PSI Summer School on Particle Physics

Bound States

Adrian Signer
Paul Scherrer Institut

AUGUST 2012, ZuOZ

closing in on the SM $\stackrel{? ?}{\natural}$ bound states

- usually we are testing the SM (or look for BSM) at as high energies as possible \rightarrow ideally direct production of new particles
- alternatively consider virtual effects, potentially sensitive to much higher energies
- this requires the "right" observable: precise measurements and precise theory
- prime example: $(g-2)$

higher order SM

BSM

dirty SM

- in such tests we are looking for small effects !
- this lecture: the theory of (weakly) bound states
- motivation
- better understanding of QFT
- exploit potential of precise measurements to constrain/find BSM
- outlook Part I: theory (mainly Tue)
- consider non-relativistic limit of QFT
- explain fundamental principles of effective-theory approach
- focus on SM part (BSM part is usually the easy bit)
- health warning: some slides are rather technical
- outlook Part II: applications (mainly Fri)
- heavy quark pair production near threshold
- m_{Q} from $Q \bar{Q}$
- decay ratios and HFS of $Q \bar{Q}$
- hydrogen vs. muonic hydrogen
possible systems include:

positronium	$e^{+} e^{-}$	$m_{1}=m_{2}$	standard
muonium	$\mu^{ \pm} e^{\mp}$	$m_{1} \gg m_{2}$	standard
charmonium $\left(J / \psi, \eta_{c}\right)$	$c \bar{c}$	$m_{1}=m_{2}$	\sim standard
bottomonium $\left(\Upsilon, \eta_{b}\right)$	$b \bar{b}$	$m_{1}=m_{2}$	Υ standard, η_{b} only just
B_{c} meson	$b \bar{c}$	$m_{1} \gg m_{2}$	scalar since 1998
hydrogen	$p e^{-}$	$m_{1} \gg m_{2}$	standard
muonic hydrogen	$p \mu^{-}$	$m_{1} \gg m_{2}$	standard
hydrogen-like	$N e^{-}$	$m_{1} \gg m_{2}$	standard
antihydrogen	$\bar{p} e^{+}$	$m_{1} \gg m_{2}$	since ~ 1995
true muonium	$\mu^{+} \mu^{-}$	$m_{1}=m_{2}$	not (yet) produced
tauonium	$\tau^{ \pm} e^{\mp}$	$m_{1} \gg m_{2}$	not (yet) produced
true tauonium	$\tau^{+} \tau^{-}$	$m_{1}=m_{2}$	not (yet) produced
top	$t \bar{t}$	$m_{1}=m_{2}$	never but nearly

- two point masses m_{1} and m_{2}
- reduced mass $m \equiv m_{1} m_{2} /\left(m_{1}+m_{2}\right)$
- interacting through potential $V(r)=-Z \alpha / r$

Schrödinger eq: $\left(-\frac{\Delta}{2 m}-\frac{Z \alpha}{r}\right)|n\rangle=E_{n}|n\rangle$
Coulomb Green function: $\left(-\frac{\Delta}{2 m}-\frac{Z \alpha}{r}-E\right) G_{C}\left(\vec{r}, \vec{r}^{\prime}, E\right)=\delta^{(3)}\left(\vec{r}-\vec{r}^{\prime}\right)$
$G_{c}\left(\vec{r}, \vec{r}^{\prime}, E\right)$ has poles for certain values on $E=E_{n}=-\frac{(Z \alpha)^{2} m}{2 n^{2}} \quad \Longrightarrow$ bound states
spectral representation: $G_{c}\left(\vec{r}, \vec{r}^{\prime}, E\right)=\underbrace{\sum_{n=1}^{\infty} \frac{\psi_{n}(r) \psi_{n}^{*}\left(r^{\prime}\right)}{E_{n}-E}}_{\text {bound states }}+\int \frac{d \vec{k}}{(2 \pi)^{3}} \frac{\psi_{k}(r) \psi_{k}^{*}\left(r^{\prime}\right)}{k^{2} / m-E}$
$G_{c}\left(\vec{r}, \vec{r}^{\prime}, E\right)$ and $\psi_{n}(r) \equiv|n\rangle$ can be written in terms of Laguerre polynomials $L_{n-l-1}^{2 l+1}$
$\psi_{n l m}(r) \equiv|n\rangle_{l m}=\sqrt{\frac{\rho^{3} \Gamma(n-l)}{2 n \Gamma(n+l+1)}} L_{n-l-1}^{2 l+1}(\rho r) e^{-\rho r / 2}(\rho r)^{l} Y_{l}^{m}(\theta, \phi)$

$$
\text { with } \rho \equiv \frac{2 Z \alpha m}{n}=\frac{2}{a_{0} n}
$$

scales of the problem

$$
\begin{aligned}
\langle n| \frac{Z \alpha}{r}|n\rangle=\frac{m(Z \alpha)^{2}}{n^{2}}=\frac{Z \alpha}{n^{2} a_{0}} & \text { Bohr radius } \\
\langle n| \frac{p}{m}|n\rangle=\langle n| v|n\rangle=\frac{(Z \alpha)}{n^{2}} & \text { note: } v \ll 1 \text { for } Z \ll \alpha \Longrightarrow \text { non-relativistic system! } \\
\langle n| \frac{p^{2}}{m^{2}}|n\rangle=\langle n| v^{2}|n\rangle=\frac{(Z \alpha)^{2}}{n^{2}} & \text { note: }\langle n| Z \alpha / r|n\rangle \nless\langle n| p^{2} / m|n\rangle \\
\langle n| \frac{p^{2}}{2 m}|n\rangle=\frac{m(Z \alpha)^{2}}{2 n^{2}} \stackrel{!?}{=}-E_{n} & \text { scaling } m \gg p \sim m v \gg E \sim m v^{2}
\end{aligned}
$$

- our implicit assumption that the system is non-relativistic is justified for $(Z \alpha) \ll 1$
- there is a hierarchy of scales:

hard scale:	$m \sim 1$
soft scale:	$p \sim v \sim(Z \alpha) \ll 1$
ultrasoft scale:	$E=p^{2} /(2 m) \sim v^{2} \ll v$

- we must not treat $V(r)=-Z \alpha / r$ as perturbation, even though $(Z \alpha) \ll 1$
starting with free Schrödinger equation and treating $-Z \alpha / r$ as perturbation will never describe a bound state
- how to go on from here:
- recall: we will be looking at high precision!
- either: add further effects (fine structure, hyperfine structure, recoil effects, vacuum polarization ...) to the potential ("bottom up", not here)
- or: ask where does the potential come from and how is this connected to a quantum field theory ("top down", our approach here)
\Longrightarrow forget everything you know about Quantum Mechanics (for a while)

basics of NRQED/NRQCD

- two point masses m_{1} and m_{2}
- reduced mass $m \equiv m_{1} m_{2} /\left(m_{1}+m_{2}\right)$
- interacting through Lagrangian $\mathcal{L}_{\mathrm{QED}}$ and/or $\mathcal{L}_{\mathrm{QCD}}$
- a closed solution of this problem is of course hopeless
- even if we could solve this, it would not answer all questions, since e.g. proton is not a point mass.
- goal for for the moment:
- ignore these finite size effects
- ignore non-perturbative effects (QCD)
- exploit hierarchy of scales $v \ll 1$ and $(Z \alpha) \ll 1$ to make QFT tractable

Part 1

Theory

After a few slides, in a first step we will end up with

$$
\begin{aligned}
\mathcal{L}_{\mathrm{QED}} & =-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+\bar{\Psi}(i \not D-m) \Psi \\
& \Downarrow \\
\mathcal{L}_{\mathrm{NRQED}} & =\psi^{\dagger}\left(i D^{0}+\frac{\vec{D}^{2}}{2 m}\right) \psi+\frac{1}{8 m^{3}} \psi^{\dagger} \vec{D}^{4} \psi-\frac{g c_{F}}{2 m} \psi^{\dagger} \vec{\sigma} \cdot \vec{B} \psi \\
& +\frac{g c_{D}}{8 m^{2}} \psi^{\dagger}[\vec{D} \cdot \vec{E}-\vec{E} \cdot \vec{D}] \psi+\frac{i g c_{S}}{8 m^{2}} \psi^{\dagger} \vec{\sigma} \cdot[\vec{D} \times \vec{E}-\vec{E} \times \vec{D}] \psi \\
& +(\psi \leftrightarrow \chi)+\mathcal{L}_{\text {light }} \\
& +\frac{\alpha_{s} d_{s s}}{m^{2}} \psi^{\dagger} \psi \chi^{\dagger} \chi+\frac{\alpha_{s} d_{s v}}{m^{2}} \psi^{\dagger} \sigma^{i} \psi \chi^{\dagger} \sigma^{i} \chi \\
& +\ldots \text { calculable }
\end{aligned}
$$

- note: this is a strict QFT approach, in prinicple possible to include loops to any order
- $\mathcal{L}_{\text {NRQCD }}$ is an expansion of $\mathcal{L}_{\text {QED }}$ in v
- $\mathcal{L}_{\text {NRQCD }}$ gives as good a description of bound states as $\mathcal{L}_{\text {QED }}$ but is much more convenient

basics of NRQED/NRQCD

naive first step

exchange of photon im momentum space:

$$
i \widetilde{V}(q) \sim \frac{(-i e)(-i Z e)(-i)}{q_{0}^{2}-\vec{q}^{2}} \rightarrow \frac{-i Z e^{2}}{\vec{q}^{2}}+\mathcal{O}\left(q_{0}^{2} / q^{2}\right)
$$

after Fourier transform:

$$
V(r) \sim \frac{-Z e^{2}}{4 \pi r}=-\frac{Z \alpha}{r}
$$

- what happened to spinors of fermions ?
- what happened to γ^{μ} of vertices and $g^{\mu \nu}$ of propagator?
- let's do this properly
- could do a Foldy-Wouthuysen transformation
- here we will use "matching", a general technique useful in many effective theories: fix the coefficients c_{j} of the Lagrangian of the effective theory s.t. $\mathcal{L}_{\mathrm{ET}}$ and $\mathcal{L}_{\mathrm{QED}}$ give the same answer (up to a certain order in perturbation theory)

what is an effective theory?

theory: not a model; a framework for systematically improvable predictions effective: not the full story; applicable only in certain circumstances \Rightarrow factorization

underlying theory (UT)

- contains dynamical (directly observable) d.o.f. of large/hard scale M_{1} and small/soft scale M_{2}
- Lagrangian: $\mathcal{L}_{\mathrm{UT}}=\sum_{i} O_{i}\left(\phi_{1}, \phi_{2}\right)$
- observables: $f\left(\alpha, M_{1}, M_{2}\right)=\sum_{n} \alpha^{n} f_{\mathrm{UT}}^{(n)}\left(M_{1}, M_{2}\right)$
effective theory (ET)
- contains dynamical d.o.f. of soft scale M_{2}; ϕ_{1} integrated out assuming $M_{2} / M_{1} \ll 1$
- Lagrangian: $\mathcal{L}_{\mathrm{ET}}=\sum_{j} c_{j} O_{j}\left(\phi_{2}\right)$
- observables: $f=\sum_{n}^{j} \alpha^{n} \sum_{m}\left(M_{2} / M_{1}\right)^{m} f_{\mathrm{ET}}^{(n, m)}$

main features of effective theories

UV singularities \rightarrow renormalize for UT: $\left[O_{i}\right] \leq 4$
$\mathcal{L}_{\mathrm{UT}} \simeq-\frac{1}{4} W_{i}^{\mu \nu} W_{\mu \nu}^{i}-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}$

$$
+\sum g_{w}\left(\bar{\psi} \gamma^{\mu}\left\{\gamma_{5}\right\} \tau^{i} \psi\right) W_{\mu}^{i}+e\left(\bar{\psi} \gamma^{\mu} \psi\right) A_{\mu}+\ldots
$$

integrating out the W mode
\Rightarrow additional singularities at the boundary!
IR singularity of $\mathcal{L}_{\mathrm{UT}}=\mathrm{UV}$ singularity of $\mathcal{L}_{\mathrm{ET}}$
$\mathcal{L}_{\mathrm{ET}} \simeq-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+e\left(\bar{\psi} \gamma^{\mu} \psi\right) A_{\mu}$

$$
+\sum c\left(M_{W}\right)\left(\bar{\psi}\left\{\gamma^{\mu} \gamma_{5} \tau^{i} T^{a}\right\} \psi\right)\left(\bar{\psi}\left\{\gamma^{\mu} \gamma_{5} \tau^{i} T^{a}\right\} \psi\right)
$$

IR singularities \rightarrow form physical observables

main features of effective theories

- ever higher dimensional operators $O_{j}\left(\phi_{2}\right)$ with suppressed coefficients $c_{j} \sim 1 / M_{1}^{d-4}$
- IR singularity of UT: $-\frac{1}{\epsilon}\left(\frac{M_{1}}{\mu}\right)^{-\epsilon}=-\frac{1}{\epsilon}+\log \frac{M_{1}}{\mu}$ UV singularity of ET: $\frac{1}{\epsilon}\left(\frac{M_{2}}{\mu}\right)^{-\epsilon}=\frac{1}{\epsilon}-\log \frac{M_{2}}{\mu}$
- singularities cancel and can be predicted \rightarrow logs can also be predicted \rightarrow
- resummation of $L \equiv \log \left(M_{1} / M_{2}\right) \gg 1$:
- presence of terms $\alpha^{n} L^{2 n}$ or $\alpha^{n} L^{n}$ invalidates expansion in α alone
- reorganize perturbation theory:
from a pure expansion in $\alpha(\mathrm{LO} \rightarrow$ NLO \rightarrow NNLO \ldots.
to resummed expansion, counting $\alpha L \simeq 1$ (LL \rightarrow NLL \rightarrow NNLL \ldots)
- can have a tower of ETs, i.e. for $M_{1} \gg M_{2} \gg M_{3} \ldots$. UT \rightarrow ET I \rightarrow ET II ...
- in (NR)QED: we will not integrate out whole particles (\sim easy), but integrate out modes (part of a quantum field with a particular scaling)
- in (NR)QED: $M_{1} \sim m$ and $M_{2} \sim m v$ and $M_{3} \sim m v^{2}$

QED \rightarrow NRQED \rightarrow pNRQCD

- external particles in the bound-state system

$$
\begin{array}{ll}
\text { potential fermions: } & p^{\mu}=\left(p^{0}, \vec{p}\right) \sim\left(m v^{2}, m v\right) \\
\text { ultrasoft photons/gluons: } & p^{\mu}=\left(p^{0}, \vec{p}\right) \sim\left(m v^{2}, m v^{2}\right)
\end{array}
$$

- we want to infer from QED/QCD how these d.o.f. interact
- we will see: the interaction can be described by a potential V (interaction local in t but non-local in \vec{x}) and explicit ultrasoft photon/gluon interactions (retardation effects)
- this effective theory is called potential NRQED (pNRQED) and $\mathcal{L}_{\text {pNRQED }}\left(\psi_{p}, A_{\text {us }}\right)$
- we will get there by going through another ET, NRQED with the following additional d.o.f:

$$
\begin{array}{ll}
\text { soft particles: } & p^{\mu}=\left(p^{0}, \vec{p}\right) \sim(m v, m v) \\
\text { potential photons/gluons: } & p^{\mu}=\left(p^{0}, \vec{p}\right) \sim\left(m v^{2}, m v^{2}\right)
\end{array}
$$

- NRQED is a local theory (in t and \vec{x}) that is obtained by integrating out hard modes from QED
- matching coefficients evaluated at hard scale, then using rgi evolved to soft scale
\Longrightarrow resummation of $\log \mu_{s} / \mu_{h} \sim \log v \sim \log \alpha$

Structure of non-relativistic QED/QCD

underlying theory

$$
\mathcal{L}_{\mathrm{QED}}\left(\psi_{h}, \psi_{s}, \psi_{p}, A_{h}^{\mu}, A_{s}^{\mu}, A_{p}^{\mu}, A_{u s}^{\mu}\right)
$$

effective theory I
[Caswell, Bodwin, Braaten, Lepage]

$$
\mathcal{L}_{\mathrm{NRQED}}\left(\psi_{s}, \psi_{p}, A_{s}^{\mu}, A_{p}^{\mu}, A_{u s}^{\mu}\right)
$$

effective theory II (Quantum Mechanics) [Pineda, Soto]

$$
\mathcal{L}_{\mathrm{pNRQED}}\left(\psi_{p}, A_{u s}^{\mu}\right)
$$

- match free QED Lagrangian $\mathcal{L}_{\mathrm{QED}}^{(0)}=\bar{\Psi}\left(i D^{\mu} \gamma_{\mu}-m\right) \Psi$ to NRQED counterpart
- introduce separate fields for annihilating electrons ψ and creating positrons $\chi: \Psi=\psi+\chi$
- expand in $p / m \sim v$ spinors $u(p)$ (and $v(p)$) in momentum space, $E=\sqrt{\vec{p}^{2}+m^{2}}$

$$
u(\vec{p})=\binom{\sqrt{\frac{E+m}{2 E}} \xi}{\frac{\overrightarrow{\vec{p}} \cdot \overrightarrow{\vec{p}}}{\sqrt{2 E(E+m)}} \xi}=\binom{\left(1-\frac{\vec{p}^{2}}{8 m^{2}}+\frac{11 \vec{p}^{4}}{128 m^{4}}\right) \xi}{\left(\frac{1}{2 m}-\frac{3 \vec{p}^{2}}{16 m^{2}}+\frac{31 \vec{p}^{4}}{256 m^{4}}\right) \vec{\sigma} \cdot \vec{p} \xi}+\mathcal{O}\left(\frac{1}{m^{6}}\right)
$$

- expand in $p / m \sim v$:

$$
\bar{u}(\vec{p})(\not p-m) u(\vec{p})=\left(E-m-\frac{p^{2}}{2 m}+\frac{p^{4}}{8 m^{3}}\right) \xi^{\dagger} \xi+\mathcal{O}\left(\frac{1}{m^{4}}\right)
$$

- free non-relativistic Lagrangian

$$
\begin{gathered}
\mathcal{L}_{\mathrm{NRQED}}^{(0)}=\psi^{\dagger}\left(i \partial_{0}+\frac{\vec{\nabla}^{2}}{2 m}+\frac{\vec{\nabla}^{4}}{8 m^{3}}\right) \psi+\chi^{\dagger}\left(i \partial_{0}-\frac{\vec{\nabla}^{2}}{2 m}-\frac{\vec{\nabla}^{4}}{8 m^{3}}\right) \chi+\mathcal{O}\left(\frac{1}{m^{4}}\right) \\
\psi^{\dagger} \vec{\nabla}^{4} \psi \sim O_{j} \text { and } 1 /\left(8 m^{3}\right) \sim c_{j}
\end{gathered}
$$

- including interactions $\mathcal{L}_{\mathrm{QED}}^{\mathrm{int}}=e \bar{\Psi} A^{0} \gamma^{0} \Psi-e \bar{\Psi} \vec{A} \cdot \vec{\gamma} \Psi$
- from gauge invariance we could anticipate $\partial_{0} \rightarrow \partial_{0}-i e A^{0}$ and $\vec{\nabla} \rightarrow \vec{\nabla}+i e \vec{A}$
- here we stubbornly follow matching procedure
note: $\mathcal{L}_{\mathrm{UT}}$ is gauge invariant and all our operators O_{j} in $\mathcal{L}_{\mathrm{UT}}$ are gauge invariant \Longrightarrow the c_{j} must be gauge invariant as well
- then with $\vec{q}=\vec{p}^{\prime}-\vec{p}$ we get (and similar for $\bar{v}\left(\vec{p}^{\prime}\right)$ and $v(\vec{p})$)

$$
\begin{aligned}
& \bar{u}\left(\vec{p}^{\prime}\right) \gamma^{0} u(\vec{p})=\left(1-\frac{\vec{q}^{2}}{8 m^{2}}\right) \xi^{\dagger} \xi+\frac{i}{4 m^{2}} \xi^{\dagger} \vec{\sigma} \cdot\left(\vec{p}^{\prime} \times \vec{p}\right) \xi+\mathcal{O}\left(\frac{1}{m^{3}}\right) \\
& \bar{u}\left(\vec{p}^{\prime}\right) \vec{\gamma} u(\vec{p})=\frac{1}{2 m} \xi^{\dagger}\left(\left(\vec{p}+\vec{p}^{\prime}\right)+i(\vec{\sigma} \times \vec{q})\right) \xi+\mathcal{O}\left(\frac{1}{m^{3}}\right)
\end{aligned}
$$

- the interaction part of the non-relativistic Lagrangian

$$
\begin{aligned}
\mathcal{L}_{\mathrm{NRQED}}^{\mathrm{int}} & =e A^{0} \psi^{\dagger} \psi-\frac{e}{2 m} \psi^{\dagger} \vec{A} \cdot\left(\vec{p}+\vec{p}^{\prime}\right) \psi-\frac{e}{8 m^{2}} A^{0} \psi^{\dagger} \vec{q}^{\prime 2} \psi \\
& +\frac{i e}{4 m^{2}} A^{0} \psi^{\dagger} \vec{\sigma} \cdot\left(\vec{p}^{\prime} \times \vec{p}\right) \psi-\frac{i e}{2 m} \psi^{\dagger} \vec{A} \cdot(\vec{\sigma} \times \vec{q}) \psi+\chi \text {-terms }+\mathcal{O}\left(\frac{1}{m^{3}}\right)
\end{aligned}
$$

combine:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{NRQED}} & =\psi^{\dagger}\left(i \partial_{0}+\frac{\vec{\nabla}^{2}}{2 m}+\frac{\vec{\nabla}^{4}}{8 m^{3}}\right) \psi+e A^{0} \psi^{\dagger} \psi-\frac{e}{2 m} \psi^{\dagger} \vec{A} \cdot\left(\vec{p}+\vec{p}^{\prime}\right) \psi \\
& -\frac{e}{8 m^{2}} A^{0} \psi^{\dagger} \vec{q}^{\prime 2} \psi+\frac{i e}{4 m^{2}} A^{0} \psi^{\dagger} \vec{\sigma} \cdot\left(\vec{p}^{\prime} \times \vec{p}\right) \psi-\frac{i e}{2 m} \psi^{\dagger} \vec{A} \cdot(\vec{\sigma} \times \vec{q}) \psi \\
& =\psi^{\dagger}\left(i D_{0}+\frac{\vec{D}^{2}}{2 m}+\frac{\vec{D}^{4}}{8 m^{3}}\right) \psi-\frac{e}{2 m} \psi^{\dagger} \vec{\sigma} \cdot \vec{B} \psi+\frac{e}{8 m^{2}} \psi^{\dagger}(\vec{D} \cdot \vec{E}-\vec{E} \cdot \vec{D}) \psi \\
& +\frac{i e}{8 m^{2}} \psi^{\dagger} \vec{\sigma} \cdot(\vec{D} \times \vec{E}-\vec{E} \times \vec{D}) \psi+\chi \text {-terms }+\mathcal{O}\left(\frac{1}{m^{4}}\right)
\end{aligned}
$$

with $E^{i}=F^{i 0} \quad$ and $\quad B^{i}=-1 / 2 \epsilon^{i j k} F_{j k} \quad$ or
$\vec{E}=-\vec{\nabla}\left(A^{0}\right)-\partial^{0} \vec{A}-i g\left[T^{b}, T^{c}\right] \vec{A}^{b}\left(A^{0}\right)^{c} \quad$ and $\quad \vec{B}=\vec{\nabla} \times \vec{A}-\frac{i g}{2}\left[T^{b}, T^{c}\right] \vec{A}^{b} \times \vec{A}^{c}$
note: all operators are gauge independent! even in non-abelian case

$$
\begin{aligned}
& \vec{E}^{a} \rightarrow \vec{E}^{a}+f^{a b c} \vec{E}^{b} \omega^{c} \\
& \vec{B}^{a} \rightarrow \vec{B}^{a}+f^{a b c} \vec{B}^{b} \omega^{c}
\end{aligned}
$$

going from QED to QCD and preparing for loops
loop calculations to be done in D dimensions (dimensional regularization): avoid intrinsic 4-dim objects like $\epsilon^{i j k}, \times$ etc.

$$
\begin{aligned}
\mathcal{L}_{\mathrm{NRQCD}} & =\psi^{\dagger}\left(i D_{0}+\frac{\vec{D}^{2}}{2 m}+\frac{\vec{D}^{4}}{8 m^{3}}\right) \psi-\frac{c_{F} g}{2 m} \psi^{\dagger}\left(\frac{-\sigma^{i j} F^{i j}}{2}\right) \psi+\frac{c_{D} g}{8 m^{2}} \psi^{\dagger}\left[D^{i}, E^{i}\right] \psi \\
& +\frac{c_{s} i g}{8 m^{2}} \psi^{\dagger} \sigma^{i j}\left[D^{i}, E^{j}\right] \psi+\mathcal{L}_{\text {light }}+\chi \text {-terms }+\mathcal{O}\left(\frac{1}{m^{4}}\right)
\end{aligned}
$$

define D-dimensional Pauli "algebra":

$$
\begin{aligned}
& \sigma^{i j}=\frac{\left[\sigma^{i}, \sigma^{j}\right]}{2 i} \xrightarrow{D \rightarrow 4} \epsilon^{i j k} \sigma^{k} \\
& \frac{-\sigma^{i j} F^{i j}}{2} \xrightarrow{D \rightarrow 4} \vec{\sigma} \cdot \vec{B} \\
& c_{i}\left(\mu_{h}\right)=1+\alpha_{s}\left(\log \left(\mu_{h} / m\right)+\mathrm{cst}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right) \\
& \text { contain effects of hard modes }
\end{aligned}
$$

matching coefficients:

At $\mathcal{O}\left(1 / m^{2}\right)$ there are also four-fermion operators

$$
\begin{aligned}
\delta \mathcal{L}_{\mathrm{NRQCD}} & =\frac{d_{s s}}{m_{1} m_{2}} \psi_{1}^{\dagger} \psi_{1} \chi_{2}^{\dagger} \chi_{2}+\frac{d_{s v}}{m_{1} m_{2}} \psi_{1}^{\dagger} \vec{\sigma} \psi_{1} \chi_{2}^{\dagger} \vec{\sigma} \chi_{2} \\
& +\frac{d_{v s}}{m_{1} m_{2}} \psi_{1}^{\dagger} T^{a} \psi_{1} \chi_{2}^{\dagger} T^{a} \chi_{2}+\frac{d_{v v}}{m_{1} m_{2}} \psi_{1}^{\dagger} \vec{\sigma} T^{a} \psi_{1} \chi_{2}^{\dagger} \vec{\sigma} T^{a} \chi_{2}
\end{aligned}
$$

- effects of hard loops are encoded in matching coefficients $d \sim \mathcal{O}(\alpha)$
- compare "standard" BSM effective operators
- we have now a theory with new Feynman rules

$$
-\frac{c_{D} i g}{8 m^{2}} \vec{q}^{2} T^{a}
$$

- this theory reproduces QED/QCD Green functions in the non-relativistic limit up to the order to which the matching has been done
- expansion in $\sim p / m \sim v$ is trivial (if tedious) at tree level
- how to expand in loops?
- loop momentum k runs through all scales $0 \rightarrow m v^{2} \rightarrow m v \rightarrow m \rightarrow \infty$
- computing full integral and then expanding is neither efficient nor systematic (power counting)
- method of regions (expand before doing the integration)
- separate expansion of integrand in all regions
- sum of all regions add up to full result
- each part is simpler and has unique power counting
- identify modes [Beneke, Smirnov] \Rightarrow asymptotic expansion (method of regions)
$\left.\begin{array}{ll}\text { hard } & k^{\mu} \sim m \\ \text { soft } & k^{\mu} \sim m v \\ \text { potential } & k^{0} \sim m v^{2} ; \vec{k} \sim m v \\ \text { ultrasoft } & k^{\mu} \sim m v^{2}\end{array}\right\}$ expand integrand not integral
- $\int d^{D} k f(k, p, m)=\int d^{D} k f_{\mathrm{h}}+\int d^{D} k f_{\mathrm{p}}+\int d^{D} k f_{\mathrm{s}}+\int d^{D} k f_{\mathrm{us}}$

Method of regions: a simple example
Let $p^{2} \ll M^{2}$ and assume we want to compute (the first few terms in an expansion in $p^{2} / M^{2} \ll 1$ of) the integral (pick μ s.t. $p^{2} \ll \mu^{2} \ll M^{2}$)

$$
\int \frac{d^{d} k}{\left(k^{2}-p^{2}\right)\left(k^{2}-M^{2}\right)}
$$

Method of regions: a simple example
Let $p^{2} \ll M^{2}$ and assume we want to compute (the first few terms in an expansion in $p^{2} / M^{2} \ll 1$ of) the integral (pick μ s.t. $p^{2} \ll \mu^{2} \ll M^{2}$)

$$
\begin{gathered}
\int \frac{d^{d} k}{\left(k^{2}-p^{2}\right)\left(k^{2}-M^{2}\right)} \\
=\int_{|k|<\mu} \frac{d^{d} k}{\left(k^{2}-p^{2}\right)\left(k^{2}-M^{2}\right)}+\int_{|k|>\mu} \frac{d^{d} k}{\left(k^{2}-p^{2}\right)\left(k^{2}-M^{2}\right)}
\end{gathered}
$$

Method of regions: a simple example
Let $p^{2} \ll M^{2}$ and assume we want to compute (the first few terms in an expansion in $p^{2} / M^{2} \ll 1$ of) the integral (pick μ s.t. $p^{2} \ll \mu^{2} \ll M^{2}$)

$$
\begin{gathered}
\int \frac{d^{d} k}{\left(k^{2}-p^{2}\right)\left(k^{2}-M^{2}\right)} \\
=\int_{|k|<\mu} \frac{d^{d} k}{\left(k^{2}-p^{2}\right)\left(k^{2}-M^{2}\right)}+\int_{|k|>\mu} \frac{d^{d} k}{\left(k^{2}-p^{2}\right)\left(k^{2}-M^{2}\right)} \\
=\int_{|k|<\mu} \frac{d^{d} k}{\left(k^{2}-p^{2}\right)} \sum_{n} \frac{\left(k^{2}\right)^{n}}{\left(M^{2}\right)^{n+1}}+\int_{|k|>\mu} \frac{d^{d} k}{\left(k^{2}-M^{2}\right)} \sum_{n} \frac{\left(p^{2}\right)^{n}}{\left(k^{2}\right)^{n+1}}
\end{gathered}
$$

Method of regions: a simple example
Let $p^{2} \ll M^{2}$ and assume we want to compute (the first few terms in an expansion in $p^{2} / M^{2} \ll 1$ of) the integral (pick μ s.t. $p^{2} \ll \mu^{2} \ll M^{2}$)

$$
\begin{gathered}
\int \frac{d^{d} k}{\left(k^{2}-p^{2}\right)\left(k^{2}-M^{2}\right)} \\
=\int_{|k|<\mu} \frac{d^{d} k}{\left(k^{2}-p^{2}\right)\left(k^{2}-M^{2}\right)}+\int_{|k|>\mu} \frac{d^{d} k}{\left(k^{2}-p^{2}\right)\left(k^{2}-M^{2}\right)} \\
=\int_{|k|<\mu} \frac{d^{d} k}{\left(k^{2}-p^{2}\right)} \sum_{n} \frac{\left(k^{2}\right)^{n}}{\left(M^{2}\right)^{n+1}}+\int_{|k|>\mu} \frac{d^{d} k}{\left(k^{2}-M^{2}\right)} \sum_{n} \frac{\left(p^{2}\right)^{n}}{\left(k^{2}\right)^{n+1}} \\
=\int \frac{d^{d} k}{\left(k^{2}-p^{2}\right)} \sum_{n} \frac{\left(k^{2}\right)^{n}}{\left(M^{2}\right)^{n+1}}+\int \frac{d^{d} k}{\left(k^{2}-M^{2}\right)} \sum_{n} \frac{\left(p^{2}\right)^{n}}{\left(k^{2}\right)^{n+1}}+\text { tadpoles }
\end{gathered}
$$

Method of regions: a simple example
Let $p^{2} \ll M^{2}$ and assume we want to compute (the first few terms in an expansion in $p^{2} / M^{2} \ll 1$ of) the integral (pick μ s.t. $p^{2} \ll \mu^{2} \ll M^{2}$)

$$
\begin{gathered}
\int \frac{d^{d} k}{\left(k^{2}-p^{2}\right)\left(k^{2}-M^{2}\right)} \\
=\int_{|k|<\mu} \frac{d^{d} k}{\left(k^{2}-p^{2}\right)\left(k^{2}-M^{2}\right)}+\int_{|k|>\mu} \frac{d^{d} k}{\left(k^{2}-p^{2}\right)\left(k^{2}-M^{2}\right)} \\
=\int_{|k|<\mu} \frac{d^{d} k}{\left(k^{2}-p^{2}\right)} \sum_{n} \frac{\left(k^{2}\right)^{n}}{\left(M^{2}\right)^{n+1}}+\int_{|k|>\mu} \frac{d^{d} k}{\left(k^{2}-M^{2}\right)} \sum_{n} \frac{\left(p^{2}\right)^{n}}{\left(k^{2}\right)^{n+1}} \\
=\underbrace{\int \frac{d^{d} k}{\left(k^{2}-p^{2}\right)} \sum_{n} \frac{\left(k^{2}\right)^{n}}{\left(M^{2}\right)^{n+1}}+\int \frac{d^{d} k}{\left(k^{2}-M^{2}\right)} \sum_{n} \frac{\left(p^{2}\right)^{n}}{\left(k^{2}\right)^{n+1}}}_{\text {additional UV - IR singularities possible }}
\end{gathered}
$$

Method of regions: a simple example

Let $p^{2} \ll M^{2}$ and assume we want to compute (the first few terms in an expansion in $p^{2} / M^{2} \ll 1$ of) the integral (pick μ s.t. $p^{2} \ll \mu^{2} \ll M^{2}$)

$$
\begin{gathered}
\int \frac{d^{d} k}{\left(k^{2}-p^{2}\right)\left(k^{2}-M^{2}\right)} \\
=\underbrace{\int \frac{d^{d} k}{\left(k^{2}-p^{2}\right)} \sum_{n} \frac{\left(k^{2}\right)^{n}}{\left(M^{2}\right)^{n+1}}}_{\text {soft }}+\underbrace{\int \frac{d^{d} k}{\left(k^{2}-M^{2}\right)} \sum_{n} \frac{\left(p^{2}\right)^{n}}{\left(k^{2}\right)^{n+1}}}_{\text {hard }}
\end{gathered}
$$

- identify modes: soft $(k \sim p)$ and hard $(k \sim M)$ (in general more)
- expand integrand in each region to whatever order required
- each term has a well-defined scaling in $p^{2} / M^{2} \rightarrow$ power counting
- no explicit cutoff needed (dimensional regularization is important)

Method of regions: a simple example

$$
\begin{aligned}
& \int \frac{d^{d} k}{\left(k^{2}-p^{2}\right)^{a}\left(k^{2}-M^{2}\right)^{b}} \\
= & \frac{i(-1)^{a+b}}{(4 \pi)^{d / 2}}\left(M^{2}\right)^{\frac{d}{2}-a-b} \frac{\Gamma\left(a+b-\frac{d}{2}\right)}{\Gamma(a+b)}{ }_{2} F_{1}\left(\left.\begin{array}{c}
a ; a+b-\frac{d}{2} \\
a+b
\end{array} \right\rvert\, 1-\frac{p^{2}}{M^{2}}\right) \\
= & \sum_{n=0}^{\infty} \frac{(-n-b+1)_{n}}{\Gamma(n+1)}\left(-M^{2}\right)^{-b-n} \int \frac{d^{d} k}{\left(k^{2}\right)^{-n}\left(k^{2}-p^{2}\right)^{a}} \\
& +\sum_{n=0}^{\infty} \frac{(-n-a+1)_{n}}{\Gamma(n+1)}\left(-p^{2}\right)^{n} \int \frac{d^{d} k}{\left(k^{2}\right)^{a+n}\left(k^{2}-M^{2}\right)^{b}} \\
= & \frac{i(-1)^{a}}{(4 \pi)^{d / 2}}\left(p^{2}\right)^{\frac{d}{2}-a}\left(-M^{2}\right)^{-b} \frac{\Gamma\left(a-\frac{d}{2}\right)}{\Gamma(a)}{ }_{2} F_{1}\left(\left.\begin{array}{c}
\frac{d}{2} ; \\
1-a+\frac{d}{2}
\end{array} \right\rvert\, \frac{p^{2}}{M^{2}}\right) \\
& +\frac{i(-1)^{a+b}}{(4 \pi)^{d / 2}}\left(M^{2}\right)^{\frac{d}{2}-a-b} \frac{\Gamma\left(\frac{d}{2}-a\right) \Gamma\left(a+b-\frac{d}{2}\right)}{\Gamma(b) \Gamma\left(\frac{d}{2}\right)}{ }_{2} F_{1}\left(\left.\begin{array}{l}
a ; a+b-\frac{d}{2} \\
1+a-\frac{d}{2}
\end{array} \right\rvert\, \frac{p^{2}}{M^{2}}\right)
\end{aligned}
$$

example of hard loop

before expansion

$$
I_{\text {full }}=\int \frac{d^{D} k}{k^{2}\left[(k+p)^{2}-m_{1}^{2}\right]\left(k+p-p^{\prime}\right)^{2}\left[(k-\bar{p})^{2}-m_{2}^{2}\right]}
$$

after expansion

$$
I_{\mathrm{h}}=\int \frac{d^{D} k}{k^{2}\left[k^{2}-m_{2}^{2}\right] k^{2}\left[k^{2}-m_{1}^{2}\right]}
$$

- I_{h} is much simpler
- $I_{\text {full }}$ and I_{h} have the same UV-singularities \Longrightarrow renormalization
- I_{h} has IR singularities not present in $I_{\text {full }} \Longrightarrow$ canceled by UV singularities of ET
- scaling in $v: I_{\mathrm{h}} \sim 1$ (known before integration) $k \sim m \sim 1$
- scaling in v : $I_{\text {full }}$ not uniform (different scales) $p_{0} \sim m v^{2}, p \sim m v^{2}, k \sim$ anything

renormalization group improvement

- explicit computation of matching coefficients at one-loop after UV renormalization typically yields $c_{i}(\mu)=1+\alpha(\mu)\left(\gamma_{i}^{0}\left[\frac{1}{\epsilon}-\log \frac{m}{\mu}\right]+\#\right)$
- the singularity is cancelled by a UV singularity of NRQCD (anomlaous dimension γ_{i} of NRQCD operators)
- the hard matching coefficient has to be computed at a hard scale $\mu \rightarrow \mu_{h} \sim m$ to avoid large logs
- when used in NRQCD it has to be evaluated at the soft scale $\mu \rightarrow \mu_{s} \sim m v$
- solution to standard rge for anomlaous dimension $\mu \frac{d}{d \mu} c_{i}(\mu)=\gamma_{i} c_{i}(\mu)$ is given by
$c_{i}\left(\mu_{s}\right)=c_{i}\left(\mu_{h}\right) \exp \int_{\alpha\left(\mu_{s}\right)}^{\alpha\left(\mu_{h}\right)} \frac{\gamma_{i}(\alpha) d \alpha}{2 \beta(\alpha)}$
- this resums all (potentially large) logarithms $L \equiv \log \mu_{h} / \mu_{s} \sim \log \alpha \sim \log v$
- with γ_{i}^{0} we get NLL (next-to-leading logarithmic) accuracy, i.e. $\alpha^{n} L^{n-1}$

NRQCD Lagrangian [Caswell, Bodwin, Braaten, Lepage]

but now in $D=4-2 \epsilon$ dimensions

$$
\begin{aligned}
\mathcal{L}_{\mathrm{NRQCD}} & =\psi^{\dagger}\left(i D^{0}+c_{k} \frac{\vec{D}^{2}}{2 m}\right) \psi+\frac{c_{4}}{8 m^{3}} \psi^{\dagger} \vec{D}^{4} \psi-\frac{g c_{F}}{2 m} \psi^{\dagger} \sigma^{i} B^{i} \psi \\
& +\frac{g c_{D}}{8 m^{2}} \psi^{\dagger}\left[D^{i}, E^{i}\right] \psi+\frac{i g c_{S}}{8 m^{2}} \psi^{\dagger} \sigma^{i j}\left[D^{i}, E^{j}\right] \psi+(\psi \leftrightarrow \chi) \\
& +\frac{\alpha_{s} d_{s s}}{m^{2}} \psi^{\dagger} \psi \chi^{\dagger} \chi+\frac{\alpha_{s} d_{s v}}{m^{2}} \psi^{\dagger} \sigma^{i} \psi \chi^{\dagger} \sigma^{i} \chi \\
& +\frac{\alpha_{s} d_{v s}}{m^{2}} \psi^{\dagger} T^{a} \psi \chi^{\dagger} T^{a} \chi+\frac{\alpha_{s} d_{v v}}{m^{2}} \psi^{\dagger} \sigma^{i} T^{a} \psi \chi^{\dagger} \sigma^{i} T^{a} \chi+\mathcal{L}_{\mathrm{light}}
\end{aligned}
$$

- resum $\ln \left(\mu_{h} / \mu_{s}\right)=\ln v$ in c_{i} and $d_{i j}$ using renormalization group
- RGI: single heavy quark sector as in HQET [Bauer, Manohar, ...] RGI: four heavy quark operators [Pineda]
- QED \rightarrow NRQED: hard loops $p^{\mu} \sim m$ integrated out, not dynamical any longer (we exploited $m \gg m v$)
- we are left with

$$
\begin{array}{ll}
\text { soft } & p^{\mu} \sim m v \\
\text { potential } & p^{0} \sim m v^{2} ; \vec{p} \sim m v \\
\text { ultrasoft } & p^{\mu} \sim m v^{2}
\end{array}
$$

- an operator like $\psi^{\dagger}\left[D^{i}, E^{i}\right] \psi$ does not have a fixed power in v
- final state has only potential fermions and ultrasoft photons
- NRQED \rightarrow potential NRQED (pNRQED): integrate out soft fermions and potential and soft photons
- in pNRQED only potential fermions and ultrasoft photons are dynamical (exploit also $m v \gg m v^{2}$)
- "integrating out" technically again with method of regions

After a few slides we will end up with the pNRQCD Lagrangian in $d=3-2 \epsilon$ dimensions

$$
\begin{aligned}
\mathcal{L}_{\mathrm{QED}} & \Rightarrow \mathcal{L}_{\mathrm{NRQED}} \Rightarrow \\
\mathcal{L}_{\mathrm{pNRQCD}} & =\psi^{\dagger}\left(i D^{0}+\frac{\partial^{2}}{2 m}\right) \psi+\chi^{\dagger}\left(i D^{0}-\frac{\partial^{2}}{2 m}\right) \chi \\
& +\int d^{3} r\left(\psi^{\dagger} T^{a} \psi\right) V\left(\chi^{\dagger} T^{a} \chi\right) \\
& +\psi^{\dagger}\left(\frac{\partial^{4}}{8 m^{3}}-g_{s} \vec{x} \cdot \vec{E}\right) \psi+\chi^{\dagger}\left(-\frac{\partial^{4}}{8 m^{3}}-g_{s} \vec{x} \cdot \vec{E}\right) \chi \\
V & =-4 \pi C_{F} \frac{\alpha_{s}}{\vec{q}^{2}}-C_{F} \frac{\alpha_{s}^{2}}{\vec{q}^{2}}\left(a_{1}-\beta_{0} \ln \frac{\vec{q}^{2}}{\mu^{2}}\right)+\ldots \\
& -C_{F} C_{A} \alpha_{s}^{2} D_{s}^{(1)} \frac{\pi^{2} \mathcal{K}(\epsilon)}{m q^{1+2 \epsilon}}+\frac{3 \pi C_{F} \alpha_{s} D_{d, s}^{(2)}}{m^{2}}-\frac{4 \pi C_{f} D_{s^{2}}^{(2)}}{d m^{2}}\left[s_{1}^{i}, s_{1}^{j}\right]\left[s_{2}^{i}, s_{2}^{j}\right] \ldots
\end{aligned}
$$

- static potential (known to a_{3}), non-analytic potential ..., d-dim generalization of Breit-Fermi potential (with spin-spin, L^{2} etc)
- resum $\ln \left(\mu_{s} / \mu_{u s}\right)=\ln v$ in matching coefficients $D_{s}^{(1)}, D_{d, s}^{(2)}, D_{s^{2}}^{(2)} \ldots$

NRQED \rightarrow pNRQED

Power counting

	mom	prop form	prop.	$d^{4} k$	field
pot. Q	$\left(v^{2}, \vec{v}\right)$	$\left[k^{0}-\vec{k}^{2} /(2 m)\right]^{-1}$	v^{-2}	v^{5}	$v^{3 / 2}$
pot. g		$\left[-\vec{k}^{2}\right]^{-1}$	v^{-2}	v^{5}	$v^{3 / 2}$
soft Q	(v, \vec{v})	$\left[k^{0}\right]^{-1}$	v^{-1}	v^{4}	$v^{3 / 2}$
soft g		$\left[k^{2}\right]^{-1}$	v^{-2}	v^{4}	v
us g	$\left(v^{2}, \vec{v}^{2}\right)$	$\left[k^{2}\right]^{-1}$	v^{-4}	v^{8}	v^{2}

operators in $\mathcal{L}_{\mathrm{pNRQCD}}$

$$
\begin{array}{lll}
\psi^{\dagger}\left(i \partial^{0}+\left(\partial^{2} / 2 m\right)\right) \psi & v^{3 / 2} v^{2} v^{3 / 2}=v^{5} & \text { LO } \\
\left(\psi^{\dagger} T^{a} \psi\right)\left(\alpha_{s} / \vec{q}^{2}\right)\left(\chi^{\dagger} T^{a} \chi\right) & v^{3}\left(\alpha_{s} / v^{2}\right) v^{3}=\alpha_{s} v^{4} & \text { LO } \\
\left(\psi^{\dagger} T^{a} \psi\right)\left(\alpha_{s}^{2} / \vec{q}^{2}\right)\left(\chi^{\dagger} T^{a} \chi\right) & v^{3}\left(\alpha_{s}^{2} / v^{2}\right) v^{3}=\alpha_{s}^{2} v^{4} & \text { NLO } \\
\left(\psi^{\dagger} T^{a} \psi\right)\left(\alpha_{s}^{2} / q\right)\left(\chi^{\dagger} T^{a} \chi\right) & v^{3}\left(\alpha_{s}^{2} / v\right) v^{3}=\alpha_{s}^{2} v^{3} & \text { NNLO } \\
\psi^{\dagger}\left(g_{s} \vec{x} \cdot \vec{E}\right) \psi & v^{3 / 2} \sqrt{\alpha_{s}} v^{4} v^{3 / 2}=\sqrt{\alpha_{s}} v^{7} & \text { NNNLO }
\end{array}
$$

- Breit potential the naive diagram we started with now looks like

$\frac{c_{F} g}{2 m}\left[\sigma_{i}, \sigma_{j}\right] q_{j} T^{a}$

$\delta V_{\text {Breit }}$
- the LO potential: $V= \begin{cases}-\frac{\alpha_{s}}{4 \pi} \frac{C_{f}}{\vec{q}^{2}} & \text { colour singlet } \\ -\frac{\alpha_{s}}{4 \pi} \frac{C_{f}-C_{A} / 2}{\vec{q}^{2}} & \text { colour octet }\end{cases}$
- the Breit potential depends on spin projection
- $\delta V_{\text {Breit }}= \begin{cases}\frac{\vec{p}^{2}}{m^{2}}+\frac{\vec{q}^{2}}{m^{2}}\left(\frac{(D-2)(D-5)}{4(D-1)} c_{F}^{2}-\frac{1}{4}\left(1+c_{D}\right)\right) & \text { spin } 1 \\ \frac{\vec{r}^{2}}{m^{2}}+\frac{\vec{q}^{2}}{m^{2}}\left(\frac{(D-2)}{4} c_{F}^{2}-\frac{1}{4}\left(1+c_{D}\right)\right) & \text { spin } 0\end{cases}$

Power counting potential ladder diagrams have to be resummed

α / v^{2}

$\alpha / v^{2} \alpha / v$

$\alpha / v^{2}(\alpha / v)^{2}$

This gives the Green function in momentum space

$$
\begin{aligned}
\tilde{G}_{c}\left(\vec{p}, \vec{p}^{\prime}, E\right)= & (2 \pi)^{d} \delta^{(d)}\left(\vec{p}-\vec{p}^{\prime}\right) \frac{-1}{E-\vec{p}^{2} / m} \\
& +\frac{4 \pi C_{F} \alpha_{s}}{\left(E-\vec{p}^{2} / m\right)\left(\vec{p}-\vec{p}^{\prime}\right)^{2}\left(E-\vec{p}^{\prime 2} / m\right)}+\text { finite }
\end{aligned}
$$

or via Fourier in coordinate space ($\nu \equiv C_{F} \alpha_{s} /(2 \sqrt{-E / m})$)
$G_{C}(0,0, E)=\frac{\alpha_{S} C_{F} m^{2}}{8 \pi}\left(\frac{1}{2 \epsilon}-\ln \frac{-4 m E}{\mu^{2}}-\frac{1}{\nu}-2 \psi(1-\nu)-2 \gamma_{E}+1\right)$

NLO static potential

as an example consider the static potential at NLO

- all diagrams taken separately are gauge dependent
- gauge dependence cancels in sum (as it must) $\rightarrow a_{1}$ is gauge independent !!
- consider e.g. box diagram
- hard loop \rightarrow matching coefficient of four-fermion operator
- potential loop \rightarrow LO Green function
- soft loop \rightarrow NLO static potential
- an ordinary QED Feynman diagram splits and contributes to different parts

$$
\begin{aligned}
\mathcal{L}_{\mathrm{pNRQCD}} & =\psi^{\dagger}\left(i D^{0}+\frac{\partial^{2}}{2 m}\right) \psi+\chi^{\dagger}\left(i D^{0}-\frac{\partial^{2}}{2 m}\right) \chi \\
& +\int d^{3} r\left(\psi^{\dagger} T^{a} \psi\right) V\left(\chi^{\dagger} T^{a} \chi\right) \\
& +\psi^{\dagger}\left(\frac{\partial^{4}}{8 m^{3}}-g_{s} \vec{x} \cdot \vec{E}\right) \psi+\chi^{\dagger}\left(-\frac{\partial^{4}}{8 m^{3}}-g_{s} \vec{x} \cdot \vec{E}\right) \chi \\
V & =-4 \pi C_{F} \frac{\alpha_{s}}{\vec{q}^{2}}+\delta V
\end{aligned}
$$

- QFT \rightarrow potential $V^{0}+\delta V$
- each term has a well-defined power counting, ultrasoft effects enter at NNNLO
- recall everything you know about QM and do QM pert. theory in momentum space
- for higher-order corrections evaluate single and double insertions
$\delta G_{c}(0,0, E)=\int \prod \frac{d^{d} \vec{p}_{i}}{(2 \pi)^{d}} \tilde{G}_{c}\left(\vec{p}_{1}, \vec{p}_{2}, E\right) \delta V\left(\vec{p}_{2}, \vec{p}_{3}\right) \tilde{G}_{c}\left(\vec{p}_{3}, \vec{p}_{4}, E\right)$
- all singularities (IR and UV) are consistently treated with dimensional regularization

Part II

Applications

$Q \bar{Q}$ near threshold

Heavy quark pair production: $\quad e^{+} e^{-} \rightarrow Q \bar{Q} \quad Q \in\{c, b,(t)\} \quad \sqrt{s} \sim 2 m$
cross section: $\quad R_{Q \bar{Q}}(s) \equiv \frac{\sigma\left(e^{+} e^{-} \rightarrow Q \bar{Q}\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}=12 \pi \operatorname{Im}\left\{\Pi\left(s+i O^{+}\right)\right\}$
correlator: $\quad \quad \quad \Pi^{\mu \nu} \equiv i \int d^{4} x e^{i q x}\langle 0| T\left\{j^{\mu}(x) j^{\nu}(0)|0\rangle=\left(-q^{2} g^{\mu \nu}+q^{\mu} q^{\nu}\right) \Pi\left(q^{2}\right)\right.$

$Q \bar{Q}$ near threshold

local parton-hadron duality $R_{Q \bar{Q}} \quad \longrightarrow$ global parton-hadron duality M_{n}

$$
\begin{aligned}
& \text { moments : } M_{n}^{\mathrm{th}} \equiv \int \frac{d s}{s^{n+1}} R_{Q \bar{Q}}(s)= \\
& M_{n}^{\mathrm{exp}}=M_{n}^{\mathrm{res}}+M_{n}^{\mathrm{cont}}= \\
&\left.\frac{12 \pi^{2}}{n!}\left(\frac{d}{d q^{2}}\right)^{n} \Pi\left(q^{2}\right)\right|_{q^{2}=0} \\
& \alpha_{\mathrm{em}}^{2} \sum_{k=1}^{K} \frac{\Gamma_{k}}{M_{k}^{2 n+1}} \underbrace{\int_{s \gtrsim s_{\mathrm{thr}}} \frac{d s}{s^{n+1}} R_{Q \bar{Q}}(s)}_{\text {well known }}
\end{aligned}
$$

$Q \bar{Q}$ near threshold

in real life:

mass of $\Upsilon(n S): \quad M_{\Upsilon(n S)}=2 m_{b}+E_{n} \quad$ typical scale: $\mu \sim p \sim \alpha_{s} C_{F} m_{b} / n$

$$
\mu \sim 1.3 \mathrm{GeV} \text { for } n=1
$$

dominant error non-perturbative \Longrightarrow later
moments: $\quad M_{n}=\int \frac{d s}{s^{n+1}} R_{b \bar{b}}(s) \quad$ typical scale: $\mu \sim 2 m_{b} / \sqrt{n}$

$$
\mu \sim 2.5 \mathrm{GeV} \text { for } n=14
$$

dominant error perturbative

- determination of theoretical moments via integration in complex plane
- typical scale $\mu_{s} \sim 2 m_{b} / \sqrt{n}$, choose $n \leq 14$
- determine experimental resonanance moments (very well known) and continuum moments (poorly known), choose $n \geq 6$

theoretical moments

perturbative part: gluon (quark) propagator $\sim 1 / k^{2}$, but contains terms to all orders in α_{s}

- in principle well understood
- can be computed with ever increasing accuracy (at the price of running into technical difficulties, current status 4-loop)
non-perturbative part: modification of gluon propagator from $\sim 1 / k^{2}$ for small k^{2}
- not very well understood \Rightarrow try to minimize the impact of non-perturbative physics
- parametrize ignorance in terms of (ever more suppressed) condensates
- leading contribution from gluon condensate $\left\langle\frac{\alpha}{\pi} G^{2}\right\rangle$

$Q \bar{Q}$ near threshold

theory: perturbative part

$$
M_{n}=\int \frac{d s}{s^{n+1}} R_{Q \bar{Q}}(s) \simeq \int \frac{2 d E}{(2 m)^{2 n+1}} e^{\frac{-n E}{m}} R_{Q Q}(E)
$$

relativistic sum rules: n "small", i.e $n \lesssim 4$ continuum contribution relevant
FO (fixed order) approach

$$
\Pi\left(q^{2}\right)=\frac{N_{c} e_{Q}^{2}}{(4 \pi)^{2}} \sum_{n \geq 0} C_{n}\left(\frac{q^{2}}{4 m^{2}}\right)^{n} \Longleftrightarrow M_{n}=\frac{3}{4} N_{c} e_{Q}^{2} \frac{1}{(2 m)^{2 n}} C_{n}
$$

pole scheme: $\quad C_{n}^{(\ell)} \sim n^{-3 / 2}(\alpha \sqrt{n})^{\ell}$
non-relativistic sum rules: n "large", i.e $n \gtrsim 8$ continuum contribution suppressed
ET (effective theory) approach
define $E=\sqrt{s}-2 m \equiv m v^{2} \quad \sim$ kinetic energy of heavy quarks if $v \ll 1$
n "large" $\leftrightarrow E \sim m \times 1 / n$ and $v \sim 1 / \sqrt{n}$ "small" \Rightarrow quantum mechanics

$Q \bar{Q}$ near threshold

large n (non-relativistic) vs small n (relativistic)

- large n corresponds to small $v \sim 1 / \sqrt{n}$, conventional fixed order (FO) perturbation theory breaks down (Coulomb singularity), i.e. computing $R_{Q \bar{Q}}$ to α^{ℓ} we have terms $v(\alpha / v)^{\ell} \sim n^{-1 / 2}(\sqrt{n} \alpha)^{\ell} \quad \longrightarrow$ use effective theory (ET)
- FO: standard expansion in coupling α, keeping full dependence of E, i.e. take into account all powers of $E / m=v^{2}$
- ET: double expansion in α and $v=\sqrt{E / m}$, using non-relativistic QCD.

$R_{Q Q}$	ET: LO	ET $:$ NLO	ET $:$ NNLO	\cdots
FO: LO	$v c_{0,1}$	$v^{2} c_{0,2}$	$v^{3} c_{0,3}$	$v^{4} c_{0,4}$
FO: NLO	$\alpha c_{1,0}$	$\alpha v c_{1,1}$	$\alpha v^{2} c_{1,2}$	$\alpha v^{3} c_{1,3}$
FO: NNLO	$\alpha^{2} v^{-1} c_{2,-1}$	$\alpha^{2} c_{2,0}$	$\alpha^{2} v c_{2,1}$	$\alpha^{2} v^{2} c_{2,2}$
\vdots	$\alpha^{3} v^{-2} c_{3,-2}$	$\alpha^{3} v^{-1} c_{3,-1}$	$\alpha^{3} c_{3,0}$	$\alpha^{3} v c_{3,1}$

$Q \bar{Q}$ near threshold

mass schemes So far implicitly understood mass = pole mass m_{Q} but pole mass has non-perturbative ambiguity (renormalon) \Rightarrow IR sensitivity $\sim \Lambda_{\mathrm{QCD}}$

$$
\underbrace{M_{\text {meson }}}_{\text {obs }}=\underbrace{m_{Q}}_{\text {pole mass }}+\underbrace{V}_{\text {ambig }}
$$

For $Q \bar{Q}$ system: m_{Q} has IR sensitivity, but this cancels in $2 m_{Q}+V_{\text {coul }} \simeq M_{\text {meson }}$
define PS-mass [Beneke] $m_{\mathrm{PS}}=m_{Q}+\frac{1}{2} \int_{q<\mu_{F}} \frac{d^{3} \vec{q}}{(2 \pi)^{3}} V_{\mathrm{coul}}(q) \quad$ with $\quad \mu_{F} \sim m v \sim m \alpha_{s}$
other closely related definitions $m_{X}=m_{Q}-\delta m$ are possible
these mass definitions are more appropriate for the description of heavy quarks near threshold \Rightarrow threshold mass

mass schemes

- pole mass is more IR sensitive (renormalon ambiguity) than other mass definitions \rightarrow non-perturbative ambiguity $\sim \Lambda_{\mathrm{QCD}}$
- use directly $m_{\overline{\mathrm{MS}}}$ where possible (relativistic sum rules)
- if use of $m_{\overline{\mathrm{MS}}}$ impossible (non-relativistic sum rules) use threshold mass (incoorporates renormalon cancellation) [Bigi et.al; Beneke; Hoang et.al; Pineda]
- express observable in terms of threshold mass (here use PS mass [Beneke] and RS mass [Pineda]) then relate threshold mass to $m_{\overline{\mathrm{MS}}}$; (three-loop exact [Melnikov, Ritbergen; Chetyrkin, Steinhauser] and four-loop via large- β_{0} approximation)

theory: non-perturbative part
leading contribution from gluon condensate [Shifman et.al; Broadhurst et.al., loffe]

$$
\delta M_{n}^{\mathrm{np}}=\frac{12 \pi^{2} e_{Q}^{2}}{\left(2 m_{b}\right)^{(2 n+4)}}\left\langle\frac{\alpha}{\pi} G^{2}\right\rangle a_{n}\left(1+\frac{\alpha}{\pi} b_{n}\right)+\ldots
$$

- $a_{n} \sim n^{3 / 2}$: importance of non-perturbative effects increases with increasing n
- size of corrections $\frac{\alpha}{\pi} b_{n}$ crucially depends on mass scheme
main questions:
- how important are gluon condensate contributions??
- $\left\langle\frac{\alpha}{\pi} G^{2}\right\rangle=0.012 \mathrm{GeV}^{4} \quad$ [Shifman et.al. 1978]
- $\left\langle\frac{\alpha}{\pi} G^{2}\right\rangle=0.021 \mathrm{GeV}^{4} \quad$ [Broadhurst et.al. 1994]
- $\left\langle\frac{\alpha}{\pi} G^{2}\right\rangle=(0.005 \pm 0.004) \mathrm{GeV}^{4} \quad$ [loffe 2005]
- can we trust the perturbative series of the coefficient function?
common wisdom ??:
- we can ignore $\left\langle\frac{\alpha}{\pi} G^{2}\right\rangle$ contributions in the case of bottom as long as $n \lesssim 16$
- what about the charm case ?

Determination of bottom mass from sum rules take M_{10} as an example:

through resummation of $\log v=\log \mu_{s} / \mu_{h}$:

- size of corrections reduced
- much improved μ_{s} scale dependence

$Q \bar{Q}$ near threshold

apply to charm ?? \Rightarrow non-perturbative contributions ??
leading contribution from gluon condensate [Shifman et.al; Broadhurst et.al., loffe]
$\delta M_{n}^{\mathrm{np}}=\frac{12 \pi^{2} e_{q}^{2}}{\left(2 m_{b}\right)^{(2 n+4)}}\left\langle\frac{\alpha}{\pi} G^{2}\right\rangle a_{n}\left(1+\frac{\alpha}{\pi}\left[b_{n}-(2 n+4) \delta b_{X}\right]\right)+\ldots$ with $a_{n} \sim n^{3 / 2}$
importance of non-perturbative effects increases with increasing n and decreasing m

bottom	n	1	4	8	12	16
	$10^{2} \delta M_{n}^{\mathrm{np}} / M_{n}^{\exp }$	-0.003	-0.02	0.02	0.36	1.6
	$10^{2} \delta M_{n}^{\mathrm{np}} / M_{n}^{\exp }$	0.1	0.7	2.0	3.8	5.9
	$\alpha_{s} b_{n}^{\mathrm{PS}} / \pi$	0.75	0.72	0.56	0.34	0.09

ignore non-perturbative effects and use $n<16$

$Q \bar{Q}$ near threshold

Determination of charm mass from sum rules [AS]

"combine":

n	m	$\delta m^{\text {th }}$	$\delta m^{\exp }$	δm^{α}	$\delta m^{G G}$	δm
3	1508	229	11	41	2	233
6	1506	81	3	27	3	85
10	1503	40	2	19	5	45
16	1500	27	1	14	6	31

single moment analysis

$$
m_{\mathrm{PS}}=1.50 \pm 0.04 \mathrm{GeV}
$$

convert to $\overline{\mathrm{MS}}$:
$\bar{m}=1.25 \pm 0.04 \mathrm{GeV}$

$Q \bar{Q}$ near threshold

Top threshold scan at linear collider

top pair produced near threshold
$E \equiv \sqrt{s}-2 m \ll m$
non-relativistic \rightarrow NRQCD

- lifetime for top $\tau \simeq 1 / \Gamma_{t} \simeq 5 \times 10^{-25} \mathrm{~s}$
- typical hadronization time $\tau_{\text {had }} \simeq 1 / \Lambda_{\mathrm{QCD}} \simeq 2 \times 10^{-24} \mathrm{~s}$
- $\tau<\tau_{\text {had }} \Rightarrow$ top decays before it forms hadrons
- Schrödinger eq: $\left(\frac{\Delta}{m^{2}}-\frac{\alpha_{s} C_{F}}{r}+\delta V-\left(E+i \Gamma_{t}\right)\right) G\left(\vec{r}, \vec{r}^{\prime}, E\right)=\delta\left(\vec{r}-\vec{r}^{\prime}\right)$
- poles (bound states) become a bump (would-be bound state)
- position of bump \Rightarrow determination of mass
- height and width of bump \Rightarrow determination of Γ_{t}
- typical scale: $\mu \simeq 2 m v \simeq 2\left(m \sqrt{E^{2}+\Gamma_{t}^{2}}\right)^{1 / 2} \gtrsim 30 \mathrm{GeV} \Rightarrow$ perturbation theory

$Q \bar{Q}$ near threshold

Top threshold scan at linear collider [Pineda, AS]

no resummation of $\log v$

with resummation of $\log v$

- normalization of cross section much more stable after resummation
- smaller scale dependence, smaller size of corrections
- potential to measure top mass to an accuracy of $\delta m_{t} \simeq 200 \mathrm{MeV}$
- potential for a precise measurement of Γ_{t} and maybe even the Yukawa coupling

$Q \bar{Q}$ near threshold

Top threshold scan at linear collider

$Q \bar{Q}$ near threshold

Top "threshold scan" at LHC [Hagiwara et.al.; Kiyo et.al.]

Extraction of bottom mass from $M_{\Upsilon(1, S)}$

$M_{\Upsilon(1 S)}=2 m_{b}+E \quad \Rightarrow \quad m_{b, \mathrm{PS}}=(4.58 \pm 0.04$ (th) ± 0.07 (non-pert) $) \mathrm{GeV}$
scales: $E_{n} \simeq-\frac{\left(C_{F} \alpha_{s}\right)^{2} m}{4 n^{2}} \Rightarrow$
$\mu_{s} \sim p_{n} \simeq \frac{C_{F} \alpha_{s} m}{2 n} \simeq 1.2 \mathrm{GeV}$ for $n=1$?!
non-perturbative effects !

full gluon propagator $=$ pert. part $\left(1 / q^{2}\right)+$ non-pert. part $\mu[\mathrm{GeV}]$

parameterization of QCD at low energies through condensates
leading: $\alpha_{s}\left\langle G_{\mu \nu}^{a} G_{\mu \nu}^{a}\right\rangle \Rightarrow$ contribution $\delta M_{\Upsilon(1 S)}^{\mathrm{np}}=\frac{624}{425} \pi m \frac{\left\langle G_{\mu \nu}^{a} G_{\mu \nu}^{a}\right\rangle}{\left(m C_{F} \alpha_{s}\right)^{4}} \simeq 70-90 \mathrm{MeV}$
subleading: $g_{s}^{3} f^{a b c}\left\langle G_{\mu \nu}^{a} G_{\nu \lambda}^{b} G_{\lambda \mu}^{c}\right\rangle \quad \ldots$

