W mass by likelihood fit

- Simultaneous fit of W mass and leading effects on W p_{T} proposed in 2019 arXiv 1907.09958
 - ISR α_s and intrinsic k_t shapes different wrt m_W variation

Strategy

• Can float to absorb changes in the boson p_{T} , actually improve fit quality

Now: allow for adjustments of more than 4000 nuisance parameters

periment

Strategy

Calibration

Theory modeling

Z validation

Result

W event selection

- Events preselected by single-muon trigger with $p_{\rm T}>24\,{\rm GeV}$ and loose isolation
- Muon *p*_T 26 56 GeV, |η| < 2.4, reconstructed in tracker and muon system
- Transverse impact parameter < 500µm and additional isolation requirements → suppress nonprompt background
- \blacksquare Veto events with additional "loose" electrons/muons with $p_{\rm T} > 10/15~{\rm GeV}$
 - \rightarrow suppress $Z\rightarrow \mu\mu$, $\mathrm{t}\overline{\mathrm{t}}$, tW , diboson
- Require $m_{\rm T}$ > 40 GeV \rightarrow further enhances purity
- \blacksquare Selected 100M events with \sim 87% $W \rightarrow \mu \nu$ signal

Calibration

Theory modeling

Z validation

Result

${\sf Z}$ event selection

- Exactly 2 opposite-charge muons with $m_{\mu\mu}$ 60 120 GeV
- $Z \rightarrow \mu \mu$ signal purity 99.5%

W-like Z selection

- Remove 1 muon and treat it as undetected neutrino
- Split sample so that odd (even) events are used to analyze positive (negative) muons
- Muon $p_{\rm T}$ 26 60 GeV, $m_{\rm T}$ > 45 GeV, accounting for larger m_Z

• W-like m_Z validates most aspects of m_W (except those related to backgrounds)

Exp

Strategy 0000 Calibration

Theory modeling

Z validation

Result

Analysis workflow

- Produced 4B W/Z events with full detector simulation
- Custom NanoAod (CMS ntuple)
- Local analysis with RDataFrame on 256-thread machine
- Boost histograms for performance

Hist Type	Hist Config	Evt. Loop	Total	CPUEff	RSS
ROOT THnD	10 × 103 × 5D	59m39s	74m05s	0.74	400GB
ROOT THnD	10 × 6D	7m54s	25m09s	0.27	405GB
Boost ("sta")	10 × 6D	7m07s	7m17s	0.90	9GB
Boost ("sta")	$10 \times (5D + 1$ -tensor)	1m54s	2m04s	0.81	9GB
Boost ("sta")	$1 \times (5D + 2\text{-tensor})$	1m32s	1m42s	0.77	9GB

- Tensorflow 2 fit to handle large number of bins and variations
- Contributors from multiple institutes, analysis code on github
- Cl tests on partial dataset

nent

Calibration •0000000 Theory modeling

Z validation

Result

Muon momentum calibration

- 1 Improve simulation parameters (increased Geant4 precision) \rightarrow new MC production
- 2 Improved reconstruction
 - Refit inner muon tracks with Continuous Variable Helix fit: incorporates continuous energy loss and multiple scattering using Geant4 propagator
 - Higher-accuracy B-field map from full 3D survey arXiv 1110.0306 arXiv 2202.02562
- 3 Global alignment procedure using $J/\Psi
 ightarrow \mu\mu$ events
 - Determines position and orientation of silicon tracker modules
 - Additional parameters for B-field and energy loss

Muon momentum calibration: after global corrections

Bias of simulated muon scale vs p_{T} and charge after each steps 1 2 3

■ Validate functional form of final calibration model (step 4, next slide)

Muon momentum calibration: final corrections

Strategy

4 Final correction for data/MC differences of track curvature $k = 1/p_T$

Calibration

00000000

Fit J/Ψ mass in bins of muon kinematics $\eta^+, p_T^+, \eta^-, p_T^-$,

• Extract η -binned calibration parameters

Markus Seidel (RTU, LV)

Z validation

Theory modeling

 Introduction
 Experiment
 Strategy
 Calibration
 Theory modeling
 Z validation

 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000

Muon momentum calibration: validation & uncertainties

- Charge-independent (B-field-like) and charge-dependent (alignment-like) residuals
- Closing in J/Ψ , validated in Y(1S) and $Z \rightarrow \mu\mu$ events

- Non-closure with Z is small, added as uncertainty, not as input or correction
- J/Ψ calibration uncertainty scaled by factor 2.1 to account for possible correlated biases
- Total muon calibration uncertainty $\rightarrow \pm 4.8 \text{ MeV}$ on m_W ATLAS: 7 MeV from Z calibration, CDF: 3 MeV from J/Ψ , Y, Z

periment

Stra 000 Calibration

Theory modeling

Z validation

Result

CMS MUO-16-001

Muon efficiencies: tag & probe method

- Select muon pairs with $m_{\mu\mu}$ close to resonance mass:
 - tag muon fulfills tight selection criteria
 - probe muon fulfills loose selection criteria

Fit resonance in categories of passing/failing probe criteria $\rightarrow \epsilon = N_{\text{pass}} / (N_{\text{pass}} + N_{\text{fail}})$

eriment O Strategy

Calibration 0000000000 Theory modeling

Z validation

Result

Muon efficiencies for m_W

- Measured in $Z \rightarrow \mu\mu$ events, fine-binned in muon η , split by charge
- Interpolated over muon p_T and hadronic recoil u_T (affects probe isolation)

Good closure in Z events, 3000 nuisance parameters $\rightarrow \pm 3.0 \, \text{MeV}$ on m_W

Markus Seidel (RTU, LV)

Measurement of the W boson mass at CMS

eriment O

St

Calibration

Theory modeling

Z validation

Result

Missing transverse momentum $p_{\rm T}^{\rm miss}$

- p_T^{miss} = negative vector \vec{p}_T sum of all visible final-state particles aka **recoil**
- Resolution typically 15 30 GeV, depending on PU and p_{T}
- DeepMET algorithm: learn optimal weights of individual PF candidates for improved resolution and PU resilience

- Hadronic recoil in $Z \rightarrow \mu \mu$ events should balance against $q_T = p_T^Z$
- Calibration derived in bins of q_T , applied to W with inverse CDF method

Calibration

• m_T used only for event selection, impact on $m_W < 0.3 \, {
m MeV}$

Theory modeling

Z validation

CMS PAS-SMP-14-007

Result

riment

Strategy 00000 Calibration

Theory modeling

Z validation

Result

Nonprompt muon background

- Mostly from QCD multijet events with heavy flavors
- Data-driven estimate using extended ABCD method in $m_{\rm T}$ and isolation, $D = CA_x B^2 / (B_x A^2)$
- Validated using QCD simulation and HF-enriched control region with muons from secondary vertices
- Impact on *m_W*: 3.2 MeV

Markus Seidel (RTU, LV)

Measurement of the W boson mass at CMS

Calibration

Theory modeling

Z validation

Result

W/Z boson $p_{\rm T}$ modeling

- Most W/Z bosons produced at low-p_T, theory description requires resummation of multiple gluon emissions and non-perturbative model (intrinsic k_t)
- MC prediction: Powheg MiNNLO + Pythia 8 parton shower \rightarrow NNLO+LL accuracy
- \blacksquare Reweighted to resummed calculation SCETlib+DYTurbo \rightarrow N^3LL+NNLO

ent

Theory modeling

Z validation

Result

$p_{\rm T}$ uncertainty model

- Theory nuisance parameters instead of scale variations for resummation
 Tackmann
 - Coefficients in the resummation, meaningful shape variations, constrainable from data
 - \blacksquare N³⁺⁰LL scheme: perturbative structure at N³LL, with TNP variations around known values
 - Also tested N^4LL schemes but would need to be matched to N^3LO

- Scale and matching uncertainties for NNLO part, variation of heavy quark masses
- Non-perturbative model with 10 parameters inspired by lattice QCD arXiv 2201.07237
- \blacksquare In total 32 nuisance parameters $\rightarrow \pm 2.0\,\text{MeV}$ uncertainty

riment

Calibrat 000000 Theory modeling

Z validation

1004.2597

arXiv

Result

CMS SMP-18-012

Parton distribution functions

- \blacksquare PDFs parametrize probability to find initial parton with momentum fraction x
- Determines the energy available for the W production \rightarrow impact on p_{T} spectrum

Left-handed valence quarks have higher x than right-handed "sea" anti-quarks

 \rightarrow forward (central) W bosons most likely left-handed (right-handed), imprint on lepton η

eriment

ategy 000 oration 000000 Theory modeling

Z validation

Result

Parton distribution functions

- Consider 7 different PDF sets, profiling their uncertainty eigenvectors
- Derive scale factors to cover m_W extracted with other PDFs

 \blacksquare Very good consistency between PDF sets, CT18Z as default PDF $\rightarrow\pm$ 4.4 MeV

0.6E 10

 \rightarrow uncertainty from A_i 's ± 3.3 MeV

p_{T.Z} [GeV]

100

operiment

Strate 0000 Calibration

Theory modeling

Z validation

Result

Higher-order electroweak effects

QED final-state radiation

- Most important effect but already simulated in nominal MC sample: MiNNLO + Pythia + Photos++
 - Including ME corrections and lepton pair production
- Compare to MEC off and alternative generator (Horace)
- Impact ±0.3 MeV

QED initial-state radiation

- Full QED ISR shower vs turning it off in Pythia
- Impact < 0.1 MeV

Virtual corrections

- Estimated at NLO with Powheg for Z, Renesance for W
- Largest impact: ±1.9 MeV
- ightarrow total impact on m_W : $\pm 2.0 \, {
 m MeV}$

Experiment

Strateg

Calibration

Theory modeling

Z validation

Result

Z boson mass from $Z \to \mu \mu$

- Extracting m_Z by fit to dilepton mass
- Agreement with PDG: $m_Z m_Z^{\text{PDG}} = -2.2 \pm 4.8 \text{ MeV}$
- Due to calibration uncertainty **not** an independent measurement of m_Z (yet)

• Checked stability of result across muon η

S

Calibrati 000000 Theory modeling

Z validation

Result

Z boson $p_{\rm T}$ from $Z \rightarrow \mu \mu$

• Fit theory model to dilepton p_T to verify it can describe the data

Initial discrepancy due to untuned NP parameters, fully absorbed

Postfit description at the 0.1% level

ient

rategy

bration 0000000 Theory modeling

Z validation

Result

Z boson p_{T} from W-like $Z ightarrow \mu_{\mathrm{W}}$

Run full W-like fit using single muon (p_T , η , charge) in Z events, other muon ignored

- Theory model is able to accommodate lepton $p_{\rm T}$ very precisely
- Good agreement between W-like and dilepton $p_{\rm T}$ fit

nt

egy 0 o **The**

Theory modeling

Z validation

Result

Z boson mass from W-like $Z ightarrow \mu \chi$

- Nominal W-like result: $m_Z m_Z^{\text{PDG}} = -6 \pm 14 \text{ MeV}, \ m_Z^+ m_Z^- = 31 \pm 32 \text{ MeV}$
- Reversed event selection: $m_Z m_Z^{\text{PDG}} = 8 \pm 14 \text{ MeV}, \ m_Z^+ m_Z^- = 6 \pm 32 \text{ MeV}$

• Good agreement with $m_{\ell\ell}$ fit and LEP/PDG value \checkmark

 \rightarrow Demonstrated ability to measure m_V without direct access to p_T^V spectrum!

ent

Strategy 00000 Calibration 000000000 Theory modeling

Z validation

Result

W boson mass fit

All ingredients in place to run the final fit!

Source of up containty	Impact (MeV)			
Source of uncertainty	Nominal	Global		
Muon momentum scale	4.8	4.4		
Muon reco. efficiency	3.0	2.3		
W and Z angular coeffs.	3.3	3.0		
Higher-order EW	2.0	1.9		
$p_{\rm T}^{\rm V}$ modeling	2.0	0.8		
PDF	4.4	2.8		
Nonprompt background	3.2	1.7		
Integrated luminosity	0.1	0.1		
MC sample size	1.5	3.8		
Data sample size	2.4	6.0		
Total uncertainty	9.9	9.9		

 \blacksquare Total uncertainty $\pm 9.9\,\text{MeV}$ \rightarrow most precise measurement at the LHC

Theory modeling

Z validation

Result 0000

W boson mass result

- Compatible with the Standard Model expectation

In clear tension with CDF measurement.

Stability checks

xperiment

Strateg 00000 Calibration 000000000 Theory modeling

Z validation

Result 00●00

Mass difference measured between

- muon $\eta <$ 0 vs $\eta >$ 0: 5.8 \pm 12.4 MeV
- barrel vs endcap: $15.3 \pm 14.7 \text{ MeV}$
- W^+ vs W^- : 57 ± 30 MeV
 - Strong anti-correlations in alignment and theory uncertainties (A'_is for μ[±])
 - Several cross checks done, m_W results stable within $< 1 \,\mathrm{MeV}$
- simultaneous fit to Z p_T, y : 0.6 MeV

Markus Seidel (RTU, LV)

Measurement of the W boson mass at CMS

Oct 31, 2024 38 / 39

40

- **Z** $p_{\rm T}$ predicted from W-like helicity fit agrees with measured $p_{\rm T}$ ($\ell\ell$)
- Difference to main result 0.6 MeV, with slightly larger uncertainty ± 15.2 MeV
- Extracted W p_{T} , y spectrum agrees with prefit model

CMS Preliminarv

Main result

• Free-floating p_T^W and y^W (8x7 bins), loose constraints on A_{0-4}

Alternative fit setup with reduced model dependence

16.8 fb⁻¹ (13 TeV)

 $Z/\gamma^* \rightarrow \mu \mu/\tau \tau$

Data

Other

Helicity fit

Events/GeV

6È Preliminary

CMS

Theory modeling

(13 TeV)

Z validation

CMS

1.2

Preliminarv

Result 00000

(13 TeV

prefit

50

p^W_T (GeV)

k**periment**

Str 00 Calibration

Theory modeling

Z validation

Result

Summary

First measurement of the W boson mass by CMS!

$m_W = 80360.2 \pm 9.9 \, { m MeV}$

Most precise at the LHC, in clear tension with previous CDF result

■ Good agreement with EW fit – "The standard model is not dead" Nature

Documented in CMS PAS-SMP-23-002 - to be submitted to journal soon

Markus Seidel (RTU, LV)

Measurement of the W boson mass at CMS