universitätfreiburg

Know your footprint - in High Energy Physics and related fields

Valerie Lang On behalf of the Know-your-footprint team Naman Kumar Bhalla, Simran Gurdasani, Pardis Niknejadi, VL

Particle Physics Colloquium Paul Scherrer Institute, 24 October 2024

Atmospheric CO² vs. ground temperature

First publication on their relationship in 1896, i.e. 128 years ago

TARLE VII - Variation of Temperature caused by a given Variation of Carbonic Acid.

• Prof. Svante Arrhenius, *On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground* Philosophical Magazine and Journal of Science Series 5, Volume 41, April **1896**, pages 237-276. [\(link](https://www.tandfonline.com/doi/abs/10.1080/14786449608620846))

- \rightarrow CO₂ increase by a factor 2: Temperature increase of ~6˚C \rightarrow Surprisingly accurate given coarse understanding at the time
- Confirmed and refined since then in many studies \rightarrow See e.g. Nobel prize in 2021

Guess the concentration of CO² in the atmosphere

What is the current $CO₂$ content in the atmosphere, given a mean over the last 800k years of around 225 ppm?

Where are we now? – In terms of CO² in atmosphere

Measurements over the last ~70 years at Mauna Loa Observatory \rightarrow Keeling curve

• Combined with data from ice cores over last 800k years \rightarrow Composition of air trapped in ice from Antarctica

Where are we now? – In terms of ground temperature

Copernicus Satellite Data \rightarrow Sept. 2024 = 2nd warmest on record (after Sept. 2023)

Intergovernmental Panel on Climate Change (IPCC)

Comprehensive reports on the state of climate change, its impacts and risks, as well as mitigation strategies \rightarrow Latest: Sixth Assment report (AR6)

- Working Group I The Physical Science Basis \rightarrow Released Aug 2021
- Working Group II Impacts, Adaption and Vulnerability \rightarrow Released Feb 2022
- Working Group III Mitigation of Climate Change \rightarrow Released April 2022
- Synthesis Report \rightarrow Released March 2023

Nobel 2007 PEACE PRIZE NOBEL FOUNDATION

\rightarrow From the Summary for Policy Makers of the Synthesis Report:

 $A.1$ Human activities, principally through emissions of greenhouse gases, have unequivocally caused global warming, with global surface temperature reaching 1.1°C above 1850-1900 in 2011-2020. Global greenhouse gas emissions have continued to increase, with unequal historical and ongoing contributions arising from unsustainable energy use, land use and land-use change, lifestyles and patterns of consumption and production across regions, between and within countries, and among individuals (high confidence). {2.1, Figure 2.1, Figure 2.2 }

<https://www.ipcc.ch/reports/> https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_SPM.pdf

Where are we heading?

Also see IPCC WGI Interactive Atlas: https://interactive-atlas.ipcc.ch

Different scenarios in IPPC report analysed

• Factoring (lack of) mitigation actions, policies, etc.

 \rightarrow Pathways to 1.5°C (2.0°C) require rapid and deep yearly emissions reductions! \rightarrow Why? Cumulative CO₂ emissions count

\rightarrow Currently implemented policies lead to warming of 3.2 $^{\circ}$ C

https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_SPM.pdf

https://report.ipcc.ch/ar6syr/pdf/IPCC_AR6_SYR_LongerReport.pdf

Why is > 2.0˚C temperature increase a bad idea?

With warming of 3.2˚C:

- ~100% biodiversity losses in large areas near equator
- Large parts of the Earth become ~uninhabitable due to risk of hyperthermia

Days per year where combined temperature and of mortality to individuals³

³Projected regional impacts utilize a global threshold beyond which daily mean surface air temperature and relative humidity may induce hyperthermia that poses a risk of mortality. The duration and intensity of heatwaves are not presented here. Heat-related health outcomes humidity conditions pose a risk vary by location and are highly moderated by socio-economic, occupational and other non-climatic determinants of individual health and socio-economic vulnerability. The threshold used in these maps is based on a single study that synthesized data from 783 cases to determine the relationship between heat-humidity conditions and mortality drawn largely from observations in temperate climates.

\rightarrow Hyperthermia = Failure of human heat-regulating mechanisms – deadly if not treated quickly

Why is it relevant to High Energy Physics & related fields?

High Energy Physics (HEP) and related fields contribute to $CO₂$ emissions

- Build large detector systems and infrastructures
	- Cause emissions from various sources
		- \rightarrow See environmental reports e.g. by CERN
- But: How much per researcher? → **Know your footprint!**
	- Idea: Estimate per-researcher carbon footprint \rightarrow Put into context with private and target footprints
	- Personal identification of high-emission areas which need urgent adressing and raise awareness
	- Provide personal reference for gauging carbon emission numbers

 \rightarrow If we want to maintain ~liveable conditions on Earth, ALL areas of research, politics, culture, industry, etc. need to contribute to emissions reductions \rightarrow This includes HFPI

Know your footprint (Kyf) calculator

Consider private and professional emissions for researchers

- Private emissions in Germany see [carbon calculator](https://uba.co2-rechner.de/en_GB/) by German Federal Environment Agency (UBA)
- Professional emissions in HEP and related fields \rightarrow Split into four categories:
	- Experiment
	- Institute
	- Computing
	- Travel
- \rightarrow Investigate each category's impact
- \rightarrow Configurable per individual researcher, i.e. your individual research situation!
- \rightarrow Know your footprint (Kyf) calculator <https://limesurvey.web.cern.ch/863499?lang=en>
- \rightarrow Paper discussing the basis of the Kyf calculator <https://arxiv.org/abs/2403.03308>

 \rightarrow Discuss in the following

Experiment, collaboration or project footprint

Distinguish the following options

- Large LHC experiment
- Small LHC experiment
- Based on CERN environmental report(s)
- Small HEP experiment \rightarrow Based on DESY electricity consumption
- Astrophysics experiment \rightarrow Based on ESO annual report \rightarrow Skip today

Definition of per-researcher footprint per year

- Experiment members = collaboration members or users (and operators) according to applicability
- No consideration of indirect benefits for "the industry" or "the public" through "gained knowledge" \rightarrow Too vague and leads to responsibility diffusion
- Responsibilty for emissions lies with researchers designing, building, and operating detectors, and analyzing their data

Footprint of large and small LHC experiments

Emissions classified into three categories by CERN environmental reports

- Scope 1
	- Direct emissions from detectors, heating, etc.
- Scope 2
	- Indirect emissions, primarily from electricity consumption
- Scope $3 \rightarrow$ Considered only for Institute footprint
	- Indirect emissions from other sources, e.g. travel, commute, waste, catering, procurement
- \rightarrow Average emissions separately over: Running years: 2017, 2018, 2022, and Shutdown years: 2019-2021

Footprint of large and small LHC experiments (II)

Assign emissions to large and small LHC experiments

- For scope 1 emissions \rightarrow LHCb Scope 1 emissions in 2022 specified in Upgrade II Technical Design report
	- Assume ALICE \approx LHCb \rightarrow Small LHC experiment: $S1_{Small}$
	- Assume ATLAS \approx CMS \rightarrow Large LHC experiment: $S1_{Large}$

 \rightarrow $S1_{Large}$ = $S1_{All} - 2 \cdot S1_{Small}$ 2

- For scope 2 emissions
	- Largest consumer: LHC \rightarrow Followed by pre-accelerators
		- \rightarrow Needed by all four experiments \rightarrow Share equally
		- \rightarrow Subtract CERN-site contributions before

$$
\rightarrow S2_{Large} = S2_{Small} = \frac{S2_{All}}{4}
$$

- Typical operation pattern in last years: 4 years of running, 3 years of shutdown
	- Weight accordingly for overall annual emissions \rightarrow Total emissions per experiment

Footprint of large and small LHC experiments (III)

Calculate per-researcher emissions per year

• Assume equal share among collaboration members

Emissions [tCO₂e] per experiment Emissions per collaboration member

→ Slightly more (less) for large (small) LHC experiments compared to the private footprint in Germany

Footprint of a small HEP experiment

Estimate based on DESY electricity consumption

- Data from 2021: 128.3GWh annually
- Convert to tCO₂e \rightarrow 2 options:
	- Green electricity \rightarrow Assume 100% photo-voltaic (PV) based production \rightarrow 35 gCO₂e/kWh
	- German electricity mix in 2023 \rightarrow Includes >40% from wind, solar and water power \rightarrow 416 gCO₂e/kWh (for comparison: gas: 572 gCO₂e/kWh, coal: 1167 gCO₂e/kWh)

 \rightarrow With 3000 guest scientists + 200 operators: 1.40 tCO₂e (16.68 tCO₂e) with green (conventional) electricity

Institute or research centre footprint

Distinguish the options

- University (with green or conventional electricity)
	- \rightarrow Based on University of Freiburg report (skip Leibniz University Hannover today)
- Research centre
	- \rightarrow Based on CERN environmental report(s)

Definition of per-researcher footprint per year

- (Total institute emissions) / (Effective number of institute members)
	- One representative year outside of COVID-19 pandemic: 2019 for University of Freiburg, 2022 for CERN
- University of Freiburg as default university footprint
	- Omission of procurement information by Leibniz University Hannover
	- Decent agreement in overlapping categories between both universities

Footprint of a university - Freiburg

Emissions with green electricity

• Exclude emissions from travel here

** Die Emissionen durch Dienstreisen basieren auf einer Hochrechnung für das Jahr 2018

Procurement \rightarrow Dominating contributor

• Based on procurement data from 2017

 \rightarrow Many categories \rightarrow Challenging to address \rightarrow Demand management + green procurement!

Footprint of a university - Freiburg

Emissions with green electricity

• Exclude emissions from travel here

Procurement \rightarrow Dominating contributor

• Based on procurement data from 2017

Footprint of a research centre – CERN

From the CERN environmental reports

- Heating + Other category from scope 1
- 5% of electricity, i.e. scope 2
- Scope 3
	- Excluding commute, travel, and catering

Procurement contribution = huge!

- Procurement emissions: 104 974 tCO₂e in 2022!
	- Corresponds to ~57% of total scope 1 emissions in same year
	- Contributions for construction of future infrastructure, etc. included \rightarrow Cannot be clearly separated \rightarrow Maintain fully under institute

"Other" includes: office supplies, furniture, transport, handling and vehicles; centralised expenses and codes for internal use; particle and photon detectors; health, safety and environment; optics and photonics.

Footprint of a research centre – CERN (II)

Total institute emissions Effective CERN population

- At any time during the year:
	- Fraction of CERN users at CERN, using electricity, heating, water, etc.
	- Consider together with CERN personell, i.e. staff and CERN fellows
- \rightarrow Effective CERN population: 7295

 \rightarrow Per-researcher footprint:

16.65 tCO₂e (2.26 tCO₂e) including (excluding) procurement

 \rightarrow With procurement, articifically increased, due to impossibility of procurement split-up

 \rightarrow Needs update, once more refined data available

\rightarrow To CFRN's credit:

Environmentally Responsible Procurement Policy, effective from 1 January 2024 – [April 2024 CERN news](https://home.cern/news/news/cern/mitigating-environmental-impact-cern-procurement)

 \rightarrow Hopefully, procurement footprint will reduce over the next years

Computing footprint

Focus on High Performance Computing (HPC)

- Specify individual's computing workloads in core hours
- Distinguish between CPU and GPU usage \rightarrow Choice of CPU or GPU due to computational task
	- Several possibilities to tune configuration
	- Assume optimal core utilization
- Possibility to add footprint of large external (commercial) data storage resources
- Personal computers, small institute clusters, etc. not included \rightarrow Assumed to be covered by personal or institute electricity bills and procurement \rightarrow Thus included in personal or institute footprint
- Four benchmark scenarios for easy use available

Computing footprint (II)

Calculation of computing footprint

 $Total[tCO_2e] = f_{PIIF} \cdot f_{open} \cdot n_{WPC} \cdot f_{conv}$

- With:
	- f_{PUE} = HPC's Power Usage Effectiveness (PUE) → Default: 1.5 (Global average) → New CERN computing centre target: 1.1 ([Feb 2024 CERN news\)](https://home.cern/news/news/computing/new-data-centre-cern)
	- f_{overh} = Overhead factor for power consumption when computing cores are idle \rightarrow Default: 1.17 (Hawk supercomputer idle time at the HPC Stuttgart)
	- n_{WPC} = Workload Power Consumption (WPC)

 $n_{WPC} = p_{CPU-core} \cdot l_{core-h,CPU} + p_{GPU} \cdot l_{h,GPU}$

 $p_{CPU-core/GPU}$ = Power consumption in kW for each CPU core/GPU

- → Default: 7.25W (CPU from the DESY Maxwell cluster with AMD EPYC 75F3 CPU cores),
	- 250W (GPU median of range, reported on a forum of NVIDIA GPU users)

 $l_{core-h,CPU/h,GPU}$ = CPU workload measured in core hours/ GPU usage hours \rightarrow User input

• f_{conv} = Conversion factor from kWh to gCO₂e \rightarrow Both, green and conventional (default) electricity possible

Computing footprint (III)

Four benchmark scenarios

- Low usage
	- PhD student with several jobs per week \rightarrow Average of 4000 CPU core-h/month
- Medium usage
	- Doctoral student or post-doctoral researcher, strongly involved in data analysis \rightarrow Based on top five ranked users at the Uni-Freiburg HPC: Black-Forest Grid (BFG) \rightarrow Average of 30 000 CPU core-h/month With conventional electricity

- Accelerator scientist, studying accelerator performance with particle tracking codes and semi particle in-cell (PIC) codes \rightarrow With code optimized for GPUs: 2500 GPU h/month $($ \approx 80 000 CPU core-h/month)
- Extremely high usage
	- Researcher running PIC simulations or high-resolution imaging analysis \rightarrow 8000 GPU h/month (\approx 300 000 CPU core-h/month)

Travel

Consider only business travel \rightarrow Private travel included in private footprint

- Travel important in international research environment:
	- For personal connections at in-person meetings
	- For building research networks, collaborations
	- Etc.
	- \rightarrow Most notably missed during COVID-19 pandemic
- BUT: Travel creates $CO₂$ emissions
	- Which travel is essential and which is not?
	- Re-evaluate how travel is performed:
		- \rightarrow Longer travel times with non-air based travel
			- = longer-duration stays preferrable
		- \rightarrow Constraints from teaching, family, etc. = non-trivial

• Possibility for detailed calculations of business trip emissions in Kyf calculation OR benchmark trips

Based on information from the German UBA

• German numbers for hotel and venue assumed to be valid internationally

 \rightarrow In particular, cross-continental flights contribute significantly

 \rightarrow CO₂ compensation for flights possible to indicate in Kyf calculator

Benchmark researcher

Putting everything together

- Benchmark for early-career researcher in Germany: Doctoral student
	- Working on one of the large LHC experiments
	- Employed by university with conventional electricity
	- Medium computing level with conventional electricity
	- Annual travel: Two 1-week trips by train in Germany, one 1-week flight travel in Europe, 1 2-week crosscontinental travel (e.g. for summer school)
	- \rightarrow Professional footprint exceeds private footprint by factor of \sim 2
	- \rightarrow Both by far exceed targets for mitigating climate crisis to only 2.0˚C or 1.5˚C warming
	- \rightarrow HEP research urgently needs to address this
	- \rightarrow Become part of the solution of the climate crisis!

Summary

Climate crisis in progress and intensifying every year

- Mechanism of $CO₂$ concentration and ground temperature increase known since more than 100 years
	- Currently heading towards 3.2°C temperature increase \rightarrow Will cause in some areas ~100% biodiversity loss, and makes large regions on the planet deadly for human life
	- Targeted action for mitigation urgently needed!
- High Energy Physics (HEP) and related areas contribute to global emissions \rightarrow Reductions urgent
	- Know your footprint (Kyf) calculator for individual researcher emissions
	- Evaluation for early-career benchmark researcher: Professional and private footprint together factor of ~6 (-18) larger than needed for 2.0°C (1.5°C) temperature increase mitigation

 \rightarrow Every gram of CO₂ not emitted counts!

- \rightarrow Know your footprint to know where to start! \rightarrow If large contributions from:
	- Experiment and institute: Send e-mail to your experiment and institute responsibles asking for details
	- Computing: Send e-mail to your computing center about using renewables, think about efficient coding
	- Travel: Think about which travel is needed and which means is possible

Take-away from today

What is your most important take-away from this seminar today? (1-2 words max.)

Start Vote

ID = valerie.lang@physik.uni-freiburg.de Vote has not been started yet

Know your footprint! – Questions?

Thanks for your attention

 \rightarrow If possible, please submit your data (anonymously) so that we can get an overview of the averages

Sustainability at PSI

[PSI environmental mission](https://www.psi.ch/en/about/psi-environmental-concept) statement and [PSI Energy mission](https://www.psi.ch/en/about/psi-energy-concept) statement

- Environmental performance based on the following indicators
	- Efficient energy use in infrastructure and research (see PSI Energy Mission Statement)
	- Reduction of the emissions caused directly and indirectly
	- Optimised use of resources (water, paper, chemicals etc.)
	- Advanced waste management with a high proportion of recycling
- Also annual reports, but not public?
- For the last twenty years, PSI has been recording its energy statistics systematically and reporting them transparently both internally and externally.
- . PSI submits a comprehensive and transparent annual report to the ETH Board on key figures, measures and the achievement of objectives
- Core objectives
	- Increasing energy efficiency
	- Expansion of green power generation
	- Reduction of direct and indirect emissions
		- ∘ e.g. reduction of 50% of greenhouse gas emissions from 2006 to 2030
	- Efficient use of resources (water, paper, chemicals, etc.)
	- Progressive waste management with a high proportion of material recycling

\rightarrow Two very important steps for emission reductions:

- Since 2020, PSI has been obtaining all its electricity with hydropower certificates and implements the targets for increased electricity generation with photovoltaics.
- PSI specifically advocates the operation of the new comprehensive heat recovery system and its expansion.
	- \rightarrow How? What are absolute emission numbers? \rightarrow More quantitative information important

Carbon footprint Switzerland

Per capita $CO₂$ emissions Our World
in Data Carbon dioxide ($CO₂$) emissions from fossil fuels and industry¹. Land-use change is not included. $7t -$ 6 t $5t$ Switzerland 4 t 3_t $2t$ 1_t O t 1858 1880 1900 1920 1940 1960 1980 2000 2022

1. Fossil emissions: Fossil emissions measure the quantity of carbon dioxide (CO₂) emitted from the burning of fossil fuels, and directly from industrial processes such as cement and steel production. Fossil CO₂ includes emissions from coal, oil, gas, flaring, cement, steel, and other industrial processes. Fossil emissions do not include land use change, deforestation, soils, or vegetation.

The basics: Green house effect

Black body radiation of the sun and Earth

• Sun at 6000°C, Earth at 15°C \rightarrow Sun radiates in the visible, Earth radiates in the infra-red

Credit: By 4C - Own work based on JPG version Curva Planck TT.jpg, CC BY-SA 3.0,<https://commons.wikimedia.org/w/index.php?curid=1017820>

 \rightarrow If atmosphere did not re-absorb Earth's emissions, surface temperature on Earth around -18˚C!

The basics: Green house effect

Re-absorption done by greenhouse gases

<https://www.epa.gov/ghgemissions/overview-greenhouse-gases>

Historic contributions (pre-industrial age) read off from figures from: [https://www.epa.gov/climate](https://www.epa.gov/climate-indicators/climate-change-indicators-atmospheric-concentrations-greenhouse-gases)[indicators/climate-change-indicators-atmospheric-concentrations-greenhouse-gases](https://www.epa.gov/climate-indicators/climate-change-indicators-atmospheric-concentrations-greenhouse-gases)

Improving the predictions of Earth's surface temperature

Nobel prize 2021 - *"for groundbreaking contributions to our understanding of complex physical systems"* With higher CO_2 levels \ldots

• 1967: Syukuro Manabe: Adding convection and latent heat

Improving the predictions of Earth's surface temperature

Nobel prize 2021 - *"for groundbreaking contributions to our understanding of complex physical systems"*

- Around 1980: Klaus Hasselmann: Building a stochastic climate model
	- How to make reliable climate predictions, while weather forecasts are notoriously imprecise in the long-term?
	- Treatment of weather as rapidly changing noise
	- Human impact separated out by properties of noise and signals \rightarrow Unique fingerprints:
		- \rightarrow Solar radiation
		- \rightarrow Volcanic particles
		- \rightarrow Levels of greenhouse gases
		- \rightarrow Human impact

<https://www.nobelprize.org/prizes/physics/2021/popular-information/>

Climate simulation

In 2007

[https://data.giss.nasa.gov](https://data.giss.nasa.gov/modelE/sc07/) [/modelE/sc07/](https://data.giss.nasa.gov/modelE/sc07/)

Impacts attributed to human influence

Driven by changes in multiple physical climate conditions

Generations affected by climate change

Considering the different scenarios

https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_SPM.pdf

Risk of species losses

Risk of T species losses

Percentage of animal species and seagrasses exposed to potentially dangerous temperature conditions^{1, 2}

 3.0° C

²Includes 30,652 species of birds, mammals, reptiles, amphibians, marine fish, benthic marine invertebrates, krill, cephalopods, corals, and seagrasses.

https://report.ipcc.ch/ar6syr/pdf/IPCC_AR6_SYR_LongerReport.pdf

 \sim

Study of remaining carbon budget newer than IPPC report

[Lamboll et. Al., Nature Climate Change 2023](https://www.nature.com/articles/s41558-023-01848-5)

IPCC report: Mitigation potentials

Cost estimates of different mitigation options

Greenhouse gases

CO2 Methane

<https://www.epa.gov/climate-indicators/climate-change-indicators-atmospheric-concentrations-greenhouse-gases>

Greenhouse gases

Nitrous Oxide **Halogenated Gases**

<https://www.epa.gov/climate-indicators/climate-change-indicators-atmospheric-concentrations-greenhouse-gases>

Gas emissions as main driver of CO² footprint

Global warming potential (GWP) of gas

- How much energy will be absorbed by 1t of the gas in 100 (500) years compared to 1t of $CO₂$? Gases used at CERN **Other halogenated gases**
- Have significant GWPs > 1000 or even 10000

Note: C_4H_{10} = Butane: GWP(100years) = 4.0 (*)

 \rightarrow Already very small leaks have a major impact

(*) <https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg1-chapter2-1.pdf>

\rightarrow Circled gases are also used at CERN

 $1,000$

100

10

 0.2 1975

Concentration (ppt)

PFC-14

 $PFC-116$

2015

2025

HFC-134a

HFC-152a V <HFC-125

1995

2005

Year

HFC-2

hexafluoride

Nitrogen trifluoride

1985

Sulfur

[https://www.epa.gov/climate-indicators/climate-change-indicators-atmospheric](https://www.epa.gov/climate-indicators/climate-change-indicators-atmospheric-concentrations-greenhouse-gases)[concentrations-greenhouse-gases](https://www.epa.gov/climate-indicators/climate-change-indicators-atmospheric-concentrations-greenhouse-gases)

Hands-on: Fixing leaks in ATLAS

Gas leaks in the ATLAS muon system

- Plastic connectors of the gas flow lines to the Resistive Plate Chambers $(RPCs)$ \rightarrow Tend to develop leaks
- 8000 potentially leaky connection points in ATLAS RPCs \rightarrow Often difficult to reach \rightarrow Break faster than can be repaired
- Gas mixture in RPCs: $C_2H_2F_4 + iso-C_4H_{10} + SF_6 \rightarrow GWP \sim 1400 \rightarrow$ Studies with replacing gas mixture not trivial!
	- 1l of RPC mixture \sim 5-6kg CO₂-eq. (*) \rightarrow Loss of ~1000l/h \rightarrow If constant throughout the year: ~44k-53k tCO₂-eq./year emissions \rightarrow ~20-23% of 2018 emissions by CERN (own estimate)
- Campaign in ATLAS with new repair technique and teams of volunteers to fix leaks during end-of-year shutdowns
	- First test campaign early 2023: Reduction of RPC losses by 23%!
	- Needs follow-up in further shutdowns

Based on main component: C₂F₂F₄ \rightarrow [Conversion of](https://planetcalc.com/7923/) I to kg \rightarrow Convert to CO2-eq. by multiplying with [GWP](https://unfccc.int/process/transparency-and-reporting/greenhouse-gas-data/greenhouse-gas-data-unfccc/global-warming-potentials) for HFC-134(a)

Relation to SDGs

(b) Climate responses and adaptation options have benefits for ecosystems, ethnic groups, gender equity, low-income groups and the Sustainable Development Goals Relations of sectors and groups at risk (as observed) and the SDGs (relevant in the near-term, at global scale and up to 1.5°C of global warming) with climate responses and adaptation options

Footnotes: ¹ The term response is used here instead of adaptation because some responses, such as retreat, may or may not be considered to be adaptation. ² Including sustainable forest management, forest conservation and restoration, reforestation and afforestation.³ Migration, when voluntary, safe and orderly, allows reduction of risks to climatic and non-climatic stressors.⁴ The Sustainable Development Goals (SDGs) are integrated and indivisible, and efforts to achieve any goal in isolation may trigger synergies or trade-offs with other SDGs. ⁵ Relevant in the near-term, at global scale and up to 1.5°C of global warming.

What barriers exist for getting involved?

Pyschological barriers to climate action

HL-LHC operation schedule

Start of HL-LHC with Run 4

Last update: September 24

Long-distance buses vs. Long-distance trains

• By chance! \rightarrow For UBA numbers from 2022

([https://www.umweltbundesamt.de/themen/verkehr/emissionsdaten\)](https://www.umweltbundesamt.de/themen/verkehr/emissionsdaten)

- Tank-to-wheel (TTW) for buses much higher than for trains, i.e. running a bus has higher emissions than a train
- Compensated by well-to-tank (WTT) for trains and infrastructure, i.e. the extraction of the fuel (using German conventional electricity mix) + the building of the infrastructure (rails, etc.) more costly for trains than for buses