Recent measurements of neutron star masses and radii as probes of nuclear physics

Sebastien Guillot

University of Toulouse III

Collaborators

A. Watts, T. Salmi, D. Choudhury, S. Vincinguerra, And many people in the NICER Science team

> <u>at IRAP</u> **Lucien Mauviard, Pierre Stammler,** Denis Gonzalez

All pulsars are neutron stars, but not all neutron stars are pulsars!

 $R_{\rm NS} \sim 10 - 15 \ {\rm km}$ $M_{\rm NS} \sim 1.0 - 2.0 \ M_{\odot}$ B ~ $10^8 - 10^{15}$ G $P_{spin} \sim 0.001 - 10 sec$

Neutron stars are the remnants of the core-collapse of massive stars.

Credits: NASA CXO / ESA / JPL

Crab Nebula X-ray+IR+Opt

A pulsar, at most wavelengths

 Credits: NASA CX0

Cassiopeia A X-ray

A neutron star without pulsations

<u>SN 1987 A</u> X-ray+Optical

A neutron star, maybe ? *Fransson et al.* 2024

Neutron stars are amazing laboratories for extreme physics.

Outer Crust

Inner Crust

Outer Core

Extreme gravity

Particle accelerators

High temperatures

Extreme densities

4

Extreme B-fields

Besides the top ~ 1km, the properties of neutron star interiors are mostly unknown.

The dense matter equation of state is a key question of fundamental physics and astrophysics

Mergers of compact objects

Dense nuclear matter is described by an equation of state $P(\rho)$.

To determine the equation of state $P(\rho)$, one needs to measure M_{NS} and/or R_{NS} .

Credits: N. Wex

Radio timing of pulsars in binary systems permits measurements of orbital parameters.

Best M_{NS} measurement Double-NS system PSR B1913+16 $M_{PSR} = 1.4414 \pm 0.0002 M_{\odot}$

Weisberg et al. 2005

Backup

Neutron star masses cover a wide range from about 1.2 to 2.0 M_{\odot} .

Credits: P. Freire

Many complementary methods to measure M_{NS} and R_{NS} , exist, with varying degrees of success.

Measuring the radius with precision is much more difficult.

To measure the radius, we need to:
observe the surface thermal emission,
correctly model this emission,
know the distance independently.

Because of gravitational redshift, the radius is degenerate with the mass.

$$R_{\infty} = R_{\rm NS} \left(1+z\right) = R_{\rm NS} \left(1 - \frac{2GM_{\rm NS}}{R_{\rm NS} \ c^2}\right)^{-1/2}$$

To measure M_{NS} and R_{NS}, choose your players carefully!

Millisecond pulsars are old and fast rotating neutron stars

X-ray emitting millisecond pulsars can be trusted!

 $B \sim 10^8 - 10^9 G$ $P_{spin} \sim 2 - 5$ msec

Old fast rotating neutron stars

The hot X-ray emission of millisecond pulsar comes from e⁻/p⁺ bombardment of the surface heating the polar caps.

Strong gravity permits seeing beyond the hemisphere of the neutron star.

Pulse profile modelling to determine the compactness M_{NS}/R_{NS}

The Doppler effect break the degeneracy between M_{NS} and R_{NS}.

The effect depends on the line of sight velocity, i.e., <u>spin frequency</u> and <u>distance from rotation axis</u>

NICER has given us beautiful data sets to perform pulse profile modelling.

In addition to inferring the radii, we also map the surface emission.

PSR J0030+0451

The results for the first two pulsars were consistent with other measurements.

Cold Surface of MSP:

Gonzalez-Caniulef et al. 2019 Multiple quiescent LMXB: Baillot-d'Etivaux et al. 2019

Updates to those results were published recently.

The newest radius constraints are the best so far...Again with a complex geometry.

These three measurements together. Why do they have different shapes ?

We can now constrain (parametrised) model of the equation of state models.

Several NICER data sets are yet to be analysed to extract M_{NS} and R_{NS}. More results are coming...

What can we expect in the future with pulse profile modelling ?

eXTP

- Modest imaging capabilities (60" PSF)
- + Hard X-ray instrument

What can we expect in the future with pulse profile modelling ? New-ATHENA

- Sensitivity: about x5 NICER
- Time resolution:
- Low-background: ~ 0.001 c/s

Future prospects for pulse profile modelling with new-Athena are quite promising.

Simulations of PSR J0740+6620 with P_{spin} = 2.88 msec and d=1.2 kpc

 $R{\sim}11.5$ km, M=2.08 M_{\odot} with 2 circular hot spots Simulation of 500 ksec observations

For some MSPs, the rest of the surface, although much colder than the hot spots, can be detected in the soft X-ray and the far UV.

Using Far UV observations for PSR J0437-4715, we obtain independent constraints on the radius.

Conclusions

- Pulse profile modelling is a demonstrated technique to measure M and R.
- NICER results for 3 pulsars are published; 1 is submitted; more are coming...
- We now know that characterising the background is key.
- Complementary methods exists to measure M and R.
- NewATHENA measurement will bring constraints on M and R to another level.

