Recent Results and Highlights from the IceCube Neutrino Observatory

> LTP/PSI Thursday Colloquium 11 November 2024

> > Philipp Eller (TU Munich) philipp.eller@tum.de

IceCube Counting Lab (ICL)

The more interesting is hidden underneath!

86 Cables, 2.5 km long each, go down into the glacier...

60 sensors per string

Photosensor (10" PMTs)

Muons vs. Neutrinos

- Most events we see in IceCube are **atmospheric muons**
 - From meson decays in cosmic ray induced air showers
 - We have around O(10¹⁰) per year
 - Those are for most purposes an unwanted background
 → How can we single out neutrinos from these muons?

Atmospheric vs. Astrophysical Neutrinos

- Most neutrinos we observe with IceCube are atmospheric neutrinos
 - From meson decays in cosmic ray induced air showers
 - IceCube records O(100'000) atmospheric neutrinos per year
- How can we fish out astrophysical neutrinos?
 - Neutrinos that were produced outside Earth, potentially quite far away

 \rightarrow Can gives us insight into possible sources / production mechanisms, and maybe shed light onto the origin of high-energy cosmic rays

9

Diffuse Astrophysical Flux

New analysis using both, cascades and tracks, jointly

Cascades:

great energy resolution & low background 12641 events

Tracks:

large statistics 542066 events

Results

assuming single power law (SPL)

Neutrino Point Sources

- Using tracks \rightarrow excellent pointing resolution ($\leq 1^{\circ}$)
- Northern sky $(-3^{\circ} +81^{\circ}) \rightarrow$ avoiding muon background (<0.3%)

2211.09972

• New event sample containing 670,000 neutrinos

NGC 1068

- Position of NGC1068 (nearby AGN) revealed an excess of 79⁺²⁹₋₂₂ neutrinos above background
- Based on an a priori defined catalog of 110 know gamma ray point sources
 → 4.2σ significance above background

0.6

0.4

0.2

0.0

-0.2

-0.4

Declination [deg]

- Optical Image of the plane of our Milky Way
- Image is in galactic coordinates, showing $\pm 15^{\circ}$ latitude and $\pm 180^{\circ}$ longitude

- Gamma Ray Flux (> 1 GeV) from Fermi-LAT
- Prime candidate for neutrino emission

- Predicted template for neutrino emission from pions, that matches the observed gamma rays
- Most emissions are expected in southern sky \rightarrow cannot use Northern tracks!

• Same template after applying selection and detector effects (cascades with angular resolution $\sim 5-10^{\circ}$)

Transient Sources

High energy neutrino alert from 2017:

- Follow-up studies (Fermi-LAT and MAGIC) identified the blazar TXS 0506+056 in a flaring state
- Analyzing all (previous) IceCube data, found a clustering of 13 ± 5 events around December 13 2014 from the same location

Proxy

Energy

 $\log_{10}(E_{rec,\mu}/{
m GeV})$

Search for more Transient Sources

- Since the TXS discovery, we have checked IceCube's 122 highest-quality alert positions
- Only significant excess is still at TXS position (rediscovery)
- No other alerts could be associated with any continuous or transient emission

Tau Neutrinos

- We have seen:
 - Tracks (muon neutrinos)
 - \rightarrow Diffuse Flux
 - \rightarrow NGC1068 source
 - \rightarrow TXS0506+056 blazar
 - Cascades (electron neutrinos)
 - ightarrow Diffuse Flux
 - \rightarrow Galactic Plane

What about tau neutrinos?

"Casacdes"

Tau Neutrinos

- A v_{τ} CC interaction creates a τ lepton
 - Lifetime of 2.9×10^{-13} s
- If sufficiently energetic, it will travel several meters before decay (~50m / PeV)
- \rightarrow Two separate vertices:
 - First: Initial ν_{τ} interaction
 - Later: *τ* **decay**

→ Double pulse signature

2403.02516

Tau Neutrino Results

- Using a new ML driven approach, in 9.7 years of data we expected:
 - 6.4 tau neutrinos
 - 0.5 background events

- We found 7 events in the signal region
 - One of these seven was also identified in a previous tau analysis
 - 5 sigma p-value for this being a background fluctuation

Oscillation Physics with Atmospheric Neutrinos

Neutrino Oscillations

Atmospheric Neutrinos

Oscillations are a function of $L/E \rightarrow$ what Ls and Es do we have?

Flux from conventional pion / kaon decay

 v_{μ} / \bar{v}_{μ} and v_{e} / \bar{v}_{e} at Energies ranging from GeV to TeV

Distance *L* depending on zenith $L \approx 12700 \ km \cdot \cos \theta$

→ Baselines ranging from ~20 km to 12700 km

Atmospheric Oscillations

Need to go lower in Energy!

 IceCube's detector spacing is too wide

→Energy threshold ~100 GeV

• We need the DeepCore sub-array

8 innermost detector strings with HQE PMTs

and denser instrumentation

 \rightarrow Energy threshold ~5 GeV

DeepCore Sample

- Using 9.3 years of data
- Using both, cascades and tracks
- New ML-based selection and reconstruction
- Total sample consiting of ~150k Neutrinos

 $P_{\nu_{\alpha} \to \nu_{\beta}} = \sin^2 2\theta \sin^2 \frac{\Delta m^2}{4F} L$

DeepCore Results

- Competitive measurement of atmospheric mixing parameters
 - Rivaling precision of dedicated long-baseline accelerator experiments (T2K, NOvA, MINOS)
 - Best measurement using atmospheric neutrinos
 - PRL coming out soon (https://arxiv.org/abs/2405.02163)

What about tau neutrinos, again?

- Challenging measurement
 - v_{τ} CC threshold energy ~3.5 GeV \rightarrow Out of reach for most LBL experiments (e.g. T2K, NOvA)
 - Suppressed cross section
 - Appearance in cascade channel (more difficult to reconstruct)
- So far, results consistent with expectations (=1.0)

DeepCore 3 years

IceCube 1901.05366

Atmospheric Oscillations

Philipp Eller (TUM)

Neutrino Mass Ordering with DeepCore

- First result with 9.3 years of DeepCore data
- Slight preference for NO:

 → 1.72 sigma to reject IO in favour of NO using CLs method
- Analysis not sensitive enough to expect large gains in the near future
- Real issue is accessing neutrinos with low enough (<10 GeV) energy

\rightarrow Need to go lower in energy, again!

DeepCore Neutrino Mass Ordering (9.28 years)

→ we are going back to Pole next Winter to drill!

38

IceCube Upgrade

- 7 new detector strings in center of IceCube
- Total of 680 multi-PMT modules
 - mDOMs: 24x 3" PMTs
 - dEggs: 2x 8" PMTs
 - → over 10'000 additional PMTs, more than tripling the number of channels of the existing IceCube!

IceCube Upgrade

- Much increased event rates in the oscillation regime
- Even denser instrumentation than DeepCore →Energy threshold of ~2 GeV
- Additional calibration devices and R&D modules
- Scheduled to be installed in field season 2025/26

Upgrade Oscillation Sensitivities

• Upgrade will deliver sensitivities $\sim 2 \times$ better than DeepCore alone

Neutrino Mass Ordering with IC Upgrade

Upgrade strongly enhances sensitivity to the Neutrino Mass Ordering

 $\rightarrow 3\sigma$ significance in reach with few years of data

Summary

- Several astrophysical neutrino sources detected:
 - Steady emission from NGC 1068
 - Neutrinos from Galactic plane
 - Transient emission from TXS 0506+056
 - Still, ~90% of diffuse flux yet unaccounted for
 - \rightarrow Much more to discover
- Oscillation physics with Atmospheric Neutrinos:
 - Using DeepCore allows us to measure neutrino oscillations
 - \rightarrow Competitive with dedicated oscillation experiments
- IceCube Upgrade Detector:
 - New detector hardware and calibration devices
 - To be installed in Winter 2025/26
 - Enhancing IceCube's low-energy capabilities
 - \rightarrow Exciting new data for oscillation physics, and recalibration of the entire IceCube detector

THANK YOU!