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intro

�

�

�

�closing in on the SM ??↔ bound states

• usually we are testing the SM (or look for BSM) at as high energies as possible → ideally
direct production of new particles

• alternatively consider virtual effects, potentially sensitive to much higher energies

• this requires the “right” observable: precise measurements and precise theory

• prime example: (g − 2)

u d

↔

?

↔

higher order SM BSM dirty SM

• in such tests we are looking for small effects !
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intro

• this lecture: the theory of (weakly) bound states

• motivation
• better understanding of QFT
• exploit potential of precise measurements to constrain/find BSM

• outlook Part I: theory (mainly Tue)
• consider non-relativistic limit of QFT
• explain fundamental principles of effective-theory approach
• focus on SM part (BSM part is usually the easy bit)
• health warning: some slides are rather technical

• outlook Part II: applications (mainly Fri)
• heavy quark pair production near threshold
• mQ from QQ̄

• decay ratios and HFS of QQ̄
• hydrogen vs. muonic hydrogen
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intro

possible systems include:

positronium e+ e− m1 = m2 standard

muonium µ± e∓ m1 ≫ m2 standard

charmonium (J/ψ, ηc) c c̄ m1 = m2 ∼ standard

bottomonium (Υ, ηb) b b̄ m1 = m2 Υ standard, ηb only just

Bc meson b c̄ m1 ≫ m2 scalar since 1998

hydrogen p e− m1 ≫ m2 standard

muonic hydrogen p µ− m1 ≫ m2 standard

hydrogen-like N e− m1 ≫ m2 standard

antihydrogen p̄ e+ m1 ≫ m2 since ∼ 1995

true muonium µ+ µ− m1 = m2 not (yet) produced

tauonium τ± e∓ m1 ≫ m2 not (yet) produced

true tauonium τ+ τ− m1 = m2 not (yet) produced

top t t̄ m1 = m2 never but nearly

Adrian Signer, Aug 2012 – p. 4/68



hydrogen-like atoms, recap

m1

m2

V

• two point masses m1 and m2

• reduced mass m ≡ m1m2/(m1 +m2)

• interacting through potential V (r) = −Z α/r

Schrödinger eq:
(
− ∆

2m
− Z α

r

)
|n〉 = En|n〉

Coulomb Green function:
(
− ∆

2m
− Z α

r
− E

)
Gc(~r, ~r

′, E) = δ(3)(~r − ~r ′)

Gc(~r, ~r ′, E) has poles for certain values on E = En = − (Zα)2m

2n2
=⇒ bound states

spectral representation: Gc(~r, ~r
′, E) =

∞∑

n=1

ψn(r)ψ∗
n(r

′)

En − E
︸ ︷︷ ︸

bound states

+

∫
d~k

(2π)3
ψk(r)ψ

∗
k(r

′)

k2/m− E
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hydrogen-like atoms, recap

Gc(~r, ~r
′, E) and ψn(r) ≡ |n〉 can be written in terms of Laguerre polynomials L2l+1

n−l−1

ψnlm(r) ≡ |n〉lm =

√
ρ3 Γ(n− l)

2nΓ(n+ l+ 1)
L2l+1
n−l−1(ρ r) e

−ρ r/2 (ρ r)l Ym
l (θ, φ)

with ρ ≡ 2Zαm

n
=

2

a0 n

scales of the problem

〈n|Zα
r

|n〉 = m(Zα)2

n2
=

Zα

n2a0
Bohr radius

〈n| p
m

|n〉 = 〈n|v|n〉 = (Zα)

n2
note: v ≪ 1 for Z ≪ α =⇒ non-relativistic system !

〈n| p
2

m2
|n〉 = 〈n|v2|n〉 = (Zα)2

n2
note: 〈n|Zα/r|n〉 //≪ 〈n|p2/m|n〉

〈n| p
2

2m
|n〉 = m(Zα)2

2n2

!?
= −En scaling m≫ p ∼ mv ≫ E ∼ mv2
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hydrogen-like atoms, recap

• our implicit assumption that the system is non-relativistic is justified for (Zα) ≪ 1

• there is a hierarchy of scales:

hard scale: m ∼ 1

soft scale: p ∼ v ∼ (Zα) ≪ 1

ultrasoft scale: E = p2/(2m) ∼ v2 ≪ v

• we must not treat V (r) = −Zα/r as perturbation, even though (Zα) ≪ 1

starting with free Schrödinger equation and treating −Zα/r as perturbation will never
describe a bound state

• how to go on from here:

• recall: we will be looking at high precision!
• either: add further effects (fine structure, hyperfine structure, recoil effects, vacuum

polarization . . .) to the potential (“bottom up”, not here)
• or: ask where does the potential come from and how is this connected to a quantum

field theory (“top down”, our approach here)

=⇒ forget everything you know about Quantum Mechanics (for a while)
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basics of NRQED/NRQCD

m1

m2
• two point masses m1 and m2

• reduced mass m ≡ m1m2/(m1 +m2)

• interacting through Lagrangian LQED and/or LQCD

• a closed solution of this problem is of course hopeless

• even if we could solve this, it would not answer all questions, since e.g. proton is not a
point mass.

• goal for for the moment:
• ignore these finite size effects
• ignore non-perturbative effects (QCD)
• exploit hierarchy of scales v ≪ 1 and (Zα) ≪ 1 to make QFT tractable
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Part I

Theory
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outlook NRQED/NRQCD

After a few slides, in a first step we will end up with

LQED = −1

4
FµνFµν + Ψ̄(i 6D −m)Ψ

⇓

LNRQED = ψ†

(
iD0 +

~D2

2m

)
ψ +

1

8m3
ψ† ~D4ψ − g cF

2m
ψ†~σ · ~B ψ

+
g cD

8m2
ψ†
[
~D · ~E − ~E · ~D

]
ψ +

ig cS

8m2
ψ†~σ ·

[
~D × ~E − ~E × ~D

]
ψ

+ (ψ ↔ χ) + Llight

+
αs dss

m2
ψ†ψ χ†χ+

αs dsv

m2
ψ†σiψ χ†σiχ

+ . . . calculable

• note: this is a strict QFT approach, in prinicple possible to include loops to any order

• LNRQCD is an expansion of LQED in v

• LNRQCD gives as good a description of bound states as LQED but is much more
convenient
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basics of NRQED/NRQCD

naive first step

qµ

−ie

−iZe

−i
q2

exchange of photon im momentum space:

i Ṽ (q) ∼ (−ie)(−iZe)(−i)
q20 − ~q 2

→ −iZe2
~q 2

+O(q20/q
2)

after Fourier transform:

V (r) ∼ −Ze2
4πr

= −Zα
r

• what happened to spinors of fermions ?

• what happened to γµ of vertices and gµν of propagator?

• let’s do this properly
• could do a Foldy-Wouthuysen transformation
• here we will use “matching”, a general technique useful in many effective theories:

fix the coefficients cj of the Lagrangian of the effective theory s.t. LET and LQED

give the same answer (up to a certain order in perturbation theory)
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effective theories

what is an effective theory?

theory: not a model; a framework for systematically improvable predictions

effective: not the full story; applicable only in certain circumstances ⇒ factorization

underlying

effective

M1

M2

theory

theory

scale

scale

small

large

underlying theory (UT)

• contains dynamical (directly observable) d.o.f. of
large/hard scale M1 and small/soft scale M2

• Lagrangian: LUT =
∑

i

Oi(φ1, φ2)

• observables: f(α,M1,M2) =
∑

n

αn f
(n)
UT (M1,M2)

effective theory (ET)

• contains dynamical d.o.f. of soft scale M2;
φ1 integrated out assuming M2/M1 ≪ 1

• Lagrangian: LET =
∑

j

cj Oj(φ2)

• observables: f =
∑

n

αn
∑

m

(M2/M1)
m f

(n,m)
ET
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effective theories

main features of effective theories

UT

ET

ultraviolet

infrared

IR

UV

UV singularities → renormalize for UT: [Oi] ≤ 4

LUT ≃ −1

4
Wµν

i W i
µν − 1

4
FµνFµν

+
∑

gw
(
ψ̄ γµ{γ5}τ i ψ

)
W i

µ+ e
(
ψ̄ γµ ψ

)
Aµ+ . . .

integrating out the W mode
⇒ additional singularities at the boundary!
IR singularity of LUT = UV singularity of LET

LET ≃ −1

4
FµνFµν + e

(
ψ̄ γµ ψ

)
Aµ

+
∑

c(MW )
(
ψ̄ {γµγ5τ iTa}ψ

) (
ψ̄ {γµγ5τ iTa}ψ

)

IR singularities → form physical observables
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effective theories

main features of effective theories

• ever higher dimensional operators Oj(φ2) with suppressed coefficients cj ∼ 1/Md−4
1

• IR singularity of UT: −1

ǫ

(
M1

µ

)−ǫ

= −1

ǫ
+ log

M1

µ

UV singularity of ET:
1

ǫ

(
M2

µ

)−ǫ

=
1

ǫ
− log

M2

µ

• singularities cancel and can be predicted → logs can also be predicted →
• resummation of L ≡ log(M1/M2) ≫ 1:

• presence of terms αnL2n or αnLn invalidates expansion in α alone
• reorganize perturbation theory:

from a pure expansion in α (LO → NLO → NNLO . . .)
to resummed expansion, counting αL ≃ 1 //≪ 1 (LL → NLL → NNLL . . .)

• can have a tower of ETs, i.e. for M1 ≫M2 ≫M3 . . .: UT → ET I → ET II . . .

• in (NR)QED: we will not integrate out whole particles (∼ easy), but integrate out modes
(part of a quantum field with a particular scaling)

• in (NR)QED: M1 ∼ m and M2 ∼ mv and M3 ∼ mv2
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QED → NRQED → pNRQCD

• external particles in the bound-state system

potential fermions: pµ = (p0, ~p ) ∼ (mv2,mv)

ultrasoft photons/gluons: pµ = (p0, ~p ) ∼ (mv2,mv2)

• we want to infer from QED/QCD how these d.o.f. interact

• we will see: the interaction can be described by a potential V (interaction local in t but
non-local in ~x) and explicit ultrasoft photon/gluon interactions (retardation effects)

• this effective theory is called potential NRQED (pNRQED) and LpNRQED(ψp, Aus)

• we will get there by going through another ET, NRQED with the following additional d.o.f:

soft particles: pµ = (p0, ~p ) ∼ (mv,mv)

potential photons/gluons: pµ = (p0, ~p ) ∼ (mv2,mv2)

• NRQED is a local theory (in t and ~x) that is obtained by integrating out hard modes from
QED

• matching coefficients evaluated at hard scale, then using rgi evolved to soft scale
=⇒ resummation of log µs/µh ∼ log v ∼ logα
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effective theories

Structure of non-relativistic QED/QCD

µh ∼ m

µs ∼ mv

µus ∼ mv2

sp

h

us

q

pNRQED

NRQED

QED

underlying theory

LQED(ψh, ψs, ψp, A
µ
h, A

µ
s , A

µ
p , A

µ
us)

effective theory I
[Caswell, Bodwin, Braaten, Lepage]

LNRQED(ψs, ψp, A
µ
s , A

µ
p , A

µ
us)

effective theory II (Quantum Mechanics)
[Pineda, Soto]

LpNRQED(ψp, A
µ
us)
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matching

• match free QED Lagrangian L(0)
QED = Ψ̄(iDµγµ −m)Ψ to NRQED counterpart

• introduce separate fields for annihilating electrons ψ and creating positrons χ: Ψ = ψ + χ

• expand in p/m ∼ v spinors u(p) (and v(p)) in momentum space, E =
√
~p 2 +m2

u(~p) =




√
E+m
2E

ξ

~σ·~p√
2E(E+m)

ξ


 =




(
1− ~p 2

8m2
+ 11~p 4

128m4

)
ξ

(
1

2m
− 3~p 2

16m2
+ 31~p 4

256m4

)
~σ · ~p ξ


+O

(
1

m6

)

• expand in p/m ∼ v:

ū(~p)(p/−m)u(~p) =

(
E −m− p 2

2m
+

p 4

8m3

)
ξ†ξ +O

(
1

m4

)

• free non-relativistic Lagrangian

L(0)
NRQED = ψ†

(
i ∂0 +

~∇2

2m
+

~∇4

8m3

)
ψ + χ†

(
i ∂0 −

~∇2

2m
−

~∇4

8m3

)
χ+O

(
1

m4

)

ψ† ~∇4ψ ∼ Oj and 1/(8m3) ∼ cj
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matching

• including interactions Lint
QED = e Ψ̄A0γ0Ψ− e Ψ̄ ~A · ~γΨ

• from gauge invariance we could anticipate ∂0 → ∂0 − ieA0 and ~∇ → ~∇+ ie ~A

• here we stubbornly follow matching procedure
note: LUT is gauge invariant and all our operators Oj in LUT are gauge invariant

=⇒ the cj must be gauge invariant as well

• then with ~q = ~p ′ − ~p we get (and similar for v̄(~p ′) and v(~p))

ū(~p ′)γ0u(~p) =

(
1− ~q 2

8m2

)
ξ†ξ +

i

4m2
ξ†~σ · (~p ′ × ~p)ξ +O

(
1

m3

)

ū(~p ′)~γ u(~p) =
1

2m
ξ†
(
(~p+ ~p ′) + i(~σ × ~q)

)
ξ +O

(
1

m3

)

• the interaction part of the non-relativistic Lagrangian

Lint
NRQED = eA0 ψ†ψ − e

2m
ψ† ~A · (~p+ ~p ′)ψ − e

8m2
A0 ψ†~q ′2ψ

+
i e

4m2
A0 ψ†~σ · (~p ′ × ~p)ψ − i e

2m
ψ† ~A · (~σ × ~q)ψ + χ-terms +O

(
1

m3

)
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matching

combine:

LNRQED = ψ†

(
i ∂0 +

~∇2

2m
+
~∇4

8m3

)
ψ + eA0 ψ†ψ − e

2m
ψ† ~A · (~p+ ~p ′)ψ

− e

8m2
A0 ψ†~q ′2ψ +

i e

4m2
A0 ψ†~σ · (~p ′ × ~p)ψ − i e

2m
ψ† ~A · (~σ × ~q )ψ

= ψ†

(
iD0 +

~D2

2m
+

~D4

8m3

)
ψ − e

2m
ψ†~σ · ~B ψ +

e

8m2
ψ†( ~D · ~E − ~E · ~D)ψ

+
ie

8m2
ψ†~σ · ( ~D × ~E − ~E × ~D)ψ + χ-terms +O

(
1

m4

)

with Ei = F i0 and Bi = −1/2 ǫijkFjk or

~E = −~∇(A0)− ∂0 ~A − ig
[
T b, T c

]
~A b(A0)c and ~B = ~∇× ~A − ig

2

[
T b, T c

]
~A b × ~A c

note: all operators are gauge independent!
even in non-abelian case

~E a → ~E a + fabc ~E bωc

~B a → ~B a + fabc ~B bωc
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matching

going from QED to QCD and preparing for loops

loop calculations to be done in D dimensions (dimensional regularization):

avoid intrinsic 4-dim objects like ǫijk, × etc.

LNRQCD = ψ†

(
iD0 +

~D2

2m
+

~D4

8m3

)
ψ − cF g

2m
ψ†

(−σijF ij

2

)
ψ +

cD g

8m2
ψ†
[
Di, Ei

]
ψ

+
cs ig

8m2
ψ†σij

[
Di, Ej

]
ψ + Llight + χ-terms +O

(
1

m4

)

define D-dimensional Pauli “algebra”: σij =

[
σi, σj

]

2 i

D→4−→ ǫijkσk

−σijF ij

2

D→4−→ ~σ · ~B

matching coefficients: ci(µh) = 1 + αs (log(µh/m) + cst) +O(α2
s)

contain effects of hard modes
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matching

At O(1/m2) there are also four-fermion operators

δLNRQCD =
dss

m1m2
ψ†
1ψ1 χ

†
2χ2 +

dsv

m1m2
ψ†
1~σψ1 χ

†
2~σχ2

+
dvs

m1m2
ψ†
1T

aψ1 χ
†
2T

aχ2 +
dvv

m1m2
ψ†
1~σT

aψ1 χ
†
2~σT

aχ2

h . . .

• effects of hard loops are encoded in matching coefficients d ∼ O(α)

• compare “standard” BSM effective operators
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NRQED/NRQCD

• we have now a theory with new Feynman rules

igT a − ig
2m

(~p + ~p ′)T a cF g
2m

(~σ × ~q)T a

~p ~p ′
~q = ~p ′ − ~p

. . .

A0 ~A

− cs g
4m2(~σ · (~p ′ × ~p))T a

i ~p 4

8m3

−cD ig
8m2 ~q 2T a

• this theory reproduces QED/QCD Green functions in the non-relativistic limit up to the
order to which the matching has been done
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loops

• expansion in ∼ p/m ∼ v is trivial (if tedious) at tree level

• how to expand in loops ?
• loop momentum k runs through all scales 0 → mv2 → mv → m→ ∞
• computing full integral and then expanding is neither efficient nor systematic (power

counting)

• method of regions (expand before doing the integration)
• separate expansion of integrand in all regions
• sum of all regions add up to full result
• each part is simpler and has unique power counting
• identify modes [Beneke, Smirnov] ⇒ asymptotic expansion (method of regions)

hard kµ ∼ m

soft kµ ∼ mv

potential k0 ∼ mv2; ~k ∼ mv

ultrasoft kµ ∼ mv2





expand integrand not integral

•

∫
dDk f(k, p,m) =

∫
dDk fh +

∫
dDk fp +

∫
dDk fs +

∫
dDk fus
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method of regions

Method of regions: a simple example

Let p2 ≪M2 and assume we want to compute (the first few terms in an expansion in
p2/M2 ≪ 1 of) the integral (pick µ s.t. p2 ≪ µ2 ≪ M2)

∫
ddk

(k2 − p2)(k2 −M2)
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method of regions

Method of regions: a simple example

Let p2 ≪M2 and assume we want to compute (the first few terms in an expansion in
p2/M2 ≪ 1 of) the integral (pick µ s.t. p2 ≪ µ2 ≪ M2)

∫
ddk

(k2 − p2)(k2 −M2)

=

∫

|k|<µ

ddk

(k2 − p2)(k2 −M2)
+

∫

|k|>µ

ddk

(k2 − p2)(k2 −M2)
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method of regions

Method of regions: a simple example

Let p2 ≪M2 and assume we want to compute (the first few terms in an expansion in
p2/M2 ≪ 1 of) the integral (pick µ s.t. p2 ≪ µ2 ≪ M2)

∫
ddk

(k2 − p2)(k2 −M2)

=

∫

|k|<µ

ddk

(k2 − p2)(k2 −M2)
+

∫

|k|>µ

ddk

(k2 − p2)(k2 −M2)

=

∫

|k|<µ

ddk

(k2 − p2)

∑

n

(k2)n

(M2)n+1
+

∫

|k|>µ

ddk

(k2 −M2)

∑

n

(p2)n

(k2)n+1
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method of regions

Method of regions: a simple example

Let p2 ≪M2 and assume we want to compute (the first few terms in an expansion in
p2/M2 ≪ 1 of) the integral (pick µ s.t. p2 ≪ µ2 ≪ M2)

∫
ddk

(k2 − p2)(k2 −M2)

=

∫

|k|<µ

ddk

(k2 − p2)(k2 −M2)
+

∫

|k|>µ

ddk

(k2 − p2)(k2 −M2)

=

∫

|k|<µ

ddk

(k2 − p2)

∑

n

(k2)n

(M2)n+1
+

∫

|k|>µ

ddk

(k2 −M2)

∑

n

(p2)n

(k2)n+1

=

∫
ddk

(k2 − p2)

∑

n

(k2)n

(M2)n+1
+

∫
ddk

(k2 −M2)

∑

n

(p2)n

(k2)n+1
+ tadpoles
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method of regions

Method of regions: a simple example

Let p2 ≪M2 and assume we want to compute (the first few terms in an expansion in
p2/M2 ≪ 1 of) the integral (pick µ s.t. p2 ≪ µ2 ≪ M2)

∫
ddk

(k2 − p2)(k2 −M2)

=

∫

|k|<µ

ddk

(k2 − p2)(k2 −M2)
+

∫

|k|>µ

ddk

(k2 − p2)(k2 −M2)

=

∫

|k|<µ

ddk

(k2 − p2)

∑

n

(k2)n

(M2)n+1
+

∫

|k|>µ

ddk

(k2 −M2)

∑

n

(p2)n

(k2)n+1

=

∫
ddk

(k2 − p2)

∑

n

(k2)n

(M2)n+1
+

∫
ddk

(k2 −M2)

∑

n

(p2)n

(k2)n+1

︸ ︷︷ ︸
additional UV – IR singularities possible
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method of regions

Method of regions: a simple example

Let p2 ≪M2 and assume we want to compute (the first few terms in an expansion in
p2/M2 ≪ 1 of) the integral (pick µ s.t. p2 ≪ µ2 ≪ M2)

∫
ddk

(k2 − p2)(k2 −M2)

=

∫
ddk

(k2 − p2)

∑

n

(k2)n

(M2)n+1

︸ ︷︷ ︸
soft

+

∫
ddk

(k2 −M2)

∑

n

(p2)n

(k2)n+1

︸ ︷︷ ︸
hard

• identify modes: soft (k ∼ p) and hard (k ∼ M) (in general more)

• expand integrand in each region to whatever order required

• each term has a well-defined scaling in p2/M2 → power counting

• no explicit cutoff needed (dimensional regularization is important)

Adrian Signer, Aug 2012 – p. 24/68



method of regions

Method of regions: a simple example

∫
ddk

(k2 − p2)a(k2 −M2)b

=
i(−1)a+b

(4π)d/2

(
M2
) d

2
−a−b Γ(a+ b− d

2
)

Γ(a+ b)
2F1

(
a;a+b− d

2

a+b

∣∣∣∣1− p2

M2

)

=

∞∑

n=0

(−n− b+ 1)n

Γ(n+ 1)

(
−M2

)−b−n
∫

ddk

(k2)−n(k2 − p2)a

+
∞∑

n=0

(−n− a+ 1)n

Γ(n+ 1)

(
−p2

)n
∫

ddk

(k2)a+n(k2 −M2)b

=
i(−1)a

(4π)d/2

(
p2
) d

2
−a (−M2

)−b Γ(a− d
2
)

Γ(a)
2F1

(
d
2
; b

1−a+ d
2

∣∣∣∣
p2

M2

)

+
i(−1)a+b

(4π)d/2

(
M2
) d

2
−a−b Γ( d

2
− a)Γ(a+ b− d

2
)

Γ(b)Γ( d
2
)

2F1

(
a;a+b− d

2

1+a− d
2

∣∣∣∣
p2

M2

)
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loops

example of hard loop

p p′

p̄′p̄

k k + p − p′

before expansion

Ifull =

∫
dDk

k2 [(k + p)2 −m2
1] (k + p− p′)2 [(k − p̄)2 −m2

2]

after expansion

Ih =

∫
dDk

k2 [k2 −m2
2] k

2 [k2 −m2
1]

• Ih is much simpler

• Ifull and Ih have the same UV-singularities =⇒ renormalization

• Ih has IR singularities not present in Ifull =⇒ canceled by UV singularities of ET

• scaling in v: Ih ∼ 1 (known before integration) k ∼ m ∼ 1

• scaling in v: Ifull not uniform (different scales) p0 ∼ mv2, p ∼ mv2, k ∼ anything
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loops

renormalization group improvement

• explicit computation of matching coefficients at one-loop after UV renormalization typically

yields ci(µ) = 1 + α(µ)

(
γ0i

[
1

ǫ
− log

m

µ

]
+#

)

• the singularity is cancelled by a UV singularity of NRQCD (anomlaous dimension γi of
NRQCD operators)

• the hard matching coefficient has to be computed at a hard scale µ→ µh ∼ m to avoid
large logs

• when used in NRQCD it has to be evaluated at the soft scale µ→ µs ∼ mv

• solution to standard rge for anomlaous dimension µ
d

dµ
ci(µ) = γici(µ) is given by

ci(µs) = ci(µh) exp

∫ α(µh)

α(µs)

γi(α) dα

2 β(α)

• this resums all (potentially large) logarithms L ≡ log µh/µs ∼ logα ∼ log v

• with γ0i we get NLL (next-to-leading logarithmic) accuracy, i.e. αn Ln−1
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summary NRQED/NRQCD

NRQCD Lagrangian [Caswell, Bodwin, Braaten, Lepage]

but now in D = 4− 2ǫ dimensions

LNRQCD = ψ†

(
iD0 + ck

~D2

2m

)
ψ +

c4

8m3
ψ† ~D4ψ − g cF

2m
ψ†σiBi ψ

+
g cD

8m2
ψ†
[
Di, Ei

]
ψ +

ig cS

8m2
ψ†σij

[
Di, Ej

]
ψ + (ψ ↔ χ)

+
αs dss

m2
ψ†ψ χ†χ+

αs dsv

m2
ψ†σiψ χ†σiχ

+
αs dvs

m2
ψ†Taψ χ†Taχ+

αs dvv

m2
ψ†σiTaψ χ†σiTaχ+ Llight

• resum ln(µh/µs) = ln v in ci and dij using renormalization group

• RGI: single heavy quark sector as in HQET [Bauer, Manohar, . . .]
RGI: four heavy quark operators [Pineda]
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effective theory

• QED → NRQED: hard loops pµ ∼ m integrated out, not dynamical any longer (we
exploited m≫ mv)

• we are left with

soft pµ ∼ mv

potential p0 ∼ mv2; ~p ∼ mv

ultrasoft pµ ∼ mv2

• an operator like ψ†
[
Di, Ei

]
ψ does not have a fixed power in v

• final state has only potential fermions and ultrasoft photons

• NRQED → potential NRQED (pNRQED):
integrate out soft fermions and potential and soft photons

• in pNRQED only potential fermions and ultrasoft photons are dynamical (exploit also
mv ≫ mv2)

• “integrating out” technically again with method of regions
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outlook pNRQED/pNRQCD

After a few slides we will end up with the pNRQCD Lagrangian in d = 3− 2ǫ dimensions

LQED ⇒ LNRQED ⇒

LpNRQCD = ψ†

(
iD0 +

∂2

2m

)
ψ + χ†

(
iD0 − ∂2

2m

)
χ

+

∫
d3r

(
ψ†Taψ

)
V
(
χ†Taχ

)

+ ψ†

(
∂4

8m3
− gs ~x · ~E

)
ψ + χ†

(
− ∂4

8m3
− gs ~x · ~E

)
χ

V = −4πCF
αs

~q 2
− CF

α2
s

~q 2

(
a1 − β0 ln

~q 2

µ2

)
+ . . .

− CFCAα
2
sD

(1)
s

π2 K(ǫ)

mq1+2ǫ
+

3πCFαsD
(2)
d,s

m2
−

4πCfD
(2)

s2

dm2
[si1, s

j
1][s

i
2, s

j
2] . . .

• static potential (known to a3), non-analytic potential . . ., d-dim generalization of Breit-Fermi
potential (with spin-spin, L2 etc)

• resum ln(µs/µus) = ln v in matching coefficients D(1)
s , D

(2)
d,s, D

(2)

s2
. . .
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NRQED → pNRQED

Power counting

mom prop form prop. d4k field

pot. Q (v2, ~v) [k0 − ~k 2/(2m)]−1 v−2 v5 v3/2

pot. g [−~k 2]−1 v−2 v5 v3/2

soft Q (v, ~v) [k0]−1 v−1 v4 v3/2

soft g [k2]−1 v−2 v4 v

us g (v2, ~v 2) [k2]−1 v−4 v8 v2

operators in LpNRQCD

ψ†
(
i∂0 + (∂2/2m)

)
ψ v3/2 v2 v3/2 = v5 LO(

ψ†Taψ
)
(αs/~q

2)
(
χ†Taχ

)
v3 (αs/v

2) v3 = αsv
4 LO(

ψ†Taψ
)
(α2

s/~q
2)
(
χ†Taχ

)
v3 (α2

s/v
2) v3 = α2

sv
4 NLO

(
ψ†Taψ

)
(α2

s/q)
(
χ†Taχ

)
v3 (α2

s/v) v
3 = α2

sv
3 NNLO

ψ†
(
gs ~x · ~E

)
ψ v3/2

√
αsv

4 v3/2 =
√
αsv

7 NNNLO

〈ψ(x)ψ(0)〉 =
∫
d4k

k2
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pNRQED/pNRQCD

• Breit potential the naive diagram we started with now looks like

igT a cF g
2m

[σl, σk]ql T
a −cD ig

8m2 ~q 2 T a

igT a

1
~q 2

. . .

cF g
2m

[σi, σj]qj T a

(

δik −
qiqk
~q 2

)

igT a

LO δVBreit

• the LO potential: V =





−αs
4π

Cf

~q 2
colour singlet

−αs
4π

Cf−CA/2

~q 2 colour octet

• the Breit potential depends on spin projection

• δVBreit =





~p 2

m2 + ~q 2

m2

(
(D−2)(D−5)

4(D−1)
c2F − 1

4
(1 + cD)

)
spin 1

~p 2

m2 + ~q 2

m2

(
(D−2)

4
c2F − 1

4
(1 + cD)

)
spin 0
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pNRQED

Power counting potential ladder diagrams have to be resummed

α/v2

v−2

v−2

v−2 v−2

v−2v−2

v−2
v−2v5 v5 v5

α/v2 α/v α/v2 (α/v)2

. . .

This gives the Green function in momentum space

G̃c(~p, ~p
′, E) = (2π)dδ(d)

(
~p− ~p ′

) −1

E − ~p 2/m

+
4πCFαs

(E − ~p 2/m) (~p− ~p ′)2 (E − ~p ′ 2/m)
+ finite

or via Fourier in coordinate space ( ν ≡ CF αs/(2
√

−E/m) )

Gc(0, 0, E) =
αs CF m

2

8π

(
1

2ǫ
− ln

−4mE

µ2
− 1

ν
− 2ψ(1− ν)− 2γE + 1

)
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NLO static potential

as an example consider the static potential at NLO

s

• all diagrams taken separately are gauge dependent

• gauge dependence cancels in sum (as it must) → a1 is gauge independent !!

• consider e.g. box diagram
• hard loop → matching coefficient of four-fermion operator
• potential loop → LO Green function
• soft loop → NLO static potential

• an ordinary QED Feynman diagram splits and contributes to different parts
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summary pNRQED/pNRQCD

pNRQCD Lagrangian [Pineda, Soto]

LpNRQCD = ψ†

(
iD0 +

∂2

2m

)
ψ + χ†

(
iD0 − ∂2

2m

)
χ

+

∫
d3r

(
ψ†Taψ

)
V
(
χ†Taχ

)

+ ψ†

(
∂4

8m3
− gs ~x · ~E

)
ψ + χ†

(
− ∂4

8m3
− gs ~x · ~E

)
χ

V = −4πCF
αs

~q 2
−CF

α2
s

~q 2
(a1 . . .) +

3πCFαsD
(2)
d,s

m2
−

4πCfD
(2)

s2

dm2
~S 2 . . .

• QFT → potential V 0 + δV

• each term has a well-defined power counting, ultrasoft effects enter at NNNLO

• recall everything you know about QM and do QM pert. theory in momentum space

• for higher-order corrections evaluate single, double, triple . . . insertions

δGc(0, 0, E) =

∫ ∏ dd~pi

(2π)d
G̃c(~p1, ~p2, E) δV (~p2, ~p3) G̃c(~p3, ~p4, E)

• all singularities (IR and UV) are consistently treated with dimensional regularization
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Part II

Applications
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QQ̄ near threshold

Heavy quark pair production: e+e− → QQ̄ Q ∈ {c, b, (t)} √
s ∼ 2m

cross section: RQQ̄(s) ≡ σ(e+e− → QQ̄)

σ(e+e− → µ+µ−)
= 12π Im

{
Π(s+ iO+)

}

correlator: Πµν ≡ i

∫
d4x ei qx〈0|T{jµ(x)jν(0)|0〉 = (−q2gµν + qµ qν) Π(q2)

e e
Q Q
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QQ̄ near threshold

local parton-hadron duality RQQ̄ −→ global parton-hadron duality Mn

moments : M th
n ≡

∫
ds

sn+1
RQQ̄(s) =

12π2

n!

(
d

dq2

)n

Π(q2)
∣∣
q2=0

Mexp
n =M res

n +Mcont
n =

9π

α2
em

K∑

k=1

Γk

M2n+1
k︸ ︷︷ ︸

well known

+

∫

s&sthr

ds

sn+1
RQQ̄(s)

︸ ︷︷ ︸
poorly known

Out[67]=

J�Y

Y2 S

continuum

3.0 3.5 4.0 4.5
0.0

0.2

0.4

0.6

0.8

1.0

s @GeVD

R
cc

U1 S

U2 S

U3 S
U4 S

U5 S U6 S

continuum
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0.0

0.2

0.4

0.6
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s @GeVD

R
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QQ̄ near threshold

in real life:

10
-1

1

10

10 2

0.5 1 1.5 2 2.5 3

Sum of exclusive

measurements

Inclusive

measurements

3 loop pQCD

Naive quark model

u, d, s

ρ

ω

φ

ρ′

2

3

4

5

6

7

3 3.5 4 4.5 5

Mark-I

Mark-I + LGW

Mark-II

PLUTO

DASP

Crystal Ball

BES

J/ψ ψ(2S)

ψ3770

ψ4040

ψ4160

ψ4415

c

2

3

4

5

6

7

8

9.5 10 10.5 11

MD-1
ARGUS CLEO CUSB DHHM

Crystal Ball CLEO II DASP LENA

Υ(1S)
Υ(2S)

Υ(3S)

Υ(4S)

b

R

√
s [GeV]
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QQ̄ near threshold

mass of Υ(nS): MΥ(nS) = 2mb + En typical scale: µ ∼ p ∼ αsCFmb/n

µ ∼ 1.3 GeV for n = 1

dominant error non-perturbative =⇒ later

moments: Mn =

∫
ds

sn+1
Rbb̄(s) typical scale: µ ∼ 2mb/

√
n

µ ∼ 2.5 GeV for n = 14

dominant error perturbative

• determination of theoretical moments
via integration in complex plane

• typical scale µs ∼ 2mb/
√
n, choose

n ≤ 14

• determine experimental resonanance
moments (very well known) and
continuum moments (poorly known),
choose n ≥ 6

E>0
continuum

E<0
resonance

complex
energy plane
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QQ̄ near threshold

mass schemes So far implicitly understood mass = pole mass mQ

but pole mass has non-perturbative ambiguity (renormalon) ⇒ IR sensitivity ∼ ΛQCD

Mmeson︸ ︷︷ ︸
obs

= mQ︸︷︷︸
pole mass

+ V︸︷︷︸
ambig

For QQ̄ system: mQ has IR sensitivity, but this cancels in 2mQ + Vcoul ≃Mmeson

define PS-mass [Beneke] mPS = mQ +
1

2

∫

q<µF

d3~q

(2π)3
Vcoul(q) with µF ∼ mv ∼ mαs

other closely related definitions mX = mQ − δm are possible

these mass definitions are more appropriate for the description of heavy quarks near threshold
⇒ threshold mass
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QQ̄ near threshold

mass schemes

• pole mass is more IR sensitive (renormalon ambiguity) than other mass definitions →
non-perturbative ambiguity ∼ ΛQCD

• use directly mMS where possible (relativistic sum rules)

• if use of mMS impossible (non-relativistic sum rules) use threshold mass (incoorporates
renormalon cancellation) [Bigi et.al; Beneke; Hoang et.al; Pineda]

• express observable in terms of threshold mass (here use PS mass [Beneke] and RS mass
[Pineda]) then relate threshold mass to mMS; (three-loop exact [Melnikov, Ritbergen;
Chetyrkin, Steinhauser] and four-loop via large-β0 approximation)

observable

mpole

mthr

mMS
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QQ̄ near threshold

theoretical moments

perturbative part: gluon (quark) propagator ∼ 1/k2, but contains terms to all orders in αs

• in principle well understood

• can be computed with ever increasing accuracy (at the price of running into technical
difficulties, current status 4-loop)

non-perturbative part: modification of gluon propagator from ∼ 1/k2 for small k2

• not very well understood ⇒ try to minimize the impact of non-perturbative physics

• parametrize ignorance in terms of (ever more suppressed) condensates

• leading contribution from gluon condensate 〈α
π
G2〉

X X= +
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QQ̄ near threshold

theory: perturbative part

�




�

	
Mn =

∫
ds

sn+1
RQQ̄(s) ≃

∫
2 dE

(2m)2n+1
e

−nE
m RQQ(E)

relativistic sum rules: n “small”, i.e n . 4 continuum contribution relevant E ∼ m

FO (fixed order) approach needs full QCD not here

non-relativistic sum rules: n “large”, i.e n & 8 continuum contribution suppressed

ET (effective theory) approach pNRQCD applicable

define E =
√
s− 2m ≡ mv2 ∼ kinetic energy of heavy quarks if v ≪ 1

n “large” ↔ E ∼ m/n ∼ mv2 and v ∼ 1/
√
n “small” ⇒ quantum mechanics

large n (non-relativistic) vs small n (relativistic)

large n: conventional fixed order (FO) perturbation theory breaks down
(Coulomb singularity), i.e. computing RQQ̄ to αℓ we have terms v (α/v)ℓ

−→ use effective theory (ET)
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QQ̄ near threshold

theory: non-perturbative part

leading contribution from gluon condensate [Shifman et.al; Broadhurst et.al., Ioffe]

δMnp
n =

12π2 e2Q

(2mb)(2n+4)
〈α
π
G2〉 an

(
1 +

α

π
bn
)
+ . . .

• an ∼ n3/2: importance of non-perturbative effects increases with increasing n

• size of corrections α
π
bn crucially depends on mass scheme, ok for threshold mass !!

main questions: • how important are gluon condensate contributions??
• 〈α

π
G2〉 = 0.012 GeV4 [Shifman et.al. 1978]

• 〈α
π
G2〉 = 0.021 GeV4 [Broadhurst et.al. 1994]

• 〈α
π
G2〉 = (0.005± 0.004) GeV4 [Ioffe 2005]

• can we trust the perturbative series of the coefficient function?

common wisdom ??:

• 〈α
π
G2〉 contributions are the dominant source of error for MΥ(1s)

• we can ignore 〈α
π
G2〉 contributions in the case of bottom as long as n . 16

• what about the charm case ?
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QQ̄ near threshold

Determination of bottom mass from sum rules take M10 as an example:

[Pineda, AS]

2 3 4 5

Μs

1

2

3

4

5

M
1
0
@
1
0
-
2
1
D

LL�LO

NLL

NLO

NNLO

NNLL

" NNNLO"

mPS=4.52 GeV

consistent results
for 6 ≤ n ≤ 16

mPS = 4.52± 0.06 GeV

convert to MS:

m = 4.19± 0.06 GeV

through resummation of log v = log µs/µh:

• size of corrections reduced

• much improved µs scale dependence

}
reduced theoretical error
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QQ̄ near threshold

apply to charm ?? ⇒ non-perturbative contributions ??

leading contribution from gluon condensate [Shifman et.al; Broadhurst et.al., Ioffe]

δMnp
n =

12π2 e2q

(2mb)(2n+4)
〈α
π
G2〉 an

(
1 +

α

π
[bn − (2n+ 4)δbX ]

)
+ . . . with an ∼ n3/2

importance of non-perturbative effects increases with increasing n and decreasing m

n 1 4 8 12 16

bottom 102δMnp
n /Mexp

n -0.003 -0.02 0.02 0.36 1.6

charm 102δMnp
n /Mexp

n 0.1 0.7 2.0 3.8 5.9

αs bPS
n /π 0.75 0.72 0.56 0.34 0.09

�
�

�
�ignore non-perturbative effects and use n < 16
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QQ̄ near threshold

Determination of charm mass from sum rules [AS]

n = 6 FO

ET

combined

1.0 1.5 2.0 2.5
0.05

0.10

0.15

0.20

0.25

Μ @GeVD

10
n-

1
M

n

n = 10 FO

ET

combined

1.0 1.5 2.0 2.5
0.05

0.10

0.15

0.20

0.25

Μ @GeVD

10
n-

1
M

n

n m δmth δmexp δmα δmGG δm

3 1508 229 11 41 2 233

6 1506 81 3 27 3 85

10 1503 40 2 19 5 45

16 1500 27 1 14 6 31

“combine”:
single moment analysis

mPS = 1.50± 0.04 GeV

convert to MS:

m = 1.25± 0.04 GeV
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QQ̄ near threshold

Top threshold scan at linear collider

top pair produced near threshold

E ≡
√
s− 2m ≪ m

non-relativistic → NRQCD

V

e
−

e
+

t

t̄

√
s ≃ 2mt

• lifetime for top τ ≃ 1/Γt ≃ 5× 10−25 s

• typical hadronization time τhad ≃ 1/ΛQCD ≃ 2× 10−24 s

• τ < τhad ⇒ top decays before it forms hadrons

• Schrödinger eq:
(

∆

m2
− αs CF

r
+ δV − (E+iΓt)

)
G(~r, ~r ′, E) = δ(~r − ~r ′)

• poles (bound states) become a bump (would-be bound state)

• position of bump ⇒ determination of mass

• height and width of bump ⇒ determination of Γt

• typical scale: µ ≃ 2mv ≃ 2

(
m
√
E2 + Γ2

t

)1/2

& 30 GeV ⇒ perturbation theory

Adrian Signer, Aug 2012 – p. 49/68



QQ̄ near threshold

Top threshold scan at linear collider [Pineda, AS]

no resummation of log v with resummation of log v

-2 -1 0 1 2 3 4
EPS=

�!!!
s-2 mPS

0.4

0.6

0.8

1

1.2

R
=
Σ

tt
�Σ
Μ
Μ

Μs= 30 - 80 GeV

NLO

LO

NNLO

-2 -1 0 1 2 3 4
EPS=

�!!!
s-2 mPS

0.4

0.6

0.8

1

1.2

R
=
Σ

tt
�Σ
Μ
Μ

Μs= 30 - 80 GeV

NLL

LL

NNLL

• normalization of cross section much more stable after resummation

• smaller scale dependence, smaller size of corrections

• potential to measure (well defined) top mass to an accuracy of δmt ≃ 50 MeV

• potential for a precise measurement of Γt and maybe even the Yukawa coupling
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QQ̄ near threshold

measurement of Higgs-Yukawa potential → yt ?? treating Higgs as “new physics”

e−

e+

t

t̄

⇔ VY

e−

e+

t

t̄

yt

yt

VY = − y2t
4π

e−mh r

r

σ
tt
  
(p

b
)

Ecm (GeV)

abcde

340 342 344 346 348 350 352
0.0

0.1

0.2

0.3

0.4

0.5

a

b
c de

340 342 344 346 348 350 352
0.00

0.25

0.50

0.75

1.00

1.25

measurement of Γt [Frey et.al.]

• Γt affects shape of threshold scan

• different curves correspond to
Γt/ΓSM

t = (a) 0.5, (b) 0.8, (c) 1.0,
(d) 1.2, and (e) 1.5

• before (top) and after (bottom)
bremsstrahlung corrections
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QQ̄ near threshold

Top threshold scan at linear collider [Pineda, AS]

position of peak normalization of peak

determination of mt determination of Γt and yt (??)
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ΜS

0.8
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• use of threshold mass essential (must not use pole mass)

• further improvements: include decay of top and go to full NNNLO
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QQ̄ near threshold
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threshold “scan” at Tevatron/LHC [Hagiwara et.al.]

Tevatron LHC

Vo = −α (CF − CA/2)

r
Vs = −αCF

r
repulsive attractive

colour octet colour singlet
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QQ̄ near threshold

Top “threshold scan” at LHC [Kiyo et.al.]

including all channels and parton-distribution functions:

Tevatron LHC
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this bump cannot be seen directly but has some impact on the total cross section
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mb from MΥ

Extraction of energy levels and wave function at origin

• Compute Green function (at NNNLO [Beneke et.al])

Ĝ = Ĝ0 − Ĝ0δV1Ĝ0 − Ĝ0δV2Ĝ0 + Ĝ0δV1Ĝ0δV1Ĝ0

− Ĝ0δV3Ĝ0 + 2Ĝ0δV1Ĝ0δV2Ĝ0 − Ĝ0δV1Ĝ0δV1Ĝ0δV1Ĝ0.

• use G(E)
E→En=

|ψn(0)|2
En − E

to extract energy levels En and wave function |ψn(0)|2

• En related to mass of bound state M(n) = m1 +m2 + En

• at NLO only Coulomb, beyond also spin-spin (HFS) etc.

En ∼ E
(0)
n

(
1 + αse

(1)
n (a1) + α2

se
(2)
n (a2, ~S

2, . . .) + α3e
(2)
n (a3, ~S

2, . . .)
)

• |ψn(0)|2 related to decay width Γ(M → e+e−)
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mb from MΥ

Extraction of bottom mass from MΥ(1S)

MΥ(1S) = 2mb + E ⇒ mb,PS = (4.58± 0.04 (th) ± 0.07 (non-pert))GeV

scales: En ≃ − (CF αs)2m

4n2
⇒

µs ∼ pn ≃ CF αsm

2n
≃ 1.2 GeV for n = 1 ?!

non-perturbative effects !

full gluon propagator = pert. part (1/q2) + non-pert. part

ΑsHMZL = 0.118

1 2 3 4 5
0.2

0.3

0.4

0.5

0.6

0.7

Μ @GeVD

Α
s@
Μ
D

= + ×
×

parameterization of QCD at low energies through condensates

leading: αs 〈Ga
µνG

a
µν〉 ⇒ contribution δMnp

Υ(1S)
=

624

425
πm

〈Ga
µνG

a
µν〉

(mCFαs)4
≃ 70− 90 MeV

subleading: g3sf
abc〈Ga

µνG
b
νλG

c
λµ〉 . . .

Adrian Signer, Aug 2012 – p. 56/68



mb from MΥ

1 1.5 2 2.5 3 3.5 4
4.4
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NLO

NNLO

NNNLO

PSfrag replaements � [GeV℄

mb;PS(2GeV) from M�(1S) = 9:460[GeV℄ [Beneke et.al]

mb from Υ(1s) sort of works

non-perturbative error is dominant

mb,PS = (4.57± 0.03︸︷︷︸
pert

± 0.01︸︷︷︸
α2

± 0.07︸︷︷︸
np

) GeV

mb from Υ(2s), Υ(3s) etc hopeless
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MΥ −Mηb

• The mass difference Mηb
−MΥ (HFS) should be less insensitive to non-perturbative

effects

• the HFS enters at α4
s (NNLO), thus a NLO-HFS calculation requires a NNNLO

computation of energy levels

• here there is no additional m1/m2 suppression of HFS

• HFS available at NLL (including resummation of logarithms) [Kniehl et.al]

µ (GeV)

E
hf

s (
M

eV
)

0

5
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35

40

45

50

1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5

• extracted value: Eth
hfs = (39± 11th ± 9αs ) MeV
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MΥ −Mηb

• Eth
hfs ∼ 40 MeV undershoots experimental value Eexp

hfs ≃ (70± 5) MeV

• lattice is apparently more consistent Elat
hfs ≃ (61± 14) MeV

• however, lattice misses a logarithm from a matching coefficient

δEhfs ≃ αs log(αs)Ehfs = −20 MeV

this is pretty much the difference between Eth and Elat

• for charm everything works much better ???

M(J/ψ)−M(ηc) = Eth
hfs = 104 MeV vs Eth

hfs = (117.7± 1.3) MeV

• surely, this must be BSM . . . [Domingo et.al]

• ηb mixes with CP-odd light Higgs A of mass mA ≃ 10 GeV

• ηb-like mass eigenstate is measured but

theory/lattice computes mass of another state (pure bb̄)

• . . . or at least it is quite a puzzle
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decay width

decay of Υ and ηb

• convergence is not always brilliant . . .

• resummation of logs helps significantly

Γ(Υ(1S) → e+ e−) Γ(ηb(
1S0) → γγ)
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effect of [Si
1, S

j
1][S

i
2, S

j
2] on decay width → prediction for ηb decay width [Pineda, AS ]
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decay ratio

Rc =
Γ(J/ψ(3S1) → e+ e−)

Γ(ηc(1S0) → γγ)
notoriously difficult

(
− ∆

m2
− CF

αs

r
(1 + δVstatic) + δVnon−st(~S

2 . . .)− E

)
G(~r, ~r ′, E) = δ(~r − ~r ′)

• δVstatic is often the reason for large corrections (bad convergence) treat perturbatively or
’exactly’ (numerical)

• [Si
1, S

j
1][S

i
2, S

j
2] perturbatively

0.8 1.0 1.2 1.4

0.2

0.4

0.6

0.8

1.0

Μ @GeVD

R
c

[Kiyo, Pineda, AS]

• everything perturbative
(short-dashed) LL, NLL, NNLL

• logs not resummed, Vstatic ’exact’
(dashed) at
O(αs),O(α2

s),O(α3
s),O(α4

s)

• logs resummed, Vstatic ’exact’
(solid)
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muonium

HFS in muonium

• known up to α2(Zα)EF (recall EF ∼ (Zα)4 [Eides et.al; Kinoshita et.al] (1995)

• “new” calculation in NRQED [Czarnecki et.al.] (2010)

k k

−P + k −P − k

→

1

(k − P )2 −M2 + i0+
+

1

(k + P )2 −M2 + i0+
→ −1

2kP − i0+
+

1

2kP + i0+
= −iπδ(kP )

• requires whole machinery of loop calculations (IBP, Melin-Barnes, sector decomposition)
→ numerical answer

• result agrees with previous computation but numerical answer more precise by an order of
magnitude

Adrian Signer, Aug 2012 – p. 62/68



Lamb shift

non-recoil corrections O(α2(Zα)5) to Lamb shift

• non-recoil means leading order in m1/m2

• vacuum polarization computed by [Pachucki] (1993), others by [Eides et.al] (1995)

• “new” calculation in NRQED [Czarnecki et.al.] (2010)

. . . . . .

vacuum polarization diagrams “other” diagrams

δEvac =
α2(Zα)5

π n3

( µ
m

)3
m [0.86281422(3)] δEo =

α2(Zα)5

π n3

( µ
m

)3
m [−7.72381(4)]

as before, new results are compatible with old ones, but more precise by 1− 2 orders of
magnitude ( note: these are state-of-the art loop calculations)
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(muonic) hydrogen

proton radius rE from muonic hydrogen vs. rE from (normal) hydrogen: > 5 σ discrepancy
=⇒ consider these systems in theory:

• source of all trouble: proton is not point like

〈N(p)|Jµ|N(p)〉 = ū(p′)

[
F1(q

2)γµ + F2(q
2)
iσµνqν

2M

]
u(p)

• electric form factor

GE(q2) = F1(q
2) +

q2

4M2
F2(q

2) =

∫
d3r ρ(r)e−iqr =

∫
d3r ρ(r)

(
1− q2

r2

6
+ . . .

)

• proton radius ??: 〈r2E〉 =
∫
d3r r2ρ(r) = −6

dGE(q2)

dq2

∣∣∣∣
q2=0

• this definition is IR divergent !!
• compare similar case of potential between infinitely heavy quarks

[Appelquist, Dine, Muzinich] (1978)
• IR singularity at 3-loop !!
• in ET, this is simply a matching coefficient, IR singularity cancelled by us-gluons

• proton radius should also be defined as matching coefficient

• whether this solves the problem is an entirely different question
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(muonic) hydrogen

hadronic corrections [Pineda]

• Lamb shift: terms in pNRQCD potential
δṼ

m2
∼ 1 =⇒ δV

m2
∼ Dd

m2
δ(~r)

• this gives rise to “standard” QED corrections

• there are corresponding hadronic corrections
Dhad

d

M2
δ(~r)

• matching coefficient: Dhad
d receives contributions from NRQCD operators

• four-fermion operator
chad3

M2
N†N ψ†ψ

• hadronic vacuum polarization
dhad2

M2
FµνD

2Fµν

• ‘”Darwin term”
chadD

m2
N†
[
~D · ~E − ~E · ~D

]
N

• proton radius is defined through chadD − 1 =
4

3
r2eM

2

• this is a matching coefficient depending on scale, scheme etc.
(compare mass of quark)
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(muonic) hydrogen

contributions to dhad2 from hadronic vacuum po-
larization (compare g − 2) ⇒ ∆E = 0.011 mev had

• contributions due to chad3 = cpt3 + cZee3 + cpol3

• pointlike contribution cpt3 can be computed with NRQED

• cZee3 and cpol3 can be approximately obtained from χPT [Pineda] or “experimentally”
[Arrington, Sick, Pachucki, Borie . . .]

• for cZee3 i.e. 〈r3E〉 : ∆E
∣∣
χPT

= 0.019 mev vs. ∆E
∣∣
exp

= (2.5− 2.8) mev

note: ∆E
∣∣
DeRuj

∼ 0.32 mev is not compatible with either ot these

• for cpol3 : ∆E
∣∣
χPT

= 0.018 mev vs. ∆E
∣∣
exp

= (0.012− 0.015) mev
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(muonic) hydrogen

• ET provides consistent definition of proton radius as a scheme and scale dependent
matching coefficient

• with determined cZee3 and cpol3 (and of course all other contributions) it is possible to
experimentally determine chadD and thus rE .

• these “dirty” effects seem under reasonable control and no big deviations from earlier
determinations are found

• → no SM solution to proton radius puzzle in sight

• surely, this must be BSM . . . [Pospelov]

• new vector boson shifts atomic spectrum
• O(1 MeV) dark photons (another U(1) that mixes with photon) that violate e-µ

universality
• also useful for g − 2 of muon

• . . . or at least it is quite a puzzle
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the end

• we could argue charm and top have been found by by studying bound states
(→ talk by S. Hansmann-Menzemer)

• we were still happy to see these particles created at high-energy colliders

• true complementarity of high-energy and low-energy physics

• even if BSM is definitely not the most likely explanation of the current puzzles in
bound-state physics . . .

• . . . who says it is not going to happen again ??
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