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Gravita�onal waves from binary mergers
Gravity is a very weak force 
- Observable signals require enormous energy

All confirmed GWs come from binary mergers
- Black hole + black hole (BBH)
- Neutron star + neutron star (BNS)
- Black hole + neutron star (BHNS/NSBH)

What do these signals look like?
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Gravita�onal waves from binary mergers
Gravity is a very weak force 
- Observable signals require enormous energy

All confirmed GWs come from binary mergers
- Black hole + black hole (BBH)
- Neutron star + neutron star (BNS)
- Black hole + neutron star (BHNS/NSBH)

What do these signals look like?
- Inspiral: the compact objects approach
  - Growing signal strength
- Merger: the compact objects connect
  - Maximum signal strength, the "chirp"
- Ringdown: the produced object stabilises
  - Rapidly decaying signal strength
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The first observa�on: GW150914
The first GW signal was observed
on 14 September 2015
- Black hole 1:   36 solar masses
- Black hole 2:   29 solar masses
- Resul�ng BH:  62 solar masses
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The first observa�on: GW150914
The first GW signal was observed
on 14 September 2015
- Black hole 1:   36 solar masses
- Black hole 2:   29 solar masses
- Resul�ng BH:  62 solar masses

3 solar masses of energy radiated
as GWs, within a few milliseconds!
- For a brief moment, this source
  radiated more energy as GW than
  the en�re Universe radiated in
  the visible spectrum
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Strain and GW150914
Signals are space-�me deforma�ons
- Look in two different direc�ons
- Measure the difference in the
  distance travelled by light

Result is the strain, 
- GW150914 max strain: 1.0x10-21

- Earth-sun distance (AU): 1.5x1011 m
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Strain and GW150914
Signals are space-�me deforma�ons
- Look in two different direc�ons
- Measure the difference in the
  distance travelled by light

Result is the strain, 
- GW150914 max strain: 1.0x10-21

- Earth-sun distance (AU): 1.5x1011 m
- 10-21 strain on AU: 1.5x10-10 m
- Bohr radius: 0.5x10-10 m

3 solar masses of GW energy was
observed by measuring a strain
compa�ble with the AU length
changing by 3 hydrogen radii!
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Observing GW signals
Measuring the strain so precisely requires extraordinary distance precision
- Laser interferometers are the way all GW signals have been observed to date
- Perturba�ons of the rela�ve lengths of the two arms (strain) leads to interference
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Extrac�ng a GW signal
The interferometer strain is noisy
- Even the top panel here is a�er
  substan�al data pre-processing

Extrac�ng the middle panel relies
on matched filtering
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Extrac�ng a GW signal
The interferometer strain is noisy
- Even the top panel here is a�er
  substan�al data pre-processing

Extrac�ng the middle panel relies
on matched filtering
- Assume a given signal shape
- Slide the signal over the �me series
- Calculate shape-to-data correla�on

Mathema�cally proven to provide
op�mal signal extrac�on
- Assumes you have the right shape
- Repeat with MANY templates, pick
  the best correla�on if mul�ple match
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What informa�on is in the template?
The template describes the full process
- Inspiral gives informa�on about the proper�es
  of the two incident objects (mass, spin, etc)
- Ringdown gives informa�on about the
  resul�ng object's proper�es

Ideally, we would use numerical rela�vity
(NR) for all of the templates
- This is too expensive, as we need
  millions of templates for matched filtering
- Instead, rely on approximants for the
  "pa�ern bank", and can then refine with
  NR for the final signal characterisa�on
- Approximants work well enough for now
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Networks of interferometers
GW detec�on is greatly enhanced
through having mul�ple detectors
- First GW detec�on involved two
  LIGO interferometers

Benefits of mul�ple detectors:
- Increased signal sensi�vity
  - Signal is present in both detectors
  - Noise should be uncorrelated
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Networks of interferometers
GW detec�on is greatly enhanced
through having mul�ple detectors
- First GW detec�on involved two
  LIGO interferometers

Benefits of mul�ple detectors:
- Increased signal sensi�vity
  - Signal is present in both detectors
  - Noise should be uncorrelated
  - Background events/glitches should
    only be present in one detector
- Geometric acceptance effects
  - GW-detector alignment ma�ers
- Sky localisa�on (more later)
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LVK: the 2nd genera�on GW network
There are four 2nd-gen GW detectors
- Both LIGO started in 2015
- Virgo joined 2017, KAGRA 2020

All are laser interferometers
- LIGO: 4km arms, surface
- Virgo: 3km arms, surface
- KAGRA: 3km arms, underground,
                cryogenic mirrors
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LVK: the 2nd genera�on GW network
There are four 2nd-gen GW detectors
- Both LIGO started in 2015
- Virgo joined 2017, KAGRA 2020

All are laser interferometers
- LIGO: 4km arms, surface
- Virgo: 3km arms, surface
- KAGRA: 3km arms,
                underground,
                cryogenic mirrors

Three scien�fic collabora�ons, but also
form a joint super-collabora�on: LVK
- Data is live-streamed between sites
- Operate as a single network, jointly
  planning science runs (be�er sensi�vity)
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The importance of a network: GW170817
The second most famous GW event was a perfect
example of the importance of detector networks
- Seen in both LIGO detectors, but not in Virgo
- Signal was strong enough to be seen in Virgo

Why was it missing in Virgo? Geometry!
- The event happened to be in the Virgo "blind zone"
- This is a narrow window; helped to iden�fy where
  in the sky the GW signal came from
- More precise than if all three had seen the signal!

Sky localisa�on turned out to be very important
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The importance of a network: GW170817
The second most famous GW event was a perfect
example of the importance of detector networks
- Seen in both LIGO detectors, but not in Virgo
- Signal was strong enough to be seen in Virgo

Why was it missing in Virgo? Geometry!
- The event happened to be in the Virgo "blind zone"
- This is a narrow window; helped to iden�fy where
  in the sky the GW signal came from
- More precise than if all three had seen the signal!

Sky localisa�on turned out to be very important
- First mul�-messenger (MM) observa�on with GWs
- Correlated GW signal and gamma-ray burst (GRB)
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The importance of a network: GW170817
The second most famous GW event was a perfect
example of the importance of detector networks
- Seen in both LIGO detectors, but not in Virgo
- Signal was strong enough to be seen in Virgo

Why was it missing in Virgo? Geometry!
- The event happened to be in the Virgo "blind zone"
- This is a narrow window; helped to iden�fy where
  in the sky the GW signal came from
- More precise than if all three had seen the signal!

Sky localisa�on turned out to be very important
- First mul�-messenger (MM) observa�on with GWs
- Correlated GW signal and gamma-ray burst (GRB)
Led to a huge MM follow-up programme
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Another key GW170817 feature
Beyond mul�-messenger observa�ons, GW170817 also looks different as a GW
- Previous GW signals lasted on the order of a second or less
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Another key GW170817 feature
Beyond mul�-messenger observa�ons, GW170817 also looks different as a GW
- Previous GW signals lasted on the order of a second or less
- In contrast, GW170817 lasted nearly a minute!
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Another key GW170817 feature
Beyond mul�-messenger observa�ons, GW170817 also looks different as a GW
- Previous GW signals lasted on the order of a second or less
- In contrast, GW170817 lasted nearly a minute!

What is going on?
- Previous signals were all BBH: binary black holes, with significant masses
- GW170817 is a BNS: binary neutron star, much lower mass
- Less massive = takes more �me to coalesce (weaker gravita�onal interac�ons)

Mul�-messenger observa�ons confirm this first BNS as a kilonova source
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GW170817

 Does not include ongoing O4 run



The future of 2nd gen GW detectors
Up to the end of O3, LVK observed roughly 90 binary coalescence events
- Roughly one observa�on per week, with growing sensi�vity

Upgrades are planned for the O5 run, and are being proposed for a poten�al O6
- Will increase sensi�vity, but ul�mately limited by the infrastructure
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The 3rd genera�on GW detectors
Einstein Telescope (ET, Europe) and Cosmic Explorer (CE, USA) have been proposed
- Different configura�ons, but both drama�cally improve on LIGO 2nd gen
- 10x increase in strain sensi�vity = 103 increase in sensi�ve volume
- Extends reach in redshi� (�me) from the local to primoridal Universe
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The 3rd genera�on GW detectors
Einstein Telescope (ET, Europe) and Cosmic Explorer (CE, USA) have been proposed
- Different configura�ons, but both drama�cally improve on LIGO 2nd gen
- 10x increase in strain sensi�vity = 103 increase in sensi�ve volume
- Extends reach in redshi� (�me) from the local to primoridal Universe

Cosmic Explorer: con�nue the current LIGO 2nd gen strategy
- A pair of laser interferometers: one with 20km arms, one with 40km arms
- Take advantage of the fact that there are large unoccupied deserts in the USA

Einstein Telescope: a new strategy, building on KAGRA as a pathfinder
- Roughly 250m underground to minimise noise and background sources
- Both high-frequency (classic) and low-frequency (cryogenic) interferometers
- A triangular configura�on of 3 nested interferometers per frequency range
- Baseline is 10km arm length, but alterna�ves are under study (more on this later)
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The 3rd genera�on GW detectors
Einstein Telescope (ET, Europe) and Cosmic Explorer (CE, USA) have been proposed
- Different configura�ons, but both drama�cally improve on LIGO 2nd gen
- 10x increase in strain sensi�vity = 103 increase in sensi�ve volume
- Extends reach in redshi� (�me) from the local to primoridal Universe
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Implica�ons of 3rd genera�on sensi�vity
Einstein Telescope and Cosmic Explorer increase strain sensi�vity by 10x
- 10x more SNR for a given signal at a given �me
- Longer SNR integra�on �me (wider freq. range)
- "Golden signals" can have SNR > 1000
- Extreme precision on GW parameters!

Sensi�ve volume grows by strain3 = 103

- BNS/BBH not uniformly distributed in redshi�
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Implica�ons of 3rd genera�on sensi�vity
Einstein Telescope and Cosmic Explorer increase strain sensi�vity by 10x
- 10x more SNR for a given signal at a given �me
- Longer SNR integra�on �me (wider freq. range)
- "Golden signals" can have SNR > 1000
- Extreme precision on GW parameters!

Sensi�ve volume grows by strain3 = 103

- BNS/BBH not uniformly distributed in redshi�
- 1 signal/week becomes 1/min: 104 increase
- ET sees large majority of BNS, CE even more
- Both see vast majority of non-primoridal BBH
- Huge increase in GW event rates and types

3rd gen GW gives both precision and discovery
- Similar to combining LEP+LHC in one device
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The Einstein Telescope science case
Going forward, I will focus on ET over CE: ET studies are more advanced
- They have a very similar science case, and ideally will operate as a network

The en�re science case is too extensive to cover; for more details see:
- ET science case for the ESFRI proposal:
- ET science case for different configura�ons:

I will present a par�cle-physics-biased selec�on:
- Neutron stars and QCD
- Mul�-messenger astrophysics
- Supernovae and neutrinos
- Dark ma�er
- Dark energy
- Probing quantum gravity
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Neutron stars and QCD
Neutron stars are an excellent environment
to study QCD in a new domain
- Low-temperature and high-density
  compared to nuclear or par�cle physics

The NS equa�on of state can be measured
using gravita�onal waves
- Sensi�vity to individual NS (pulsars)
- Alterna�vely, BNS in the early inspiral

May provide evidence for deconfined
quarks or exo�c states of ma�er
- At least probes the quark-hadron
  transi�on at low temperature
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Individual neutron stars are a great start, but cover a specific regime
- Much larger coverage by measuring the equa�on of state following BNS mergers

This is possible with ET: drama�cally increased sensi�vity to the BNS ringdown 
- Covers complementary (temperature,density) space to other experiments
- May provide key insights into how the strong force behaves
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Binary neutron stars and QCD



Mul�-messenger astrophysics
Mul�-messenger and mul�-band observa�ons are key to understanding the
details of the most energe�c phenomena in the Universe
- GW170817 was the birth of MMA involving GW signals
- BNS neutron star coalescence, with a huge visible-spectrum follow-up effort

The GW coalescence event was seen to occur before the visible spectrum
- From second(s) before the GRB signals to week(s) before the radio signals

ET will revolu�onise the poten�al for MMA with GW
- GW170817 was in-band for about a minute: not much �me to react before GRB
- BNS signals can be in-band up to 24 hours at ET: enables pre-merger detec�on
- Op�cal telescopes can react/reorient to focus on signals matching their interests
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MMA and sky localisa�on
ET enables pre-merger detec�on of MMA candidates, but sky localisa�on is harder
- Precise sky localisa�on is cri�cal to suppor�ng visible-spectrum follow-up
- GW detectors are full-sky surveys; GW networks are needed for triangular

ET is a network of three nested interferometers, so it can perform some localisa�on
- Physical distance is important; adding 2nd gen LVK to ET really helps (CE even more)

33

Only ET ET+LVK



MMA and core collapse supernovae
MMA can also work the other way: core collapse supernovae are weak GW signals
- Neutrino flux can pinpoint such an occurrence, and be used to find the GW signal

The GW signal then provides unique access to the internal NS dynamics
- For example, confirm/reject the Standing Accre�on Shock Instability (SASI) model
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Dark ma�er: primordial black holes
Primordial black holes are BH formed in the very early Universe
- Concerns the �me before the ma�er-dominated era, aka before stars exist

Such black holes are a direct collapse of local overdensi�es
- No stellar mass constraints, as they do not originate from stars
- May be very low mass to very high mass, and everything in between

Primordial black holes may explain part/all of the dark ma�er in the Universe
- Only gravita�onal interac�ons, and could produce the observed DM distribu�on
- Constraints on PBH vary significantly with mass and forma�on mechanism

If they exist, ET could provide the first clear evidence for primordial BHs
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Primordial black holes at high redshi�
ET is sensi�ve to BBH mergers from the era before astronomical objects formed
- Redshi� 20 is roughly the point at which the first galaxies formed
- ET can probe up to redshi� 100 in the best cases, redshi� 30+ over a wide range
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Primordial black holes at low mass
Stellar-origin black holes must consist of at least a few solar masses
- ET will have the sensi�vity to probe sub-solar mass binary events
- Any evidence for such events would be a clear signal of primordial black holes

37



Dark ma�er beyond primordial black holes
Ultralight bosons are also a credible DM candidate, and can generate GW signals
- If the boson has a Compton wavelength comparable with Schwartzschild radius,
  then they can be produced around black holes via superradiance
- Boson mass 10-21 eV to 10-11 eV correspond to stellar mass to supermassive BHs
- Lower mass range compa�ble with DM, higher mass range with QCD axions
Can form Bose condensate clouds up to 10% of parent BH mass, rota�ng around BH
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Dark ma�er beyond primordial black holes
Ultralight bosons are also a credible DM candidate, and can generate GW signals
- If the boson has a Compton wavelength comparable with Schwartzschild radius,
  then they can be produced around black holes via superradiance
- Boson mass 10-21 eV to 10-11 eV correspond to stellar mass to supermassive BHs
- Lower mass range compa�ble with DM, higher mass range with QCD axions
Can form Bose condensate clouds up to 10% of parent BH mass, rota�ng around BH

More generally, DM may accumulate within neutron stars due to gravity
- The presence of a DM core would impact the NS equa�on of state
- May also impact how BNS mergers occur, if the DM interacts between NSs
- ET should be able to search for such effects in GW signals from NS and BNS
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Dark energy and gravita�onal waves
GWs are arguably the best probe we have for directly studying dark energy
- Arguably beyond par�cle physics, but we search for some DE models at colliders

Gravita�onal waves measure the luminosity distance, dL, to the signal
- The rela�on between dL and the redshi�, z, carries key cosmology informa�on

Under ɅCDM,                                  , which is a constant
- Popula�on studies of gravita�onal waves will directly probe the ɅCDM model

This task requires joint effort: dL from GW, and z from the visible spectrum
- Must probe z >> 1, or else reduces to the Hubble law
- LVK is constrained to low redshi�, while ET will probe high z in great detail
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Echoes of quantum gravity
LVK have discovered ~90 BBH signals so far
- How do we know they are really black holes?

Black holes are very simple objects
- Trivial ringdown defined by mass and spin
- LVK has not yet had sufficient sensi�vity
  to ringdown to confirm tradi�onal BHs

What if they are instead some other object?
- Boson stars, dark ma�er stars, etc
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Echoes of quantum gravity
LVK have discovered ~90 BBH signals so far
- How do we know they are really black holes?

Black holes are very simple objects
- Trivial ringdown defined by mass and spin
- LVK has not yet had sufficient sensi�vity
  to ringdown to confirm tradi�onal BHs

What if they are instead some other object?
- Boson stars, dark ma�er stars, etc
Exo�c compact objects (ECOs) may mimic BHs
- Can have a photon sphere preven�ng light
  escape, yet s�ll have a surface underneath
- Provides a trapped region, causing signal echoes

42



Echoes of quantum gravity
LVK have discovered ~90 BBH signals so far
- How do we know they are really black holes?

Black holes are very simple objects
- Trivial ringdown defined by mass and spin
- LVK has not yet had sufficient sensi�vity
  to ringdown to confirm tradi�onal BHs

What if they are instead some other object?
- Boson stars, dark ma�er stars, etc
Exo�c compact objects (ECOs) may mimic BHs
- Can have a photon sphere preven�ng light
  escape, yet s�ll have a surface underneath
- Provides a trapped region, causing signal echoes
- A planck-scale echo would result in echoes every 50ms, probing quantum gravity
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Echoes of quantum gravity
LVK have discovered ~90 BBH signals so far
- How do we know they are really black holes?

Black holes are very simple objects
- Trivial ringdown defined by mass and spin
- LVK has not yet had sufficient sensi�vity
  to ringdown to confirm tradi�onal BHs

What if they are instead some other object?
- Boson stars, dark ma�er stars, etc
Exo�c compact objects (ECOs) may mimic BHs
- Can have a photon sphere preven�ng light
  escape, yet s�ll have a surface underneath
- Provides a trapped region, causing signal echoes
- A planck-scale echo would result in echoes every 50ms, probing quantum gravity
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These tests could also in principle lead to surprises, such as revealing
the existence of exo�c compact objects, and could even carry
observable imprints of quantum gravity effects. While the la�er 
goals are more specula�ve, their impact would be revolu�onary.
-- Science Case for the Einstein Telescope (2019)



The Einstein Telescope science case
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We have only seen a small frac�on of the interes�ng possibili�es with ET
- A selec�on biased towards par�cle physics interests

Some of the topics are "certain", while others are stretch goals
- Neutron stars and BNS mergers will give excellent informa�on on QCD
- Mul�-messenger astrophysics with GW will open a new window on the Universe
- Dark ma�er may or may not be visible, depending on what DM is
- Dark energy will be studied, tes�ng the validity of the ɅCDM model
- Exo�c compact objects may or may not exist, but they could probe quantum gravity

For more details on the science case, see:
- ET science case for the ESFRI proposal:
- ET science case for different configura�ons:

arXiv:1912.02622
arXiv:2303.15923

https://arxiv.org/abs/1912.02622
https://arxiv.org/abs/2303.15923


Status of the Einstein Telescope
The Einstein Telescope was submi�ed as an ESFRI proposal in 2020
- ESFRI = European Strategy Forum on Research Infrastructures

Approved and entered roadmap in 2021; largest ever approved proposal (2B EUR)
- ET Collabora�on was formed in 2022; now >1500 people
- ET Organisa�on also formed in 2022; handle project management, legal, etc
- Analogy: ETO is CERN (LHC infrastructure), ET is ALICE/ATLAS/CMS/LHCb
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Status of the Einstein Telescope
The Einstein Telescope was submi�ed as an ESFRI proposal in 2020
- ESFRI = European Strategy Forum on Research Infrastructures

Approved and entered roadmap in 2021; largest ever approved proposal (2B EUR)
- ET Collabora�on was formed in 2022; now >1500 people
- ET Organisa�on also formed in 2022; handle project management, legal, etc
- Analogy: ETO is CERN (LHC infrastructure), ET is ALICE/ATLAS/CMS/LHCb

While the project is in the roadmap, that does not yet mean it is going to happen
- However, there are serious offers to host the site on the table
- 2023: Netherlands pledged 0.9B EUR if ET is built near Maastricht (BE/DE/NL)
- 2023: Italy pledged 0.35B EUR if ET is built in Sardinia, plus "poli�cal commitment"

The final configura�on of the ET apparatus is also under discussion
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Einstein Telescope configura�ons
Everything I have shown uses the ESFRI configura�on of ET
- One triangle, 10km arm length, both high-frequency and low-frequency systems

In 2023, conducted a comprehensive science study
- One triangle vs two L-shaped (like LIGO/CE)
- Arm lengths of 10km, 15km, or 20km
- Only high-frequency, or also with low-frequency

Message does not significantly change
- Two L-shaped similar/be�er in most but not all cases
- Increased arm length always helps
- Low-frequency is required for many science goals

The site and instrument feasibility is now being inves�gated
- Will lead into the site(s) selec�on process

48

⇠ 1165 km



Path toward ET (ESFRI 06/2021)
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Seems op�mis�c
at this point

Site decision likely 2026



The Swiss ET community
Currently, Swiss ET is a UniGe-led effort, but the community is growing
- Marcelle Soares-Santos joined UZH Jan 2024, is a LIGO member, plans to join ET
- EHTZ is hiring an experimental GW prof, should start Jan 2025

UniGe astronomy department
- Anastasios Fragkos, Corrine Charbonnel, Paul Laycock (staff)

UniGe theore�cal physics department
- Antonio Rio�o, Camille Bonvin, Michele Maggiore, Stefano Foffa (staff)

UniGe experimental physics department
- Steven Schramm

Others are very welcome to join!
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UniGe investment in ET
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Leadership roles in ET:
- Anastasios Fragkos: 
- Antonio Rio�o:        
- Michele Maggiore:  
                                     

- Paul Laycock:           

- Steven Schramm:    

Ins�tute investment:
- Created a cross-departmental centre on gravita�onal wave science
- DPT+DPNC+DASTRO+SecPhysique joint statement that solidfying
  leadership in ET is their single leading priority for next four years
  - Recognised and supported by the UNIGE rectorate
  - Crea�on of tenured professorships (one confirmed, second pending)

CH rep. on Board of Scien�fic Representa�ves
ET science division leader
ET science board leader, ET execu�ve board,
ET ESFRI science lead, ET configura�on science lead
ETO task leader
ET compu�ng division leader



The future of GW science
The Einstein Telescope would be a part of the ground-based GW network
- This is only one piece of the picture of a larger network of GW observatories
The future of GW science is bound to change our understanding of the Universe
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The future of GW science
The Einstein Telescope would be a part of the ground-based GW network
- This is only one piece of the picture of a larger network of GW observatories
The future of GW science is bound to redefine our understanding of the Universe
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