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Gravitational waves from binary mergers

Gravity is a very weak force
- Observable signals require enormous energy

All confirmed GWs come from binary mergers
- Black hole + black hole (BBH)

- Neutron star + neutron star (BNS)

- Black hole + neutron star (BHNS/NSBH)

What do these signals look like?



Gravitational waves from blnary mergers

Gravity Is a very weak force
- Observable signals require enormous energy

All confirmed GWs come from binary mergers
- Black hole + black hole (BBH) ~ 0T

- Neutron star + neutron star (BNS) Ng 02
- Black hole + neutron star (BHNS/NSBH) = %
£-0.5
What do these signals look like? 1O F
- Inspiral: the compact objects approach
- Growing signal strength S 0.6
- Merger: the compact objects connect £0.5
- Maximum signal strength, the "chirp" Cl

- Ringdown: the produced object stabilises
- Rapidly decaying signal strength
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The first observation: GW150914

The first GW signal was observed Hanford, Washington (H1) -lvingston, Fouisiana 1

on 14 September 2015 1.0/ o

g AN

- Black hole 1: 36 solar masses
- Black hole 2: 29 solar masses
- Resulting BH: 62 solar masses

Strain (10~%%)
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The first observation: GW150914

The first GW signal was observed
on 14 September 2015

- Black hole 1: 36 solar masses

- Black hole 2: 29 solar masses

- Resulting BH: 62 solar masses

Strain (10~%%)

3 solar masses of energy radiated

as GWs, within a few milliseconds!

- For a brief moment, this source
radiated more energy as GW than
the entire Universe radiated in
the visible spectrum
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Strain and GW150914

Signals are space-time deformations

- Look in two different directions

- Measure the difference in the
distance travelled by light

Strain (10~%%)

Result is the strain, ~ AL/L
- GW150914 max strain: 1.0x10%4?

- Earth-sun distance (AU): 1.5x10''m
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Strain and GW150914

Signals are space-time deformations

- Look in two different directions 10
- Measure the difference in the 00

distance travelled by light

-1.0

Strain (10~%%)

Result is the strain, ~ AL/L

- GW150914 max strain: 1.0x10721 |
- Earth-sun distance (AU): 1.5x10''m
- 102 strain on AU: 1.5x10 1% m
- Bohr radius: 0.5x10° m

N O
uor =
S N

3 solar masses of GW energy was
observed by measuring a strain

compatible with the AU length
changing by 3 hydrogen radii!
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Observing GW signals

Measuring the strain so precisely requires extraordinary distance precision
- Laser interferometers are the way all GW signals have been observed to date
- Perturbations of the relative lengths of the two arms (strain) leads to interference
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Extracting a GW signal

The interferometer strain is noisy
- Even the top panel here is after
substantial data pre-processing

Extracting the middle panel relies
on matched filtering
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Extracting a GW signal

The interferometer strain is noisy
- Even the top panel here is after

. ) Matched Filtering lllustration
substantial data pre-processing

|

Extracting the middle panel relies
on matched filtering

Template

|
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o o Ul

- Assume a given signal shape
- Slide the signal over the time series
- Calculate shape-to-data correlation
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Mathematically proven to provide

optimal signal extraction
- Assumes you have the right shape

Match
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- Repeat with MANY templates, pick o 1 2 3 4 5 6 7 8
the best correlation if multiple match



What information is in the template?

The template describes the full process

- Inspiral gives information about the properties
of the two incident objects (mass, spin, etc)

- Ringdown gives information about the

resulting object's properties - 2(5)
|deally, we would use numerical relativity EO'O
(NR) for all of the templates 5-0.5
- This is too expensive, as we need 1O

millions of templates for matched filtering
- Instead, rely on approximants for the S 0.6

"pattern bank", and can then refine with  £05¢

© 0.4

NR for the final sighal characterisation R

- Approximants work well enough for now
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Networks of interferometers

GW detection is greatly enhanced

through having multiple detectors

- First GW detection involved two
LIGO interferometers

Benefits of multiple detectors:

- Increased signal sensitivity
- Signal is present in both detectors
- Noise should be uncorrelated

Strain (10~%%)
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Networks of interferometers

GW detection is greatly enhanced

through having multiple detectors

- First GW detection involved two
LIGO interferometers

Benefits of multiple detectors:

- Increased signal sensitivity
- Signal is present in both detectors
- Noise should be uncorrelated

- Background events/glitches should -

only be present in one detector
- Geometric acceptance effects
- GW-detector alignment matters
- Sky localisation (more later)

Strain (10~%%)
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LVK: the 2"? generation GW network

There are four 2"-gen GW detectors
- Both LIGO started in 2015
- Virgo joined 2017, KAGRA 2020

All are laser interferometers
- LIGO: 4km arms, surface
- Virgo: 3km arms, surface

- KAGRA: 3km arms, underground,
Cryogenic mirrors

14



LVK: the 2" generation GW network

There are four 2"%-gen GW detectors

- Both LIGO started in 2015

- Virgo joined 2017, KAGRA 2020

All are laser interferometers
- LIGO: 4km arms, surface
- Virgo: 3km arms, surface

- KAGRA: 3km arms,
underground,

Cryogenic mirrors

Three scientific collaborations, but also

form a joint super-collaboration: LVK

- Data is live-streamed between sites

- Operate as a single network, jointly
planning science runs (better sensitivity)
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The importance of a network: GW170817

Normalized amplitude

The second most famous GW event was a perfect X - ) °
example of the importance of detector networks
- Seen in both LIGO detectors, but not in Virgo
- Signal was strong enough to be seen in Virgo

Why was it missing in Virgo? Geometry!

- The event happened to be in the Virgo "blind zone"

- This is a narrow window; helped to identify where
In the sky the GW signal came from

- More precise than if all three had seen the signal!

Frequency (Hz)

Sky localisation turned out to be very important

-30 -20 -10 0
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The importance of a network: GW170817

The second most famous GW event was a perfect
example of the importance of detector networks

- Seen in both LIGO detectors, but not in Virgo
- Signal was strong enough to be seen in Virgo

Why was it missing in Virgo? Geometry!

- The event happened to be in the Virgo "blind zone"

- This is a narrow window; helped to identify where
In the sky the GW signal came from
- More precise than if all three had seen the signal!

Sky localisation turned out to be very important

- First multi-messenger (MM) observation with GWs

- Correlated GW signal and gamma-ray burst (GRB)
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The importance of a network: GW170817

The second most famous GW event was a perfect
example of the importance of detector networks

- Seen in both LIGO detectors, but not in Virgo

- Signal was strong enough to be seen in Virgo

Why was it missing in Virgo? Geometry!

- The event happened to be in the Virgo "blind zone"

- This is a narrow window; helped to identify where
In the sky the GW signal came from

- More precise than if all three had seen the signal!

Sky localisation turned out to be very important

- First multi-messenger (MM) observation with GWs
- Correlated GW signal and gamma-ray burst (GRB)
Led to a huge MM follow-up programme
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Another key GW170817 feature

Beyond multi-messenger observations, GW1/70817/ also looks different as a GW
- Previous GW signals lasted on the order of a second or less

GW170104

i

GW17/0814

1 sec.
time observable by LIGO-Virgo
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Another key GW170817 feature

Beyond multi-messenger observations, GW1/70817/ also looks different as a GW
- Previous GW signals lasted on the order of a second or less
- In contrast, GW1/70817 lasted nearly a minute!

GW150914
LVT151012 =
GW151226
GW170104
GW170814
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Another key GW170817 feature

Beyond multi-messenger observations, GW1/70817/ also looks different as a GW
- Previous GW signals lasted on the order of a second or less
- In contrast, GW1/081/ lasted nearly a minute!

What is going on?

- Previous signals were all BBH: binary black holes, with significant masses
- GW1/70817 is a BNS: binary neutron star, much lower mass

- Less massive = takes more time to coalesce (weaker gravitational interactions)

Multi-messenger observations confirm this first BNS as a kilonova source
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Does not include ongoing O4 run

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern



The future of 2" gen GW detectors

Up to the end of O3, LVK observed roughly 90 binary coalescence events
- Roughly one observation per week, with growing sensitivity

Upgrades are planned for the O5 run, and are being proposed for a potential O6
- Will increase sensitivity, but ultimately limited by the infrastructure
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The 3" generation GW detectors

Einstein Telescope (ET, Europe) and have been proposed
- Different configurations, but both dramatically improve on LIGO 2" gen

- 10x increase in strain sensitivity = 10° increase in sensitive volume

- Extends reach in redshift (time) from the local to primoridal Universe

_ ' — T T T T —T T T T LAY SN L L
1 O 22 : ].OO E e HOr1z0n E
. - 10% detected -
50% detected -
Q-
~ 107% 10
. :
- &
: k
g 107% 1
< ;
= :
2 ¢
Median source we ETT
Y Best 10% of sources
10 - s (Optimal source E 01L CE _
C g aald 1 | L 1 g aaal 1 1 L gl 1 1 1 * - r 0 a1 aaal 1 L gl 1 Lo aaaal 1 L1
10 100 1000 10 100 1000 10000

Frequency [Hz] Total source-frame mass [ M ]



The 3™ generation GW detectors

Einstein Telescope (ET, Europe) and Cosmic Explorer (CE, USA) have been proposed
- Different configurations, but both dramatically improve on LIGO 2" gen

- 10x increase in strain sensitivity = 10° increase in sensitive volume

- Extends reach in redshift (time) from the local to primoridal Universe

Cosmic Explorer: continue the current LIGO 2" gen strategy
- A pair of laser interferometers: one with 20km arms, one with 40km arms
- Take advantage of the fact that there are large unoccupied deserts in the USA

Einstein Telescope: a new strategy, building on KAGRA as a pathfinder

- Roughly 250m underground to minimise noise and background sources

- Both high-frequency (classic) and low-frequency (cryogenic) interferometers

- A triangular configuration of 3 nested interferometers per frequency range

- Baseline is 10km arm length, but alternatives are under study (more on this later)
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The 3" generation GW detectors

Einstein Telescope (ET, Europe) and
- Different configurations, but both dramatically improve on LIGO 2" gen
- 10x increase in strain sensitivity = 10° increase in sensitive volume

- Extends reach in redshift (time) from the local to primoridal Universe
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Implications of 3" generation sensitivity

Einstein Telescope and Increase strain sensitivity by 10x

- 10x more SNR for a given signal at a given time
- Longer SNR integration time (wider freq. range)
- "Golden signals" can have SNR > 1000
- Extreme precision on GW parameters!

Sensitive volume grows by strain® = 10°
- BNS/BBH not uniformly distributed in redshift
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Implications of 3" generation sensitivity

Einstein Telescope and Increase strain sensitivity by 10x
- 10x more SNR for a given signal at a given time 100
- Longer SNR integration time (wider freq. range) Feasnit

- "Golden signals" can have SNR > 1000
- Extreme precision on GW parameters!

Sensitive volume grows by strain® = 10°

- BNS/BBH not uniformly distributed in redshift
- 1 signal/week becomes 1/min; 10* increase

- ET sees large majority of BNS, CE even more

- Both see vast majority of non-primoridal BBH
- Huge increase in GW event rates and types

* .\t
GW150914

*
W170817

3" gen GW gives both precision and discovery
- Similar to combining LEP+LHC in one device




The Einstein Telescope science case

Going forward, | will focus on ET over CE: ET studies are more advanced

- They have a very similar science case, and ideally will operate as a network

The entire science case is too extensive to cover; for more details see:

- ET science case for the ESFRI proposal:

arXiv:1912.02622

- ET science case for different configurations: arXiv:2303.15923

| will present a particle-physics-biased selection:

- Neutron stars and QCD

- Multi-messenger astrophysics
- Supernovae and neutrinos

- Dark matter

- Dark energy

- Probing quantum gravity

Characteristic Strain

oooooooooooo
eeeeeeeeee

Frequency / Hz
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https://arxiv.org/abs/1912.02622
https://arxiv.org/abs/2303.15923

Neutron stars and QCD

Neutron stars are an excellent environment

to study QCD in a new domain

- Low-temperature and high-density
compared to nuclear or particle physics

The NS equation of state can be measured
using gravitational waves

- Sensitivity to individual NS (pulsars)

- Alternatively, BNS in the early inspiral

Quark-hadron

May provide evidence for deconfined transition

quarks or exotic states of matter
- At least probes the quark-hadron
transition at low temperature
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Binary neutron stars and QCD

Individual neutron stars are a great start, but cover a specific regime
- Much larger coverage by measuring the equation of state following BNS mergers

This is possible with ET: dramatically increased sensitivity to the BNS ringdown
- Covers complementary (temperature,density) space to other experiments
- May provide key insights into how the strong force behaves
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Multi-messenger astrophysics

Multi-messenger and multi-band observations are key to understanding the

details of the most energetic phenomena in the Universe
- GW170817 was the birth of MMA involving GW signals
- BNS neutron star coalescence, with a huge visible-spectrum follow-up effort

The GW coalescence event was seen to occur before the visible spectrum
- From second(s) before the GRB signals to week(s) before the radio signals

ET will revolutionise the potential for MMA with GW

- GW1/70817 was in-band for about a minute: not much time to react before GRB
- BNS signals can be in-band up to 24 hours at ET: enables pre-merger detection
- Optical telescopes can react/reorient to focus on signals matching their interests
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ET enables pre-merger detection of MMA candidates, but sky localisation is harder

MMA and sky localisation

- Precise sky localisation is critical to supporting visible-spectrum follow-up
- GW detectors are full-sky surveys; GW networks are needed for triangular

ET is a network of three nested interferometers, so it can perform some localisation

- Physical distance is important; adding 2" gen LVK to ET really helps (CE even more)
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MMA and core collapse supernovae

MMA can also work the other way: core collapse supernovae are weak GW signals
- Neutrino flux can pinpoint such an occurrence, and be used to find the GW signal

The GW signal then provides unique access to the internal NS dynamics
- For example, confirm/reject the Standing Accretion Shock Instability (SASI) model
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Dark matter: primordial black holes

Primordial black holes are BH formed in the very early Universe
- Concerns the time before the matter-dominated era, aka before stars exist

Such black holes are a direct collapse of local overdensities
- No stellar mass constraints, as they do not originate from stars
- May be very low mass to very high mass, and everything in between

Primordial black holes may explain part/all of the dark matter in the Universe
- Only gravitational interactions, and could produce the observed DM distribution
- Constraints on PBH vary significantly with mass and formation mechanism

If they exist, ET could provide the first clear evidence for primordial BHs
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Primordial black holes at high redshift

ET is sensitive to BBH mergers from the era before astronomical objects formed
- Redshift 20 is roughly the point at which the first galaxies formed
- ET can probe up to redshift 100 in the best cases, redshift 30+ over a wide range
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Primordial black holes at low mass

Stellar-origin black holes must consist of at least a few solar masses
- ET will have the sensitivity to probe sub-solar mass binary events
- Any evidence for such events would be a clear signal of primordial black holes

Masses In the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Neutron Stars
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Dark matter beyond primordial black holes

Ultralight bosons are also a credible DM candidate, and can generate GW signals

- If the boson has a Compton wavelength comparable with Schwartzschild radius,
then they can be produced around black holes via superradiance

- Boson mass 104'eV to 10 eV correspond to stellar mass to supermassive BHs

- Lower mass range compatible with DM, higher mass range with QCD axions

Can form Bose condensate clouds up to 10% of parent BH mass, rotating around BH
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Dark matter beyond primordial black holes

Ultralight bosons are also a credible DM candidate, and can generate GW signals

- If the boson has a Compton wavelength comparable with Schwartzschild radius,
then they can be produced around black holes via superradiance

- Boson mass 104'eV to 10 eV correspond to stellar mass to supermassive BHs

- Lower mass range compatible with DM, higher mass range with QCD axions

Can form Bose condensate clouds up to 10% of parent BH mass, rotating around BH

More generally, DM may accumulate within neutron stars due to gravity

- The presence of a DM core would impact the NS equation of state

- May also impact how BNS mergers occur, if the DM interacts between NSs
- ET should be able to search for such effects in GW signhals from NS and BNS
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Dark energy and gravitational waves

GWs are arguably the best probe we have for directly studying dark energy
- Arguably beyond particle physics, but we search for some DE models at colliders

Gravitational waves measure the luminosity distance, d,, to the signal
- The relation between d, and the redshift, z, carries key cosmology information

1+z 2!

/ \/QM 1 4 /)3 4 £oet)

PO

dr (2

Under ACDM, ,ODE( )/,00 (2A , which is a constant
- Population studies of gravitational waves will directly probe the ACDM model

This task requires joint effort: d, from GW, and z from the visible spectrum
- Must probe z >> 1, or else reduces to the Hubble law
- LVK is constrained to low redshift, while ET will probe high z in great detail
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Echoes of quantum gravity

LVK have discovered ~90 BBH signals so far
- How do we know they are really black holes?

Black holes are very simple objects

- Trivial ringdown defined by mass and spin

- LVK has not yet had sufficient sensitivity
to ringdown to confirm traditional BHs

GW strain

What if they are instead some other object?
- Boson stars, dark matter stars, etc

- 0.5

o0

100
time [ms ]
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Echoes of quantum gravity

LVK have discovered ~90 BBH signals so far
- How do we know they are really black holes?

Black holes are very simple objects

- Trivial ringdown defined by mass and spin

- LVK has not yet had sufficient sensitivity
to ringdown to confirm traditional BHs

What if they are instead some other object?

- Boson stars, dark matter stars, etc

Exotic compact objects (ECOs) may mimic BHs

- Can have a photon sphere preventing light
escape, vet still have a surface underneath

potential

T T ™ 3
black hole -

outgoing at infinity
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- Provides a trapped region, causing sighal echoes
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Echoes of quantum gravity

LVK have discovered ~90 BBH signals so far
- How do we know they are really black holes? 1.0

Black holes are very simple objects

- Trivial ringdown defined by mass and spin

- LVK has not yet had sufficient sensitivity
to ringdown to confirm traditional BHs

prompt ringdown

100 150 200 250

GW strain
-
-

-

Tocho ~2 ’;ﬂg/c |10g El

What if they are instead some other object?

- Boson stars, dark matter stars, etc - 0.5

Exotic compact objects (ECOs) may mimic BHs ; ; ;

- Can have a photon sphere preventing light 0 50 100 150
escape, vet still have a surface underneath

- Provides a trapped region, causing signal echoes

- A planck-scale echo would result in echoes every 50ms, probing quantum gravity
43
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Echoes of quantum gravity

LVK have discovered ~90 BBH signals so far
- How do we know they are really black holes? 1.0

_B!ﬁ in These tests could also in principle lead to surprises, such as revealing

_|yK the existence of exotic compact objects, and could even carry
observable imprints of quantum gravity effects. While the latter

tor
goals are more speculative, their impact would be revolutionary.
Wha -- Science Case for the Einstein Telescope (2019)
- Bose
Exotic compact objects (ECOs) may mimic BHs ; ; ;
- Can have a photon sphere preventing light 0 50 100 150
escape, vet still have a surface underneath time [ms ]

- Provides a trapped region, causing sighal echoes

- A planck-scale echo would result in echoes every 50ms, probing quantum gravity
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The Einstein Telescope science case

We have only seen a small fraction of the interesting possibilities with ET
- A selection biased towards particle physics interests

Some of the topics are "certain’, while others are stretch goals

- Neutron stars and BNS mergers will give excellent information on QCD

- Multi-messenger astrophysics with GW will open a new window on the Universe

- Dark matter may or may not be visible, depending on what DM is

- Dark energy will be studied, testing the validity of the ACDM model

- Exotic compact objects may or may not exist, but they could probe quantum gravity

For more details on the science case, see:

- ET science case for the ESFRI proposal: arXiv:1912.02622
- ET science case for different configurations: arXiv:2303.15923
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https://arxiv.org/abs/1912.02622
https://arxiv.org/abs/2303.15923

Status of the Einstein Telescope

The Einstein Telescope was submitted as an ESFRI proposal in 2020
- ESFRI = European Strategy Forum on Research Infrastructures

Approved and entered roadmap in 2021; largest ever approved proposal (2B EUR)
- ET Collaboration was formed in 2022; now >1500 people

- ET Organisation also formed in 2022; handle project management, legal, etc
- Analogy: ETO is CERN (LHC infrastructure), ET is ALICE/ATLAS/CMS/LHCb

46



Status of the Einstein Telescope

The Einstein Telescope was submitted as an ESFRI proposal in 2020
- ESFRI = European Strategy Forum on Research Infrastructures

Approved and entered roadmap in 2021; largest ever approved proposal (2B EUR)
- ET Collaboration was formed in 2022; now >1500 people

- ET Organisation also formed in 2022; handle project management, legal, etc
- Analogy: ETO is CERN (LHC infrastructure), ET is ALICE/ATLAS/CMS/LHCb

While the project is in the roadmap, that does not yet mean it is going to happen
- However, there are serious offers to host the site on the table

- 2023: Netherlands pledged 0.9B EUR if ET is built near Maastricht (BE/DE/NL)
- 2023: Italy pledged 0.35B EUR if ET is built in Sardinia, plus "political commitment”

The final configuration of the ET apparatus is also under discussion
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Einstein Telescope configurations

Everything | have shown uses the ESFRI configuration of ET
- One triangle, 10km arm length, both high-frequency and low-frequency systems

In 2023, conducted a comprehensive science study

- One triangle vs two L-shaped (like LIGO/CE) P

- Arm lengths of 10km, 15km, or 20km

- Only high-frequency, or also with low-frequency

Message does not significantly change o

- Two L-shaped similar/better in most but not all cases ¢ 1165 km

- Increased arm length always helps
- Low-frequency is required for many science goals

The site and instrument feasibility is now being investigated
- Will lead into the site(s) selection process
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Path toward ET (ESFRI 06/2021)

* Tentative schedule

p D 2021 D 2022 ) 2024 D 2025 D 2026 D 2028 ) 2030 D .. D 2035 g
O O SR

CDR  ESFRI proposal

2011 2020
- Enabling technologies development
Sites qualification . Site decision
i >0 ° | o o °
Cost evaluation Site decision likely 2026

Building governance
Raising initial funds
Raising construction funds
Committing construction funds
Pre-engineering studies

» Rl operative TD ET RI construction

.
=
=

Seems optimistic

» Detector operative TD » ET ITFs construction ) )
ET installation at thIS pOInt
Commissioning D
ESFRI Phases: Design Preparatory Implementation Operation
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The Swiss ET community

Currently, Swiss ET is a UniGe-led effort, but the community is growing
- Marcelle Soares-Santos joined UZH Jan 2024, is a LIGO member, plans to join ET
- EHTZ is hiring an experimental GW prof, should start Jan 2025

UniGe astronomy department
- Anastasios Fragkos, Corrine Charbonnel, Paul Laycock (staff)

UniGe theoretical physics department
- Antonio Riotto, Camille Bonvin, Michele Maggiore, Stefano Foffa (staff)

UniGe experimental physics department
- Steven Schramm

Others are very welcome to join!
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UniGe investment in ET

Leadership roles in ET:
- Anastasios Fragkos: CH rep. on Board of Scientific Representatives
- Antonio Riotto: ET science division leader
- Michele Maggiore: ET science board leader, ET executive board,
ET ESFRI science lead, ET configuration science lead
- Paul Laycock: ETO task leader
- Steven Schramm: ET computing division leader

/ \
Institute investment: @ GWS[

- Created a cross-departmental centre on gravitational wave science

- DPT+DPNC+DASTRO+SecPhysique joint statement that solidfying
leadership in ET is their single leading priority for next four years
- Recognised and supported by the UNIGE rectorate
- Creation of tenured professorships (one confirmed, second pending)

GRAVITATIONAL
WAVE

SCIENGE
CENTER
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The future of GW science

The Einstein Telescope would be a part of the ground-based GW network
- This is only one piece of the picture of a larger network of GW observatories
The future of GW science is bound to change our understanding of the Universe

THE SPECTRUM OF GRAVITATIONAL WAVES (desa
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The future of GW science

The Einstein Telescope would be a part of the ground-based GW network
- This is only one piece of the picture of a larger network of GW observatories
The future of GW science is bound to redefine our understanding of the Universe

10 -12

Stochastic

background / IPTA
10 ™

10 ¢

Massive binaries

£

1)

: -

» 107 LISA [

Q2

»

5 aLIGO
-9 Extreme mass

§ 10 % ratio inspirals GW150914 €7
(4]

N —

(&)

10 2

Core collapse

10 24 supernovae

10 %

1010 108 10°¢ 10+ 102 10° 102 10° 10°

Frequency / Hz



