’Extreme’ spectroscopy on helium and helium ions

Kjeld Eikema
LaserLaB, Vrije Universiteit Amsterdam,
Quantum Metrology and Laser Applications group

PSI 23 May 2024
Outline

- Introduction - precision measurements for fundamental tests
 - Isotope shift measurement in ultra-cold 3He and 4He: nuclear size difference
 - quantum differences: cooling, trapping and spectroscopy of 3He and 4He
 - results and consequence for charge radius difference
 - developments: new 4He measurements in progress

- He^+ 1S-2S precision measurement project: charge radius, Ry constant & QED
 - First excitation of the He^+ 1S-2S transition in the extreme ultraviolet @ 30 nm
 - Challenges and solutions to reach 1 kHz (10^{-13} on the transition)

- Summary and outlook
Precision spectroscopy on bound systems

H, µH, µHe⁺, H₂, D₂, HD, HT, H₂⁺, HD⁺, He, He⁺...

CODATA
Fundamental constants

(Trapped) particle measurements
mₚ/mₑ, mₐ/mₚ, α, ...

EDM (e & n) measurements, and other methods

New Physics?

Theory
Spectroscopy targets: He and He$^+$

Goal: nuclear charge radius2 difference between 3He and 4He

Goal: absolute nuclear charge radius2 of 4He$^+$, test of QED & Rydberg constant

4He \quad 3He \quad 4He$^+$
Spectroscopy targets: He and He⁺

Goal: nuclear charge radius\(^2\) difference between \(^3\)He and \(^4\)He

Isotope measurement on the **doubly-forbidden** \(2 \, ^3S \rightarrow 2 \, ^1S\) transition at 1557 nm, acc. <200 Hz (10\(^{-12}\))

Required: ultra-cold \(^3\)He and \(^4\)He & trapping in magic wavelength trap

Goal: absolute nuclear charge radius\(^2\) of \(^4\)He\(^+\), test of QED & Rydberg constant

Two-photon transition involving 30 nm on \(1S-2S\) transition, acc. target < 1 kHz (10\(^{-13}\))

Required: single trapped & cooled He\(^+\), enough power at 30 nm, and a whole lot more!
The alpha and helion particle charge radius difference from spectroscopy of quantum-degenerate helium

Y. van der Werf, K. Steinebach, R. Jannin, H.L. Bethlem, and K.S.E. Eikema

LaserLab, Vrije Universiteit Amsterdam.
(Dated: June 6, 2023)

The helion charge radius from laser spectroscopy of muonic helium-3 ions

Karsten Schuhmann,1 Luis M. P. Fernandes,2 François Nez,3 Marwan Abdou Ahmed,4 Fernando D. Amaro,2 Pedro Amaro,5 François Biraben,3 Tzu-Ling Chen,6 Daniel S. Covita,7 Andreas J. Dax,8 Marc Diepold,9 Beatrice Franke,9 Sandrine Galtier,3 Andrea L. Gouveia,2 Johannes Götzfried,9 Thomas Graf,4 Theodor W. Hänsch,9 Malte Hildebrandt,8 Paul Índelicato,3 Lucile Julien,3 Klaus Kirch,1,8 Andreas Knecht,8 Franz Kottmann,1,8 Julian J. Krauth,9,10 Yi-Wei Liu,6 Jorge Machado,5 Cristina M. B. Monteiro,2 Françoise Mulhauser,9 Boris Naar,1 Tobias Nebel,9 Joaquim M. F. dos Santos,2 José Paulo Santos,5 Csilla I. Szabo,3 David Taquy,1,8 João F. C. A. Veloso,7 Andreas Voss,4 Birgit Weichelt,4 Aldo Antognini,1,8,* and Randolf Pohl9,10,†

(The CREMA Collaboration)
Introduction He*

Metastable helium (He*)

2^3S_1 state

Accessible narrow transition
Precision spectroscopy

Laser cooling & trapping
High experimental control

ab $initio$ calculations
Fundamental physics tests
Metastable helium (He*)

Metastable 2^3S_1 state:
- 20 eV internal energy
- $\tau \approx 8000 \text{ s}$
- Single-particle detection

Accessible narrow transition:
- Doubly forbidden $2^3S_1 \rightarrow 2^3S_0$ (1557 nm)
- 8 Hz natural linewidth
- Einstein A coefficient $\sim 9.8 \times 10^{-8} \text{ s}^{-1}$

Laser cooling
- Cycling $2^1S_0 \rightarrow 2^1P$ transition (1083 nm)

ab initio calculations
- Two-electron correlations
- Measure $^4\text{He} - ^3\text{He}$ isotope shift
- Fundamental constants:
 - (differential) nuclear charge radius
- ^4He measured, 10^{-12} level [Nat Phys 14, 2018]
Making quantum degenerate He*
Making quantum degenerate He*

Populating the 2^3S_1 state
- DC discharge source
- Liquid nitrogen cooling
- 3He recycling

\[1^1S_0 \rightarrow 2^3S_1 \rightarrow 2^3P_2 \]

- 1083 nm
- 20 eV
Initial trapping of He* and cooling to degeneracy

Laser cooling
- 1083 nm laser red detuned
- Zeeman slower: detuning from velocity change compensated with tapered magnetic field
- Magneto-optical trap: 0.5 mK
- Magnetic trapping
- Suppression Penning ionization by spin polarization: max m_J

$^4\text{He} \ ^3\text{S}_1 \ J=1$

B magnetic field

$4He \ ^3S_1 \ J=1$

$m_J=+1$

$m_J=0$

$m_J=-1$

$\text{Penning ionization: } He^* + He^* \rightarrow He + He^+ + e^-$
Fermions and Bosons: very different!

Evaporative cooling to quantum degeneracy

- 4He collides, re-thermalizes and forms a Bose condensate
- 3He does not collide at μK temperatures; only S-wave collisions, which is forbidden for fermions. Solution mix 3He and 4He!

4He 3S_1 \[J=1 \]

3He and 4He in a trapping potential
Spectroscopy also very different!

- Trapped bosonic 4He: all atoms in ground state
 No Doppler, but 'mean field' shift & broadening

- Trapped fermionic 3He: Fermi-Dirac distribution

- Many motional states in the trap occupied

- Doppler broadening ($T \sim 1 \mu K$)

4He in a trapping potential

Spectroscopy $2\ ^1S - 2\ ^3S \ @ \ 1557\ nm$
Fermions and Bosons: very different!

• Trapped bosonic 4He: all atoms in ground state
 No Doppler, but 'mean field' shift & broadening
• Trapped fermionic 3He: Fermi-Dirac distribution
 • Many motional states in the trap occupied
 • Doppler broadening ($T_F \sim 1 \, \mu K$)

3He and 4He in a trapping potential

Spectroscopy $^1S - 2^3S @ 1557 \, \text{nm}$
Trapping in a focused laser beam: “ODT”

Cancel magnetic field influence:
switch between opposite m states

Required: magnetic state
independent trapping

Solution: “optical dipole trap”
Based on a focused laser beam

320 nm ‘magic wavelength’
- Same trap for 2^3S_1 and 2^1S_0
- No AC Stark shift on transition

- Homebuilt 1 W cw UV laser
Atom detection (loss of atoms)

- Microchannel plate
- 20 eV internal energy
- Time-of-flight fitting: N, μ, T
- Spectroscopy: $N_{\text{atom}}(f_{\text{laser}})$
Detection and measuring spectrum (3He)

Atom detection (loss of atoms)
- Microchannel plate
- 20 eV internal energy
- Time-of-flight fitting: N, μ, T
- Spectroscopy: $N_{\text{atom}}(f_{\text{laser}})$

Measuring the $2 \, ^3S_1 – 2 \, ^1S_0$ at 1557 nm
- Sample preparation
- Set laser, 3s exposure
- Alternate background shots
- Measure remaining atoms
Pauli-blocking of stimulated emission
R. Jannin et al., Nat. Comm. 13, 6479 (2022)
^3He spectroscopy result (under review)

^3He transition frequency: 192 504 914 418.96(17) kHz
\(^3\text{He spectroscopy result: radius}\)

\(^3\text{He Transition Frequency: 192 504 914 418.96(17)kHz}\)

Then with:

- previous measurement of \(^4\text{He}\) in 2018

we determine a new improved value for the charge radius\(^2\) difference:

\[
\text{Our result: } r_h^2 - r_\alpha^2 = 1.0757(12)_{\exp(9)}^{\text{theo}} \text{ fm}^2
\]

\[
\text{Theory: } r_h^2 - r_\alpha^2 = 1.084(40) \text{ fm}^2
\]

Agrees, but experiment 27x better, therefore compare different experiments

Theory value based on the values/publications below; common mode error cancellation in the difference is not considered

\[
r_{\alpha, \text{theory}} = 1.663(11) \text{ fm}
\]

\[
r_{h, \text{theory}} = 1.962(4) \text{ fm}
\]

Helion-alpha particle charge radius2 difference

Our He* result on arXiv: 2305.02333v1
CREMA μHe* result on arXiv: 2305.11679v2

3.6σ difference
Recent improvements for 4He new measurement:

1. **Reduced linewidth**
 -> Increased stability of the ODT, removed AC-magnetic field sources

2. **Speed up measurement**
 -> Reduced measure time by factor 5

3. **Stabilization of magnetic field**
 -> Observed random jumps magnetic field of 2-3mG; now stabilized to 100 μG
Magnetic field jumps...
^4He ion signal + TDC = much more information

Measurement via ion production

$\text{He}^*(2^3S_1) + \text{He}^*(2^1S_0) \rightarrow \text{He} (1^1S_0) + \text{He}^+ + e^-$

$\tau = 300 \mu s \rightarrow \Delta f = 500 \text{Hz}$

Lifetime 2^1S_0
BEC is oscillating in the optical dipole trap...

~30Hz -> Axial trap frequency
Early test measurements promising

\[f_{\text{measured}} = f_0 + A P_{\text{Spectro}} + B P_{\text{ODT}} + C \mu_{\text{chem.pot}}. \]

70Hz ‘uncertainty’ in only 7 days of measuring!
Remarkable what 1 neutron difference can make: ^3He vs. ^4He

Most precise transition measurement in helium (1 : 10^{12})

$^3\text{He} \ 2 \ 3S_1 \rightarrow 2 \ 1S_0$ transition frequency: 192 504 914 418.96(17)kHz

Resulting charge radius squared difference most precise, but 3.6 σ difference with μHe^+

$$r^2_h - r^2_a = 1.0757(12)_{\text{exp}}(9)_{\text{theo}} \text{ fm}^2$$

Outlook:

New ^4He measurement in progress and promising; target \sim 50 Hz

Expected charge radius2 difference (with updated theory) factor of 2 better
Thanks to the He* team

He* team:
• Kees Steinebach
• Yuri van der Werf
• Raphael Jannin
• Rick Bethlem
• Kjeld Eikema

Technical support:
• Rob Kortekaas
• Ronald Buijs
• Lex van der Gracht

Wim Vassen: † 11-2-2019

Funding: