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Abstract — The gravitational behavior of antimatter is still unknown. While we may be confident
that antimatter is self-attractive, the interaction between matter and antimatter might be either
attractive or repulsive. We investigate this issue on theoretical grounds. Starting from the
CPT invariance of physical laws, we transform matter into antimatter in the equations of both
electrodynamics and gravitation. In the former case, the result is the well-known change of sign
of the electric charge. In the latter, we find that the gravitational interaction between matter
and antimatter is a mutual repulsion, i.e. antigravity appears as a prediction of general relativity
when CPT is applied. This result supports cosmological models attempting to explain the Universe
accelerated expansion in terms of a matter-antimatter repulsive interaction.
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Weak Equivalence
Principle

All masses behave the same in response to gravity,
regardless of their internal structure

’W Antihydrogen is a neutral particle

This is the first direct ballistic test of antimatter in a
gravitational field
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Positrons and antiprotons
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Positron discovery 1932 1959 Nobel prize

1936 Nobel prize - Carl Anderson Emilio Segre and Owen Chamberlain



st Antinydrogen Atoms

ATHENA
2002
Low Energy Antiproton Ring (LEAR)
1995 Creation of thousands of antihydrogen atoms

Nine atoms were produced in
collisions between antiprotons and
xenon gas. Each one remained in
existence for about forty billionths
of a second before annihilating.
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Trapped antihydrogen
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38 annihilation events in 335 trials

172 ms between formation and release from the trap
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CPT invariant to a relative precision of

15,000 antihydrogen atoms over 10 weeks
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Making Antiprotons
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How much antihydrogen

do you make?

1 atom every

10hrs




Detectors



] n 1 1 1 0 0
rad|a| Tlme ?;tz/?’ezgas ;eglfnhcontallns 7;)7/:5 ?rlznd 30% (EOtZ |

. . , readout channels = -fold segmentation in z
Projection J

and 32-fold in
Chamber (rTPC)

Used for reconstructing the vertices of Hbar annihilations



e The high voltage across the gas
causes, any electrons that have
been ionised by the passing pion, to
accelerate and create a cascade of
electrons as they drift to the outside
wall giving a pulse of charge which
we can record.

The delayed arrival of the longer
orange traces allows us to
reconstruct the entire track.

Since the pions interact with the
entire gas volume, many points can
be reconstructed, giving us a great
accuracy In determining the track.




] ] 64 trapezoidal scintillating bars in a barrel shape.
Each bar is readout at both ends with SiPM sensors for a
C I n I total of 128 channels.
t Used for suppression of cosmic background



Background Suppression

Obvious annihilation Obvious cosmic Simple annihilation?
Or showering cosmic?




Reconstr
uction

Charged pion makes three
ionization clusters per mm in
the drift region of the rTPC.

Fit a helix to the locations of
the clusters.

Vertex is found where two
helices pass closest together.

Z vertex resolution of 2cm




Magnetic Field

escapes when its kinetic energy exceeds the gravitational
potential and the magnetic potential at one of the mirror
coils.

80% of Hydrogen atoms would escape out the bottom

We can counteract or supplement gravity by adding a
differential current to one of the mirror coils.

g — vertical gradient 1.77 x10° T m™
— between mirror coils 4.53 x 104 T.

B.-B,=-4.53x10*T

Gravity is balanced by the magnetic field and 50% of the
\_ should go up and 50% should go down. )
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Magnetic field (T)
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Final on-axis well shapes
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Method

» Stack antihydrogen - 4hrs, 100 atoms per trial

* Ramp down the long octupole to eliminate transverse confinement
above mirror G - releases transversely energetic Hbar - about 50%, so
used to indicate total no. of Hbar.

* ECR measurement under both mirror coils
* Release with a chosen bias over 20s (ramp down mirror coils)
* Repeat ECR to characterize the final axial well

* Interleave different bias measurements over 30 days (repeat 6/7
times each)



Raw data

Uncorrected for background or
detector efficiency



Results: Probability to

escape downwards

Pdn
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Results: gravitational
acceleration of
antinydrogen

a,=(0.75+0.13+0.16| g g=981ms

|

simulation

Statistical + systematic

Consistent with downward gravitational acceleration of 1g for antihydrogen



Improve measurement
of magnetic fields

Steeper escape curve

Colder

antihydrogen

ECR (on and off atoms

axis)

Laser cooling

Beryllium ion \

magnetometry

/ \ Adiabatic
Use precision region of / \ expansion cooling

the experiment

Benchmark and refine simulations
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Time and z-cut

* + 10g calibration runs - force the atoms

out of bottom or the top of the trap

e Z-cut: exclude events between the
physical mirror centres or more than
0.2m outside the mirror centres

* Detector efficiency for the up and down

detector regions, using annihilations in
the LoC rampdown for normalization

e Time-cut: number of atoms before 10s
is negligible, 20s is when the axial well
reaches its minimum
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Uncertainties

Bias Determination Determination
Uncertainty Magnitude (g) Uncertainty Magnitude (g)
ECR spectrum width 0.07 Statisticaland Finite data size 0.06
Repeatability of (B; - B,) 0.014 Sysiematie Calibration of the detector efficienciesinthe 0.12
. - . up and down regions
Peak field size and z-location fit 0.009
g = v Other minor sources 0.01
Field decay asymmetry (A to G) after ram d
ey A ) s Simulation Modelling of the magnetic fields (on-axis 0.16
Bias variation in time 0.02 model and off-axis)

Field modelling 0.05 Antihydrogen initial energy distribution 0.03
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