

# Searching for Long-Lived Particles at the LHC and Beyond

Juliette Alimena (DESY)

Colloquium at Paul Scherrer Institut October 3, 2024







# What is everything made of?

#### The Standard Model (SM)

Highly successful theory of fundamental particle interactions



**Standard particles** 

# What is everything made of?

#### The Standard Model (SM)

Highly successful theory of fundamental particle interactions



**Standard particles** 

**However**, there are still many outstanding questions, e.g.:

Dark matter

Matter-antimatter asymmetry



# What is everything made of?

#### Many theories beyond the SM (BSM):

#### **SUPERSYMMETRY**



**Standard particles** 



**SUSY** particles

**However**, there are still many outstanding questions, e.g.:

Dark matter

Matter-antimatter asymmetry



#### But no significant sign of new phenomena at the LHC yet!



# Are we looking in the wrong place?

#### Long-Lived Particles (LLPs)

# **Standard model particles** span a wide range of lifetimes (τ)



#### Long-Lived Particles (LLPs)



#### We also need to look for new particles with long lifetimes!

#### ... and we need it now! (LHC Run 3)

- No significant sign of new phenomena at the LHC yet
- BSM phenomena must either be rarely produced or beyond the reach of our detectors/reconstruction
- LHC already operates close to the maximum center-of-mass energy
- If we're going to find new phenomena at the LHC, it will be in uncovered regions of phase space
- We need to search for unconventional signatures now!

#### How You Get LLPs

 Mechanisms to produce BSM long-lived particles are the same ones as those that give us long-lived particles in the SM

- Three main ways:
  - Heavy (off-shell) mediator
  - Small couplings
  - Compressed spectra

e.g. 
$$\pi^{\pm} \rightarrow \mu^{\pm} \nu_{\mu} (c\tau \sim 7.8 \text{m})$$
  
 $\tau = \frac{8\pi}{f_{\pi}^2 G^2 m_{\mu}^2 m_{\pi}} \left(\frac{m_{\pi}^2}{m_{\pi}^2 - m_{\mu}^2}\right)^2$   
small coupling, compressed  
heavy mediator spectra

# Why Search for New LLPs?

- LLPs appear in many BSM scenarios
  - Nearly mass-degenerate states (compressed SUSY, AMSB, etc.)
  - Heavy virtual mediators (split-SUSY, heavy neutral leptons, etc.)
  - Small couplings (dark photons, freeze-in DM, RPV SUSY, etc.)
  - The lifetime is a free parameter of the model, although it can be constrained by cosmology (Big Bang Nucleosynthesis)
- Can provide a dark matter candidate
  - DM could be the LLP itself, or produced in association with the LLP
- Why not?
  - No significant sign of new phenomena at the LHC yet!  $\rightarrow$  Need to look everywhere
  - A new massive, long-lived particle would be a clear sign of new phenomena

#### **Great discovery potential!**





## What's a New LLP?

• From an experimentalist's point of view, it's a particle beyond the standard model that:

decays a reconstructable distance from the primary collision

or

is quasi-stable on the scale of the detector

# What's a New LLP?

• From an experimentalist's point of view, it's a particle beyond the standard model that:

decays a reconstructable distance from the primary collision

or

is quasi-stable on the scale of the detector

- They can:
  - be **charged**, neutral or have **color**
  - be light or heavy
  - travel fast or slow
  - decay to anything

# What's a New LLP?

• From an experimentalist's point of view, it's a particle beyond the standard model that:

decays a reconstructable distance from the primary collision

or

is quasi-stable on the scale of the detector

- They can:
  - be **charged**, neutral or have **color**
  - be light or heavy
  - travel fast or slow
  - decay to anything
- They often require dedicated searches or dedicated experiments

#### The Large Hadron Collider



#### LHC Timeline



# LHC Timeline



• More than 10 years of successful operation of the LHC!



- More than 10 years of successful operation of the LHC!
- Run 3 is well underway



- More than 10 years of successful operation of the LHC!
- Run 3 is well underway
- Still publishing analyses with the well-understood (and still top-notch!) Run 2 data set, but beginning to add Run 3 data (more data! new tools! improved reach!)



- More than 10 years of successful operation of the LHC!
- Run 3 is well underway
- Still publishing analyses with the well-understood (and still top-notch!) Run 2 data set, but beginning to add Run 3 data (more data! new tools! improved reach!)
- Superb operation efficiency for the experiments
  - Usually > 90% efficient for both CMS and ATLAS (data taking + data quality)

#### **General-Purpose LHC Experiments**









Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker



#### Anatomy of a General-Purpose Detector



#### Long Lifetimes

Any given particle's lifetime is sampled from an exponential



#### **Adapted from Heather Russell**

# Long Lifetimes and the Detector

Any given particle's lifetime is sampled from an exponential

Even particles with a short proper lifetime can decay far from the interaction:



#### **Adapted from Heather Russell** Long Lifetimes and the Detector

Any given particle's lifetime is sampled from an exponential

**Even** particles with a **short proper lifetime** can decay far from the interaction:



distance travelled

But if we want to consider particles with **longer lifetimes**, we could benefit from a different search strategy:



#### **Adapted from Heather Russell**

# Variety of LLP Searches

Any given particle's lifetime is sampled from an exponential

Even particles with a short proper lifetime can decay far from the interaction:



But if we want to consider particles with longer lifetimes, we could benefit from a different search strategy:



Lifetime, mass, decay products, boost, etc. dramatically affect the detector signature, and thus we use all subdetectors... and also dedicated/auxiliary LLP detectors!

- Wide variety of:
  - Charges
  - Final states
  - Decay locations
  - Lifetimes
- Design **signature-driven** searches
- Often interpret results with a benchmark model, but can expand to a variety of scenarios



Can search for LLPs that decay:

• Outside of the detector



#### Can search for LLPs that decay:

- Outside of the detector
- Within the detector



Can search for LLPs that decay:

- Within the detector
- Outside of the detector

Can search for:

• The LLP itself

HSCP

Can search for LLPs that decay:

- Within the detector
- Outside of the detector

Can search for:

- The LLP itself
- Its displaced decay products



Can search for LLPs that decay:

- Within the detector
- Outside of the detector

#### Can search for:

- The LLP itself
- Its displaced decay products
- Both



#### Can search for LLPs that decay:

- Within the detector
- Outside of the detector

#### Can search for:

- The LLP itself
- Its displaced decay products
- Both



#### Wide range of signatures, models, and lifetimes explored at the LHC

#### **Overview of CMS long-lived particle searches**



UDD,  $\ddot{q} \rightarrow tbs$ ,  $m_{\ddot{q}} = 2500 \text{ GeV}$ UDD,  $\ddot{g} \rightarrow tbs$ ,  $m_{\ddot{q}} = 2500 \text{ GeV}$ RPV UDD,  $t \rightarrow \overline{dd}$ , m = 1600 GeVUDD,  $t \rightarrow \overline{dd}$ , m = 1600 GeVSUSY LQD,  $\tilde{t} \rightarrow bl$ ,  $m_{\tilde{t}} = 600 \text{ GeV}$ LOD,  $\tilde{t} \rightarrow b/$ , m = 460 GeVLOD,  $\tilde{t} \rightarrow bl$ ,  $m_{\tilde{t}} = 1600 \text{ GeV}$ 

GMSB,  $\ddot{q} \rightarrow q\ddot{G}$ ,  $m_d = 2450 \text{ GeV}$ 

GMSB,  $\ddot{g} \rightarrow g\ddot{G}$ ,  $m_d = 2100 \text{ GeV}$ 

Split SUSY,  $\ddot{g} \rightarrow q\bar{q} \chi_1^0$ ,  $m_{\ddot{a}} = 2500 \text{ GeV}$ 

Split SUSY,  $\tilde{g} \rightarrow q \bar{q} \chi_1^0$ ,  $m_{\tilde{d}} = 1300 \text{ GeV}$ 

Stopped  $\tilde{t}, \tilde{t} \rightarrow t \chi_1^0, m_{\tilde{t}} = 700 \text{ GeV}$ 

AMSB,  $\chi^{\pm} \rightarrow \chi_1^0 \pi^{\pm}$ ,  $m_{\chi^{\pm}} = 700 \text{ GeV}$ 

GMSB SPS8,  $\chi_1^0 \rightarrow \gamma \ddot{G}$ ,  $m_{\chi_1^0} = 400 \text{ GeV}$ 

GMSB, co-NLSP,  $\bar{l} \rightarrow l\bar{G}$ ,  $m\bar{l} = 270 \text{ GeV}$ 

RPC SUSY

 $H \rightarrow XX(10\%), X \rightarrow ee, m_H = 125 \text{ GeV}, m_X = 20 \text{ GeV}$  $H \rightarrow XX(0.03\%), X \rightarrow II, m_H = 125 \text{ GeV}, m_X = 30 \text{ GeV}$  $H \rightarrow XX(10\%), X \rightarrow b\bar{b}, m_{H} = 125 \text{ GeV}, m_{X} = 40 \text{ GeV}$  $H \rightarrow XX(10\%), X \rightarrow b\bar{b}, m_H = 125 \text{ GeV}, m_X = 40 \text{ GeV}$  $H \rightarrow XX(10\%), X \rightarrow b\bar{b}, m_{\mu} = 125 \text{ GeV}, m_{\chi} = 40 \text{ GeV}$  $H \rightarrow XX(10\%), X \rightarrow \tau\tau, m_H = 125 \text{ GeV}, m_X = 7 \text{ GeV}$ dark QCD,  $m_{X_{stark}} = 1500 \text{ GeV}, m_{\pi_{stark}} = 10 \text{ GeV}, \text{ agonstic}$ dark QCD,  $m_{X_{start}} = 1500 \text{ GeV}, m_{\pi_{start}} = 10 \text{ GeV}, \text{GNN}$  $H \rightarrow XX(10\%), X \rightarrow b\bar{b}, m_{H} = 125 \text{ GeV}, m_{X} = 40 \text{ GeV}$  $H \rightarrow XX(10\%), X \rightarrow d\bar{d}, m_H = 125 \text{ GeV}, m_X = 40 \text{ GeV}$  $H \rightarrow XX(10\%), X \rightarrow \tau \tau, m_H = 125 \text{ GeV}, m_X = 40 \text{ GeV}$ 

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included). The y-axis tick labels indicate the studied long-lived particle.
### LLP Challenges



### LLP Challenges



# LLP Challenges



I'll now describe a recent LLP search with several of these challenges opportunities for innovation



### Intro to L Particles

- Why
- What
- How (ba

mus

THAT'S WHAT I CALL MUSIC:

3



# Muon Detector Showers (MDS)

- Neutral LLPs with ctau> 1m could decay beyond the calorimeter with:
  - No tracks, no jets, high-multiplicity shower (hundreds of hits per cluster) in the muon system
- Essentially, we use the muon system as a sampling calorimeter
- Excellent background suppression from shielding material (background rejection of 1e6)
- Unique signature due to the presence of steel in the CMS muon system
- Sensitive to hadronic, tau, photon, and electron decays





arXiv:2402.01898



### MDS Latest Result: Vector-Like Leptons

- In SM, fermions are chiral:
  - Left- and right-handed fermions experience different interactions
- However, BSM scenarios with additional chiral fermions: largely excluded
- Therefore, if new elementary fermions exist, they must be of vector-like (non-chiral) nature
- Vector-like fermions: **simple and wellmotivated extension** of the SM
- Vector-like leptons (VLLs) produced via electroweak processes





### **Vector-Like Leptons**





### **Vector-Like Leptons**









### **VLL Results**





# **Other MDS Results**





# **Other MDS Results**







- Why
- What
- How (basi



### What's Next?



### LHC / HL-LHC Plan







### New LLP Triggers in CMS for Run 3 At both L1 (hardware) and HLT (software) levels

- New L1 & HLT triggers for showers in the muon system
- New triggers for **delayed jets**:
  - Using HCAL depth and timing (thanks to HCAL upgrade): L1 & HLT
  - Using ECAL timing: HLT
- New HLT triggers for displaced taus
- New L1 & HLT algorithms for displaced muons





# High-Luminosity LHC

- 14 TeV center-of-mass energy
- About 20 times more data by the end
- Expect up to 200 interactions per protonproton collision, unprecedented amount of radiation
- Will have **substantial upgrades** to the ATLAS and CMS detectors:
  - To cope with the increased data rate and radiation
  - To improve and maximize the physics potential

High pileup: about 200 additional proton collisions per bunch crossing



### CMS Phase 2 Upgrade

#### Level 1 Trigger TDR

- New track trigger at 40 MHz
- 750 kHz L1 output
- 40 MHz data scouting (real time analysis)

### **New MIP timing detector (MTD)** TDR

• 30 ps timing resolution

#### **Replaced Tracker TDR**

- Increased granularity
- Extended coverage to  $|\eta|^{\sim} 4$
- Designed for tracking in L1T

#### DAQ & High Level Trigger (HLT) TDR

- Heterogeneous architecture
- 7.5 kHz HLT output

#### Barrel Calorimeter TDR

• ECAL crystal granularity readout at 40 MHz with precise timing for e/gamma at 30 GeV

#### Muon System <u>TDR</u>

- New Gas Electron Multipliers (GEMs) & new iRPCs  $1.6 < |\eta| < 2.4$
- Extended coverage to  $|\eta|^{\sim}$  3

#### **New High-Granularity Endcap** Calorimeter (HGCAL) TDR

- Imaging calorimeter
- 3D showers and precise timing

#### From G. Unal

### ATLAS Phase 2 Upgrade



#### Upgraded Trigger and Data Acquisition system

Level-0 Trigger at 1 MHz

Improved High-Level Trigger (150 kHz full-scan tracking)

#### **Electronics Upgrades**

LAr Calorimeter Tile Calorimeter Muon system

#### High Granularity Timing Detector (HGTD)

Forward region (2.4 <  $|\eta|$  < 4.0)

Low-Gain Avalanche Detectors (LGAD) with 30 ps track resolution

#### Additional small upgrades

Luminosity detectors (1% precision goal)

HL-ZDC

#### 57

# HL-LHC Upgrades and LLPs

A Few Highlights

- ATLAS and CMS: All-silicon trackers with extended coverage to  $|\eta|^{\sim} 4$
- CMS: Tracking info in L1 trigger
- ATLAS: Improved pointing by using HCAL info
- CMS: New high-granularity silicon calorimeter in endcap (3D imaging + timing)
- CMS: New single layer **MIP timing detector** in barrel and endcap
- ATLAS: New **High-Granularity Timing Detector** in multiple layers in the endcap (track-to-vertex association, identification improvements)



### LLPs at the HL-LHC



#### L1 track triggers for displaced jets







Just a sampling!

### Some Dedicated LLP Experiments

- Besides the more general purpose LHC experiments, there are approved and proposed **experiments dedicated to looking for LLPs**
- Just a few examples:

**FASER**: searches for long-lived dark photons and similar particles in the extreme forward direction



MilliQan: searches for millicharged particles with a detector pointed at the CMS interaction point





**MoEDAL**: searches for monopoles stopped in the beampipe with a SQUID precision magnet



MATHUSLA: searches for (very) longlived weakly interacting neutral particles with a large-volume, air-filled surface detector



### **Results from Dedicated LLP Experiments**



### Future Colliders and LLPs

- Past the HL-LHC, it's unclear what future collider project we will have
- But it's clear it will be a Higgs factory
  - Given both the European Strategy Report and Snowmass
- One option: Future Circular Collider (FCC) at CERN
  - One 100 km tunnel, two stages:
    - Stage 1: FCC-ee (Z, W, H , tt) as Higgs EW and top factory at high luminosities
    - Stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, with ion and eh options
- Studying future sensitivity of the FCC to LLPs
  - One example: Heavy Neutral Leptons





### What Else?

- The previous slides were far from exhaustive many other searches for LLPs have been done or are in progress
- But here are some other things we can try:
  - Soft displaced objects
  - Displaced taus
  - Kinked tracks
  - Quirks
  - Data-taking strategies like data scouting and data parking
  - New triggers
  - And many more!

### Take Home Points

- Lots of reasons to search for new physics at the LHC: unexplained observed phenomena like dark matter, neutrino masses, the hierarchy problem, etc.
- Performing a variety of searches for exotic particles at the LHC
- We have many theoretical models to guide experimentalists now, but there's no longer a big shiny beacon like there was before the Higgs boson discovery
- —> We should look for anything and everything that we're sensitive to, including long-lived particles
- Exciting time for searches at the LHC!
- Maybe **YOU** will be the next to discover something!

### Backup

### **Approved and Proposed LLP Experiments**

**<u>CODEX-b</u>**: searches for long-lived weakly interacting neutral particles with a new detector near LHCb

**FASER**: searches for long-lived dark photons and similar particles in extreme forward direction

MilliQan: searches for millicharged particles with a detector pointed at the CMS interaction point

<u>MAPP</u>: searches for low-charged particles and long-lived neutrals that decay outside of LHCb

MATHUSLA: searches for (very) long-lived weakly interacting neutral particles with a large-volume, air-filled surface detector

**MoEDAL**: searches for monopoles stopped in the beampipe with a SQUID precision magnet

**NA62**: searches for vertices of long-lived neutral particles

SeaQuest: dark-sector searches

**<u>SHIP</u>**: searches for neutral hidden particles at the beam dump

And more!









### Transverse Detectors at the HL-LHC Transverse, shielded detectors like CODEX-b are sensitive to uncovered regions of LLP phase space



### **CODEX-b**

### **COmpact Detector for EXotics at LHCb**



- Tracking volume off-axis to the beam, and aligned with LHCb
- Several locations about 25 m from LHCb being studied
- Active and passive shielding
- Integration with LHCb triggerless DAQ
- Aim for **0 background experiment**
- Very competitive or world-best sensitivity in a wide range of scenarios

### **CODEX-b** Detector



10 m

- 10m<sup>3</sup> box of **Resistive Plate Chamber** (**RPC**) tracking layers
  - Well-known technology, same as for ATLAS Muon Upgrade (BIS78)
    - Medium size, low cost
- Triplet of RPCs form a panel:
  - ~1 mm spatial resolution in X-Y
  - ~100 ps timing resolution



**RPC Triplet:** 





# VLL Event Selection and Backgrounds

### CMS-EXO-23-015

Event selection:

- Trigger on missing transverse momentum
  - $p_T^{miss} > 120 (200)$  GeV online (offline)
- Require  $\geq 1$  hadronic tau with  $p_T > 30~{\rm GeV}$
- Require  $\geq 1$  MDS

Backgrounds:

- Punch-through jets
- Muons that undergo bremsstrahlung
- Isolated hadrons from pileup, recoils, or underlying events
- Cosmic muon showers



# VLL Event Selection and Backgrounds

### CMS-EXO-23-015

Event selection:

- Trigger on missing transverse momentum
  - $p_T^{miss} > 120 (200)$  GeV online (offline)
- $\bullet \, {\rm Require} \geq 1 \, {\rm hadronic} \, {\rm tau} \, {\rm with} \, p_T > 30 \, {\rm GeV}$
- Require  $\geq 1$  MDS

Backgrounds:

- Punch-through jets \_\_\_\_\_\_ Suppress by rejecting clusters near jet or muon
- Muons that undergo bremsstrahlung
- Isolated hadrons from pileup, recoils, or Suppress by requiring clusters to be in time with the bunch crossing



### **VLL Results**





# First CMS Run 3 Search: Displaced Dimuons

- Generic, inclusive search for long-lived particles decaying into pairs of oppositely-charged muons (displaced dimuons) within the tracker and beyond
- Uses 36.7 fb<sup>-1</sup> of 13.6 TeV data taken in 2022





# **Displaced Dimuons: Triggers**

- Generic, inclusive search for long-lived particles decaying into pairs of oppositely-charged muons (displaced dimuons) within the tracker and beyond
- Uses 36.7 fb<sup>-1</sup> of 13.6 TeV data taken in 2022
- Improved triggers → Substantial increase in acceptance x trigger efficiency compared to Run 2
- Improve signal efficiency at low mass and large displacements up to a factor of 4





# **Displaced Dimuons: Sensitivity**

- Generic, inclusive search for long-lived particles decaying into pairs of oppositely-charged muons (displaced dimuons) within the tracker and beyond
- Uses 36.7 fb<sup>-1</sup> of 13.6 TeV data taken in 2022
- Improved triggers → **Substantial increase in acceptance x trigger efficiency** compared to Run 2
- Improve signal efficiency at low mass and large displacements up to a factor of 4
- With partial Run 3 data, comparable or better sensitivity than Run 2 (only 38% of the data!)

