

- Dark Matter (DM) is is the only theory that can explain the Universe on all scales at at all times
- Very large body of evidence
 - Galaxy rotation curves
 - Galaxy clustering
 - Cluster collision
 - Large-scale structures
 - CMB fluctuations
 - Gravitational lensing
- Global fit of cosmological parameters: $\Omega_{\wedge} \approx 0.68$, $\Omega_{DM} \approx 0.27$, $\Omega_{b} \approx 0.05$

- Five times more DM than regular matter
- The discovery of DM will be one of the most important discoveries in modern physics

How to catch such a specter?

u

 Indirect Searches search for DM where we know it exists: In the Universe

Look at places where we expect particularly large

amounts of DM, e.g:

- Center of the Galaxy
- Galaxies which are DM dominated
- Objects with massive gravity like the sun
- So far 'no smoking gun' but some intriguing excesses
- Galactic center excess in γ-rays
 between 0.1 and 10 GeV from Fermi-Satellite data
 - Spherically symmetric within < 10° × 10° around the Galactic Center
 - Foreground modeling very difficult, open debate

- If all evidence of DM is gravitational, why should we look for it at collider (particularly hadron)?
 - Well motivated, 'WIMP paradigm' predicts particles approximate EW scale
 - Complementarity: Collider have different strengths and uncertainties
- But
 - DM has to be kinematically accessible: ~1-1000 GeV
 - We haven't seen it yet

- Detect DM as our solar system passes through the galactic halo
 - o v~10⁻³ c
 - Kinetic energy ~ 100 keV
- Detected by recoils off ultra-sensitive detectors deep underground
- Roughly 1 interaction per kg per year

$$\frac{dR}{dE_R} = \frac{\rho_0}{m_N m_{\gamma}} \int_{v_{min}}^{\infty} v f(v) \frac{d\sigma_{WN}}{dE_R} (v, E_R) dv$$

- Very stringent cleanliness and background rejection requirements
- Variety of detection methods

Momentum transfer crucial

- Low mass difficult
- LXe dual-phase
 TPCs demonstrated
 best sensitivity

- Dual phase TPC, two signals
 - Prompt scintillation light (S1)
 - Prop. charge signal amplified in gas (S2)
- Depth (z) from time difference between S1/S2 and light pattern provides (x, y) position
- Allows to define a fiducial volume
- LXe is dense and shelf-shielding

Signal (WIMPs)

- Ionization/excitation (charge/light) depends on dE/dx
- Signal ratio allows to discriminate particles
 - Electron scatter tend to produce more charge
 - Neutron scatter create more light
- Excellent discrimination of signal and most backgrounds: 99.5% discrimination before statistical methods

- 10t LXe target mass
- Surrounded hermetically by veto detectors
- Operating since Christmas 2021

- The Outer Detector encloses hermetically the TPC
- Using Gadolinium based liquid scintillator (Gd-LS)
- OD views Gd-LS using 120 8"-PMTs, surrounded by reflector system and mechanical support in aggressive environment
- Capturing neutron created
 7.9 MeV cascades of about 3-4y
- About doubles the fiducial volume

1 Banana = **15** Bq

- Bananas are actually somewhat radioactive due to potassium
 - 15Bq/Banana
- Our target activity in the Xe: 2 μBq/kg -1/750,000 Bananas
- Cleaning, cleaning, cleaning!

Need also to avoid all type of internal contaminants

- Use purest materials obtainable, screen all materials
- Build everything in clean room, reduce dust on surfaces to O(ng/cm²)
- Keep circulating and purifying target material: aim Xenon contaminants to O(0.015 ppt)

Those tanks look familiar...

Let's look at some Data!

Cartoon waveform:

• Cartoon waveform:

Actual waveform:

- Backgrounds predominantly ERs, WIMPs produce NRs
- ER band: Tritiated methane (CH3T) injection, spatially homogeneous β source
- NR band: DD neutron generator (NR band), Monoenergetic 2.45 MeV neutrons

- 'Naked' ²¹⁴Pb β-decays (no-γ) from Rn emanated in Xe are the main ER background
- Constrain β-decay rate by bracketing with Rn-chain α-tagging & spectral fit of all internal BGs
- ²²²Rn activity within assay expectation

We actually observed more NR background than expected, successfully vetoed by the OD

• Event selections:

- S1/S2 shape and topology selection
- Veto detector, anti-coincidence
- Fiducial Volume, ROI, single scatter cuts

Single Scatter

Multiscatter

1 S1 before 1 S2, with S1s after the S2:

1 S1 before 1 S2, with S2s before the S1 (?):

- Selection criteria developed on non-WIMP ROI background & calibration data
- Rejection of live time with detector instabilities, high TPC pulse rates

Key numbers:

- 60 live days
- 5.5 T of fiducial volume

• Region-of-interest:

- 3 phd < S1*c* < 80 phd, S1 coincidence ≥3
- S2 > 600 phd (6e⁻), S2c < 10⁵ phd
- 335 events in final dataset
- 60 live days, 5.5 ± 0.2 tonne FV

LZ presently world strongest result

- LZ presently world strongest result
- Only 60 days out of a 1000 days exposure published, considering extension to 2028

Björn Penning

- MOU between LZ, XENON, DARWIN
- Had first meetings in Germany and LA
 - https://xlzd.org/
 - White paper (2203.02309)

Leading Xenon Researchers unite to build next-generation Dark Matter Detector

A Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics

J. Aalbers, ^{1,2} K. Abe, ^{3,4} V. Aerne, ⁵ F. Agostini, ⁶ S. Ahmed Maouloud, ⁷ D.S. Akerib, ^{1,2} D.Yu. Akimov, ⁸ J. Ak. Al Musalhi, ¹⁰ F. Alder, ¹¹ S.K. Alsum, ¹² L. Althueser, ¹³ C.S. Amarasinghe, ¹⁴ F.D. Amaro, ¹⁵ T.J. Anderson, ^{1,2} B. Andrieu, ⁷ N. Angelides, ¹⁶ E. Angelino, ¹⁷ J. Angevaare, ¹⁸ V.C. Antochi, ¹⁹ D. B. Antunovic, ^{21,22} E. Aprile, ²³ H.M. Araújo, ¹⁶ J.E. Armstrong, ²⁴ F. Arneodo, ²⁵ M. Artburs, S. Baek, ²⁷ X. Bai, ²⁸ D. Bajpai, ²⁹ A. Baker, ¹⁶ J. Balajthy, ³⁰ S. Balashov, ³¹ M. Balzo, J. Bang, ³⁴ E. Barberio, ³⁵ J.W. Bargemann, ³⁶ L. Baudis, ⁵ D. Bauer, ¹⁶ D. Baur, ³⁷ M. Bazyk, ³⁹ K. Beattie, ⁴⁰ J. Behrens, ⁴¹ N.F. Bell, ³⁵ L. Bellagamba, ⁶ P. Behrand, ⁴³ A. Bieker, A. R. Binau, ⁹ R. Biondi, ⁴⁵ Y. Biondi, ⁵ H. I. Birch, ¹⁴ F. Bishara, ⁴⁶ A. Bismark, ⁵ C. R.

We want to go lower & deeper!

Compare ton scale LXe with gram scale low mass DM experiments

Lower mass searches require light targets and very low energy thresholds

- Facing new landscape
- Nuclear backgrounds: Exists but less significant due to small ROI
 - γ down-scatter to low E, can also induce NR via Thomas-Delbrück
 - Epithermal neutrons
- Novel backgrounds:
 - Sensors sensitive to smallest energies
 - IR backgrounds, parasitic power, phonons, vibrations, transition radiation etc
- New calibrations necessary
- We know some of the challenges we're facing, but some cliffs are probably still hidden in the fog

- Low energy excess, observed in many experiments: SuperCDMS, Edelweiss, Nucleus, DAMIC, SENSEI etc
 - Primary characteristic energy Scale: eV?
 - Probably more than one origin

- What we need:
 - Low energy threshold
 - Scalable
 - Minimize backgrounds
 - Ability to discriminate and understand remaining and novel backgrounds

- Tesseract: Use different targets that probe different DM models and affected by different backgrounds
- Energy sensitivity is primary driver for low mass DM → need detectors with thresholds of 1-100 meV
- All targets read out using Transition Edge Sensor (TES) readouts, no E-field (no dark-currents)

- Collect and concentrate athermal phonon energy into Al fins
 - Phonons break Al cooper pairs
 - Quasiparticles are absorbed by W TES connected to Al fin

- Large collection area without the drawback of the heat capacity of a large sensor
 - Signal is degraded by low phonon collection efficiency
- Readout of all targets identical except the substrate
- More DM science doesn't increase cost significantly!

 Sapphire (Al₂O₃): Many optical phonon modes that are kinematically well-matched to low-mass DM, high dark photon sensitivity

GaAs: polar crystal, band gap matched well to low mass region.
Reduce backgrounds via photons and phonons ratio/coincide

Superfluid helium provides low mass NR sensitivity and multiple signal channels

- All sensors operating in demonstrator setups and are delivering physics
- Novel & challenging backgrounds due to femto and attoWatts sensitivity in TES
- Advantage of Tesseract: Ability to discriminate and characterize these backgrounds

Target	NRDM	ERDM (> 1 MeV)	ERDM (keV - MeV)	Absorption	Background rejection
Al2O3/SiO2					
GaAs					
Superfluid helium					

- Targets relatively cheap, hence we consider several
- Al₂O₃ sensitivity across the board. One type of signal (phonon), multiple readouts to reduce instrumental background
- GaAs and superfluid helium: Advantages in background rejection: multiple signal channels and multipixel coincidence-based instrumental background rejection

- Measurement of ⁴He light yield of ER and NR and HeRALD proof of concept
 - o <u>arXiv:2108.02176</u>, <u>arXiv:2307.11877</u>
- Good agreement with an empirical model
- High NR light yield, measurement of quantum evaporation gain
- Offers ER/NR discrimination via photon/roton ratio

- Two identical detectors (as possible)
 - One glued
 - One suspended from wire bonds
- TES based readout measures athermal phonon pulses in substrate
- Successful mitigation of mounting stress
 - Two orders of magnitude difference in rate
 → stress is major source of LEE
- Investigating other sources: stress from sensor films, crystal and IR leakage
- See <u>arXiv:2208.02790</u>

- Scattering of neutron of known energy, tag its scattering angle
- Large arge keV Neutron backing detector for low energy NR calibrations
- See <u>arXiv:2203.04896</u>

- SbBe photoneutron + Fe shield
- Fe transparent to neutron, serves as collimator and very efficient gamma shield
 - 124SbBe neutron energy: 23.47 keV
 - Fe n-transmission resonance: 24.54 keV

- Developed a low background shield (1.2 DRU@1 keV) that can be opened to swap detectors quickly
 - Building prototype right now at Kamioka

 Experiment will be hosted in **Modane**, established the site and close collaboration with France last year

- Tesseract will probe multiple unexplored DM parameter spaces in a few years
- UZH will leads construction, operation and physics of Tesseract
- Data taking as early as 2026

- **DM is out there** and will transform our understanding of the universe
- LZ has 60 out of 1000 days of data published, many publications and potential discoveries soon
- Tesseract demonstrated to work, funded and growing, first physics results already published
- The field is being transformed right now:
 - Xenon TPCs are the most sensitive detector today
 - Tesseract will within a few years push sensitivities to yet entirely unprobed energies
 - XLZD preparing to explore to the neutrino fog
- These experiments will provide the best sensitivity for dark matter for years to come
- Continuous interplay between hardware and physics provides great training & opportunities

Backup

- Sub-Gev (low mass) DM barely explored
- DM masses in the **MeV regime** and cross sections approaching or below **10**⁻⁴⁰ **cm**² in reach

- Electron energy equiv. distribution, systematics are blue band
- Best fit with no WIMP signal

Source	Expected Events	Best Fit
β decays + Det. ER	218 ± 36	222 ± 16
$\nu \; \mathrm{ER}$	27.3 ± 1.6	27.3 ± 1.6
$^{127}\mathrm{Xe}$	9.2 ± 0.8	9.3 ± 0.8
124 Xe	5.0 ± 1.4	5.2 ± 1.4
136 Xe	15.2 ± 2.4	15.3 ± 2.4
8 B CE ν NS	0.15 ± 0.01	0.15 ± 0.01
Accidentals	1.2 ± 0.3	1.2 ± 0.3
Subtotal	276 ± 36	281 ± 16
$^{37}\mathrm{Ar}$	[0, 291]	$52.1^{+9.6}_{-8.9}$
Detector neutrons	$0.0^{+0.2}$	$0.0^{+0.2}$
$30\mathrm{GeV/c^2}$ WIMP	_	$0.0^{+0.6}$
Total	_	333 ± 17

Best fit with zero WIMP events for all masses

Total expected ER counts in ROI in first run:
 276 + [0, 291] from ³⁷Ar

chain, ⁴⁰K, ⁶⁰Co

Total expected NR counts in ROI in first run: 0.15

Dissolved e-captures (mono-energetic x-ray/Auger cascades):

- ³⁷Ar
- ¹²⁷Xe
- 124Xe (double e-capture)

Solar neutrinos (ER)

pp + ⁷Be + ¹³N

NR backgrounds:

- Neutron emission from spontaneous fission and (α,n)
- ⁸B solar neutrinos

Accidental coincidence backgrounds

Björn Penning PSI Colloquium 58

ROI) ERs

- It took a few hundred years
- With the discovery of the Higgs boson the Standard Model has been completed
- However, this is just the tip of the iceberg

 We know exactly the speeds of orbiting objects, such as planets around the sun

...or stars around the galactic center

- Source built & works
- Favorable n flux: ~5 cm⁻²s⁻¹
- Portable, ideal for CEvNS and light DM experiments
- See <u>arXiv:2302.03869</u>

- SbBe photoneutron + Fe shield
- Remarkable coincidence:
 - 124SbBe neutron energy: 23.47 keV
 - Fe n-transmission resonance: 24.54 keV
- Fe transparent to neutron, serves as collimator and very efficient gamma shield

- Developed a low energy neutron source
 - Scattering of neutron of known energy, tag its scattering angle
- Large arge keV Neutron backing detector for low energy NR calibrations
- ⁶Li + Scintillator + Reflector + WS fiber + SiPM
- Eff: 25% eff. & affordable
- See <u>arXiv:2203.04896</u>

Amplification of evaporation signal via Van der Waals acceleration

- Inner 5.5 tonne fiducial volume (FV) is lowest background and uniform
- Skin and OD vetoes:
 - Removes y background
 - Tag neutron capture (main DM background)
- Provides in situ constraint on neutron BG:
 - 0^{+0.2} neutron events in SR1

- Events surviving all selections
- ★ Skin-prompt-tagged events
- OD-prompt-tagged events