## 'Extreme' spectroscopy on helium and helium ions



#### Outline



- Introduction precision measurements for fundamental tests
- Isotope shift measurement in ultra-cold <sup>3</sup>He and <sup>4</sup>He: nuclear size difference
  - quantum differences: cooling, trapping and spectroscopy of <sup>3</sup>He and <sup>4</sup>He
  - results and consequence for charge radius<sup>2</sup> difference
  - developments: new <sup>4</sup>He measurements in progress
- O He<sup>+</sup> 1S-2S precision measurement project: charge radius, Ry constant & QED
  - First excitation of the He<sup>+</sup> 1S-2S transition in the extreme ultraviolet @ 30 nm
  - Challenges and solutions to reach 1 kHz (10<sup>-13</sup> on the transition)
- Summary and outlook

### Precision measurement for searching new physics





# Spectroscopy targets: He and He<sup>+</sup>



**Goal:** nuclear **charge radius<sup>2</sup> difference** between <sup>3</sup>He and <sup>4</sup>He



Goal: absolute nuclear charge radius<sup>2</sup> of <sup>4</sup>He<sup>+</sup>, test of QED & Rydberg constant

<sup>4</sup>He<sup>+</sup>



#### Spectroscopy targets: He and He<sup>+</sup>



**Goal:** nuclear **charge radius<sup>2</sup> difference** between <sup>3</sup>He and <sup>4</sup>He



Isotope measurement on the doubly-forbidden

2 <sup>3</sup>S - 2 <sup>1</sup>S transition at 1557 nm, acc. <200 Hz (10<sup>-12</sup>)

Required: ultra-cold <sup>3</sup>He and <sup>4</sup>He & trapping in magic wavelength trap

Goal: absolute nuclear charge radius<sup>2</sup> of <sup>4</sup>He<sup>+</sup>, test of QED & Rydberg constant



Two-photon transition involving 30 nm on 1S-2S transition, acc. target < 1 kHz (10<sup>-13</sup>)

Required: single trapped & cooled He<sup>+</sup>, enough power at 30 nm, and a whole lot more!

### Alpha and helion charge radius<sup>2</sup> measurements



arXiv: 2305.02333v1

# The alpha and helion particle charge radius difference from spectroscopy of quantum-degenerate helium

Y. van der Werf, K. Steinebach, R. Jannin, H.L. Bethlem, and K.S.E. Eikema LaserLaB, Vrije Universiteit Amsterdam. (Dated: June 6, 2023)

arXiv: 2305.11679v2

#### The helion charge radius from laser spectroscopy of muonic helium-3 ions

Karsten Schuhmann,<sup>1</sup> Luis M. P. Fernandes,<sup>2</sup> François Nez,<sup>3</sup> Marwan Abdou Ahmed,<sup>4</sup> Fernando D. Amaro,<sup>2</sup> Pedro Amaro,<sup>5</sup> François Biraben,<sup>3</sup> Tzu-Ling Chen,<sup>6</sup> Daniel S. Covita,<sup>7</sup> Andreas J. Dax,<sup>8</sup> Marc Diepold,<sup>9</sup> Beatrice Franke,<sup>9</sup> Sandrine Galtier,<sup>3</sup> Andrea L. Gouvea,<sup>2</sup> Johannes Götzfried,<sup>9</sup> Thomas Graf,<sup>4</sup> Theodor W. Hänsch,<sup>9</sup> Malte Hildebrandt,<sup>8</sup> Paul Indelicato,<sup>3</sup> Lucile Julien,<sup>3</sup> Klaus Kirch,<sup>1,8</sup> Andreas Knecht,<sup>8</sup> Franz Kottmann,<sup>1,8</sup> Julian J. Krauth,<sup>9,10</sup> Yi-Wei Liu,<sup>6</sup> Jorge Machado,<sup>5</sup> Cristina M. B. Monteiro,<sup>2</sup> Françoise Mulhauser,<sup>9</sup> Boris Naar,<sup>1</sup> Tobias Nebel,<sup>9</sup> Joaquim M. F. dos Santos,<sup>2</sup> José Paulo Santos,<sup>5</sup> Csilla I. Szabo,<sup>3</sup> David Taqqu,<sup>1,8</sup> João F. C. A. Veloso,<sup>7</sup> Andreas Voss,<sup>4</sup> Birgit Weichelt,<sup>4</sup> Aldo Antognini,<sup>1,8</sup> and Randolf Pohl<sup>9,10</sup>, <sup>†</sup> (The CREMA Collaboration)

#### Introduction He\*





### Metastable helium (He\*)







#### **Accessible narrow transition:**

#### **Laser cooling**

#### ab initio calculations

- Two-electron correlations
- Measure <sup>4</sup>He <sup>3</sup>He isotope shift
- Fundamental constants: (differential) nuclear charge radius<sup>2</sup>
- $^4$ He measured,  $10^{-12}$  level [Nat Phys 14, 2018]

### Making quantum degenerate He\*





### Making quantum degenerate He\*



#### Populating the $2^3S_1$ state

- DC discharge source
- Liquid nitrogen cooling
- <sup>3</sup>He recycling





### Initial trapping of He\* and cooling to degeneracy



#### Laser cooling

- 1083 nm laser red detuned
- Zeeman slower: detuning from velocity change compensated with tapered magnetic field
- Magneto-optical trap: 0.5 mK
- Magnetic trapping
- Suppression Penning ionization by spin polarization: max m<sub>1</sub>





Penning ionization:

$$He^* + He^* \rightarrow He + He^+ + e^-$$

### Fermions and Bosons: very different!



#### **Evaporative cooling to quantum degeneracy**

- <sup>4</sup>He collides, re-thermalizes and forms a Bose condensate
- <sup>3</sup>He does not collide at μK temperatures; only S-wave collisions, which is forbidden for fermions. Solution mix <sup>3</sup>He and <sup>4</sup>He!







# Spectroscopy also very different!



Trapped bosonic <sup>4</sup>He: all atoms in ground state
 No Doppler, but 'mean field' shift & broadening

Spectroscopy 2 <sup>1</sup>S - 2 <sup>3</sup>S @ 1557 nm



<sup>4</sup>He in a trapping potential



### Fermions and Bosons: very different!



- Trapped bosonic <sup>4</sup>He: all atoms in ground state
   No Doppler, but 'mean field' shift & broadening
- Trapped fermionic <sup>3</sup>He: Fermi-Dirac distribution
  - Many motional states in the trap occupied
  - Doppler broadening ( $T_F \sim 1 \mu K$ )



<sup>3</sup>He and <sup>4</sup>He in a trapping potential



#### Trapping in a focused laser beam: "ODT"



**Cancel magnetic field influence:** switch between opposite m states

**Required:** magnetic state independent trapping

**Solution: "optical dipole trap"**Based on a focused laser beam

#### 320 nm 'magic wavelength'

- Same trap for  $2^3S_1$  and  $2^1S_0$
- No AC Stark shift on transition
- Homebuilt 1 W cw UV laser [Appl. Phys. B (2016) 122:122]





#### Detection



#### **Atom detection (loss of atoms)**

- Microchannel plate
- 20 eV internal energy
- Time-of-flight fitting:  $N, \mu, T$
- Spectroscopy:  $N_{atom}(f_{laser})$





### Detection and measuring spectrum (3He)



#### **Atom detection (loss of atoms)**

- Microchannel plate
- 20 eV internal energy
- Time-of-flight fitting:  $N, \mu, T$
- Spectroscopy:  $N_{atom}(f_{laser})$



#### Measuring the 2 ${}^{3}S_{1} - 2 {}^{1}S_{0}$ at 1557 nm

- Sample preparation
- Set laser, 3s exposure
- Alternate background shots
- Measure remaining atoms



### <sup>3</sup>He quantum effect: Pauli blocking



#### Pauli-blocking of stimulated emission

R. Jannin et al., Nat. Comm. 13, 6479 (2022)





# <sup>3</sup>He spectroscopy result (under review)





<sup>3</sup>He Transition Frequency: 192 504 914 418.96(17)kHz

### <sup>3</sup>He spectroscopy result: radius



<sup>3</sup>He Transition Frequency: 192 504 914 418.96(17)kHz

#### Then with:

- ☐ previous measurement of <sup>4</sup>He in 2018
- ☐ theory from K. Pachucki et al., Phys. Rev. A 95, 062510 (2017)

we determine a new improved value for the charge radius<sup>2</sup> difference:

Our result: 
$$r_h^2 - r_a^2 = 1.0757(12)_{exp}(9)_{theo}$$
 fm<sup>2</sup>

Theory: 
$$r_h^2 - r_a^2 = 1.084(40)$$
 fm<sup>2</sup>



Agrees, but experiment 27x better, therefore compare different experiments

Theory value based on the values/publications below; common mode error cancellation in the difference is not considerd

$$r_{\alpha, theory} = 1.663(11) fm$$
 L.E. Marcucci et al. J. Phys. G43, 023002 (2016)

$$r_{h, theory} = 1.962(4) fm$$
 M. Piarulli et al., Phys. Rev. C 87, 014006 (2013) & L.E. Marcucci et al. J. Phys. G43, 023002 (2016)

#### Helion-alpha particle charge radius<sup>2</sup> difference







Our He\* result on arXiv: 2305.02333v1

CREMA  $\mu He^+$  result on arXiv: 2305.11679v2



 $3.6 \sigma$  difference

### New <sup>4</sup>He measurements started: improvements



#### Recent improvements for <sup>4</sup>He new measurement:

#### 1. Reduced linewidth

-> Increased stability of the ODT, removedAC-magnetic field sources

#### 2. Speed up measurement

-> Reduced measure time by factor 5

#### 3. Stabilization of magnetic field

-> Observed random jumps magnetic field of 2-3mG; now stabilized to 100 μG



# Magnetic field jumps...



#### Camera Feed





### <sup>4</sup>He ion signal + TDC = much more information



#### Measurement via ion production

He\*(
$$2^{3}S_{1}$$
) + He\*( $2^{1}S_{0}$ )  $\rightarrow$  He ( $1^{1}S_{0}$ ) + **He**<sup>+</sup> + e<sup>-</sup>





# BEC is oscillating in the optical dipole trap...





### Early test measurements promising













# 70Hz 'uncertainty' in only 7 days of measuring!

# Summary He\* - nuclear charge radius



- ☐ Remarkable what 1 neutron difference can make: <sup>3</sup>He vs. <sup>4</sup>He
- ☐ Most precise transition measurement in helium (1 :  $10^{12}$ )

  <sup>3</sup>He 2 <sup>3</sup>S<sub>1</sub> 2 <sup>1</sup>S<sub>0</sub> transition frequency: 192 504 914 418.96(17)kHz
- Resulting charge radius squared difference most precise, but 3.6  $\sigma$  difference with  $\mu$ He+  $r^2_h r^2_\alpha = 1.0757(12)_{exp}(9)_{theo}$  fm<sup>2</sup>

#### Outlook:

- New <sup>4</sup>He measurement in progress and promising; target ~ 50 Hz
- ☐ Expected charge radius<sup>2</sup> difference (with updated theory) factor of 2 better

### Thanks to the He\* team





#### He\* team:

- Kees Steinebach
- Yuri van der Werf
- Raphael Jannin
- Rick Bethlem
- Kjeld Eikema

#### **Technical support:**

- Rob Kortekaas
- Ronald Buijs
- Lex van der Gracht

#### **Funding:**





Wim Vassen: † 11-2-2019