PSI Summer School on Particle Physics

Adrian Signer

Paul Scherrer Institut

AUGUST 2012, ZUOZ

- usually we are testing the SM (or look for BSM) at as high energies as possible \rightarrow ideally direct production of new particles
- alternatively consider virtual effects, potentially sensitive to much higher energies
- this requires the "right" observable: precise measurements and precise theory
- prime example: (g-2)

in such tests we are looking for small effects !

- this lecture: the theory of (weakly) bound states
- motivation
 - better understanding of QFT
 - exploit potential of precise measurements to constrain/find BSM
- outlook Part I: theory (mainly Tue)
 - consider non-relativistic limit of QFT
 - explain fundamental principles of effective-theory approach
 - focus on SM part (BSM part is usually the easy bit)
 - health warning: some slides are rather technical
- outlook Part II: applications (mainly Fri)
 - heavy quark pair production near threshold
 - m_Q from $Qar{Q}$
 - decay ratios and HFS of $Q\bar{Q}$
 - hydrogen vs. muonic hydrogen

possible systems include:

_

positronium	$e^+ e^-$	$m_1 = m_2$	standard		
muonium	$\mu^{\pm} e^{\mp}$	$m_1 \gg m_2$	standard		
charmonium ($J/\psi,\eta_c$)	$car{c}$	$m_1 = m_2$	\sim standard		
bottomonium (Υ, η_b)	$b\overline{b}$	$m_1 = m_2$	Υ standard, η_b only just		
B_c meson	$bar{c}$	$m_1 \gg m_2$	scalar since 1998		
hydrogen	pe^-	$m_1 \gg m_2$	standard		
muonic hydrogen	$p\mu^-$	$m_1 \gg m_2$	standard		
hydrogen-like	$N e^-$	$m_1 \gg m_2$	standard		
antihydrogen	$ar{p}e^+$	$m_1 \gg m_2$	since \sim 1995		
true muonium	$\mu^+\mu^-$	$m_1 = m_2$	not (yet) produced		
tauonium	$ au^{\pm} e^{\mp}$	$m_1 \gg m_2$	not (yet) produced		
true tauonium	$\tau^+ \tau^-$	$m_1 = m_2$	not (yet) produced		
top	$tar{t}$	$m_1 = m_2$	never but nearly		

hydrogen-like atoms, recap

- two point masses m_1 and m_2
- reduced mass $m \equiv m_1 m_2 / (m_1 + m_2)$
- interacting through potential $V(r) = -Z \, lpha / r$

Schrödinger eq:
$$\left(-\frac{\Delta}{2m} - \frac{Z\alpha}{r}\right)|n\rangle = E_n|n\rangle$$

Coulomb Green function: $\left(-\frac{\Delta}{2m} - \frac{Z\alpha}{r} - E\right)G_c(\vec{r}, \vec{r}', E) = \delta^{(3)}(\vec{r} - \vec{r}')$

 $G_c(\vec{r}, \vec{r}', E)$ has poles for certain values on $E = E_n = -\frac{(Z\alpha)^2 m}{2n^2} \implies$ bound states

spectral representation:
$$G_c(\vec{r}, \vec{r}', E) = \sum_{n=1}^{\infty} \frac{\psi_n(r) \psi_n^*(r')}{E_n - E} + \int \frac{d\vec{k}}{(2\pi)^3} \frac{\psi_k(r) \psi_k^*(r')}{k^2/m - E}$$

bound states

hydrogen-like atoms, recap

 $G_c(\vec{r},\vec{r}',E)$ and $\psi_n(r)\equiv |n\rangle$ can be written in terms of Laguerre polynomials L_{n-l-1}^{2l+1}

$$\begin{split} \psi_{nlm}(r) \equiv |n\rangle_{lm} &= \sqrt{\frac{\rho^3 \,\Gamma(n-l)}{2n\Gamma(n+l+1)}} \,L_{n-l-1}^{2l+1}(\rho \,r) \,e^{-\rho \,r/2} \,(\rho \,r)^l \,Y_l^m(\theta,\phi) \\ \text{with } \rho \equiv \frac{2Z\alpha m}{n} = \frac{2}{a_0 \,n} \end{split}$$

$$\langle n | \frac{Z\alpha}{r} | n \rangle = \frac{m(Z\alpha)^2}{n^2} = \frac{Z\alpha}{n^2 a_0}$$
 Bohr radius

$$\langle n | \frac{p}{m} | n \rangle = \langle n | v | n \rangle = \frac{(Z\alpha)}{n^2}$$
 note: $v \ll 1$ for $Z \ll \alpha \implies$ non-relativistic system !

$$\langle n | \frac{p^2}{m^2} | n \rangle = \langle n | v^2 | n \rangle = \frac{(Z\alpha)^2}{n^2}$$
 note: $\langle n | Z\alpha/r | n \rangle \not\ll \langle n | p^2/m | n \rangle$

$$\langle n | \frac{p^2}{2m} | n \rangle = \frac{m(Z\alpha)^2}{2n^2} \stackrel{!?}{=} -E_n$$
 scaling $m \gg p \sim mv \gg E \sim mv^2$

hydrogen-like atoms, recap

- our implicit assumption that the system is non-relativistic is justified for $(Z\alpha) \ll 1$
- there is a hierarchy of scales:

hard scale:	$m \sim 1$
soft scale:	$p \sim v \sim (Z\alpha) \ll 1$
ultrasoft scale:	$E = p^2/(2m) \sim v^2 \ll v$

• we must not treat V(r) = -Zlpha/r as perturbation, even though $(Zlpha) \ll 1$

starting with free Schrödinger equation and treating $-Z\alpha/r$ as perturbation will never describe a bound state

- how to go on from here:
 - recall: we will be looking at high precision!
 - either: add further effects (fine structure, hyperfine structure, recoil effects, vacuum polarization . . .) to the potential ("bottom up", not here)
 - or: ask where does the potential come from and how is this connected to a quantum field theory ("top down", our approach here)

⇒ forget everything you know about Quantum Mechanics (for a while)

- two point masses m_1 and m_2
- reduced mass $m \equiv m_1 m_2 / (m_1 + m_2)$
- interacting through Lagrangian \mathcal{L}_{QED} and/or \mathcal{L}_{QCD}

- a closed solution of this problem is of course hopeless
- even if we could solve this, it would not answer all questions, since e.g. proton is not a point mass.
- goal for for the moment:
 - ignore these finite size effects
 - ignore non-perturbative effects (QCD)
 - exploit hierarchy of scales $v \ll 1$ and $(Z\alpha) \ll 1$ to make QFT tractable

After a few slides, in a first step we will end up with

$$\begin{aligned} \mathcal{L}_{\text{QED}} &= -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \bar{\Psi} (i \not D - m) \Psi \\ & \downarrow \\ \mathcal{L}_{\text{NRQED}} &= \psi^{\dagger} \left(i D^{0} + \frac{\vec{D}^{2}}{2m} \right) \psi + \frac{1}{8m^{3}} \psi^{\dagger} \vec{D}^{4} \psi - \frac{g c_{F}}{2m} \psi^{\dagger} \vec{\sigma} \cdot \vec{B} \psi \\ &+ \frac{g c_{D}}{8m^{2}} \psi^{\dagger} \left[\vec{D} \cdot \vec{E} - \vec{E} \cdot \vec{D} \right] \psi + \frac{i g c_{S}}{8m^{2}} \psi^{\dagger} \vec{\sigma} \cdot \left[\vec{D} \times \vec{E} - \vec{E} \times \vec{D} \right] \psi \\ &+ (\psi \leftrightarrow \chi) + \mathcal{L}_{\text{light}} \\ &+ \frac{\alpha_{s} d_{ss}}{m^{2}} \psi^{\dagger} \psi \chi^{\dagger} \chi + \frac{\alpha_{s} d_{sv}}{m^{2}} \psi^{\dagger} \sigma^{i} \psi \chi^{\dagger} \sigma^{i} \chi \\ &+ \dots \text{ calculable} \end{aligned}$$

- note: this is a strict QFT approach, in prinicple possible to include loops to any order
- $\mathcal{L}_{\mathrm{NRQCD}}$ is an expansion of $\mathcal{L}_{\mathrm{QED}}$ in v
- \mathcal{L}_{NRQCD} gives as good a description of bound states as \mathcal{L}_{QED} but is much more convenient

basics of NRQED/NRQCD

naive first step

exchange of photon im momentum space:

$$i\,\widetilde{V}(q) \sim rac{(-ie)(-iZe)(-i)}{q_0^2 - \vec{q}\,^2} o rac{-iZe^2}{\vec{q}\,^2} + \mathcal{O}(q_0^2/q^2)$$

after Fourier transform:

$$V(r) \sim rac{-Ze^2}{4\pi r} = -rac{Zlpha}{r}$$

- what happened to spinors of fermions ?
- what happened to γ^{μ} of vertices and $g^{\mu\nu}$ of propagator?
- let's do this properly
 - could do a Foldy-Wouthuysen transformation
 - here we will use "matching", a general technique useful in many effective theories: fix the coefficients c_j of the Lagrangian of the effective theory s.t. \mathcal{L}_{ET} and \mathcal{L}_{QED} give the same answer (up to a certain order in perturbation theory)

what is an effective theory?

theory: not a model; a framework for systematically improvable predictions effective: not the full story; applicable only in certain circumstances \Rightarrow factorization

underlying theory (UT)

contains dynamical (directly observable) d.o.f. of large/hard scale M_1 and small/soft scale M_2

• Lagrangian:
$$\mathcal{L}_{\mathrm{UT}} = \sum_{i} O_i(\phi_1, \phi_2)$$

• observables:
$$f(\alpha, M_1, M_2) = \sum_n \alpha^n f_{\mathrm{UT}}^{(n)}(M_1, M_2)$$

effective theory (ET)

- contains dynamical d.o.f. of soft scale M_2 ; ϕ_1 integrated out assuming $M_2/M_1 \ll 1$
- Lagrangian: $\mathcal{L}_{ET} = \sum_{j} c_{j} O_{j}(\phi_{2})$ observables: $f = \sum_{m} \alpha^{n} \sum_{m} (M_{2}/M_{1})^{m} f_{ET}^{(n,m)}$

main features of effective theories

UV singularities \rightarrow renormalize for UT: $[O_i] \leq 4$

$$\mathcal{L}_{\text{UT}} \simeq -\frac{1}{4} W_i^{\mu\nu} W_{\mu\nu}^i - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \sum g_w \left(\bar{\psi} \gamma^\mu \{ \gamma_5 \} \tau^i \psi \right) W_{\mu}^i + e \left(\bar{\psi} \gamma^\mu \psi \right) A_{\mu} + \dots$$

integrating out the W mode \Rightarrow additional singularities at the boundary! IR singularity of $\mathcal{L}_{UT} = UV$ singularity of \mathcal{L}_{ET}

$$\mathcal{L}_{\rm ET} \simeq -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + e \left(\bar{\psi} \gamma^{\mu} \psi \right) A_{\mu} + \sum c(M_W) \left(\bar{\psi} \left\{ \gamma^{\mu} \gamma_5 \tau^i T^a \right\} \psi \right) \left(\bar{\psi} \left\{ \gamma^{\mu} \gamma_5 \tau^i T^a \right\} \psi \right)$$

IR singularities \rightarrow form physical observables

main features of effective theories

- ever higher dimensional operators $O_j(\phi_2)$ with suppressed coefficients $c_j \sim 1/M_1^{d-4}$
- IR singularity of UT: $-\frac{1}{\epsilon} \left(\frac{M_1}{\mu}\right)^{-\epsilon} = -\frac{1}{\epsilon} + \log \frac{M_1}{\mu}$ UV singularity of ET: $\frac{1}{\epsilon} \left(\frac{M_2}{\mu}\right)^{-\epsilon} = \frac{1}{\epsilon} - \log \frac{M_2}{\mu}$
- singularities cancel and can be predicted ightarrow logs can also be predicted ightarrow
- resummation of $L \equiv \log(M_1/M_2) \gg 1$:
 - presence of terms $\alpha^n L^{2n}$ or $\alpha^n L^n$ invalidates expansion in α alone
 - reorganize perturbation theory:

from a pure expansion in α (LO \rightarrow NLO \rightarrow NNLO ...) to resummed expansion, counting $\alpha L \simeq 1 \not\ll 1$ (LL \rightarrow NLL \rightarrow NNLL ...)

- can have a tower of ETs, i.e. for $M_1 \gg M_2 \gg M_3 \ldots$: UT \rightarrow ET I \rightarrow ET II \ldots
- in (NR)QED: we will not integrate out whole particles (~ easy), but integrate out modes (part of a quantum field with a particular scaling)
- in (NR)QED: $M_1 \sim m$ and $M_2 \sim mv$ and $M_3 \sim mv^2$

- external particles in the bound-state system potential fermions: $p^{\mu} = (p^0, \vec{p}) \sim (m v^2, mv)$ ultrasoft photons/gluons: $p^{\mu} = (p^0, \vec{p}) \sim (m v^2, mv^2)$
- we want to infer from QED/QCD how these d.o.f. interact
- we will see: the interaction can be described by a potential V (interaction local in t but non-local in \vec{x}) and explicit ultrasoft photon/gluon interactions (retardation effects)
- this effective theory is called potential NRQED (pNRQED) and $\mathcal{L}_{pNRQED}(\psi_p, A_{us})$
- we will get there by going through another ET, NRQED with the following additional d.o.f: soft particles: $p^{\mu} = (p^0, \vec{p}) \sim (m v, mv)$ potential photons/gluons: $p^{\mu} = (p^0, \vec{p}) \sim (m v^2, mv^2)$
- NRQED is a local theory (in t and \vec{x}) that is obtained by integrating out hard modes from QED
- matching coefficients evaluated at hard scale, then using rgi evolved to soft scale \implies resummation of $\log \mu_s/\mu_h \sim \log v \sim \log \alpha$

Structure of non-relativistic QED/QCD

underlying theory

 $\mathcal{L}_{\text{QED}}(\psi_h, \psi_s, \psi_p, A^{\mu}_h, A^{\mu}_s, A^{\mu}_p, A^{\mu}_{us})$

effective theory I [Caswell, Bodwin, Braaten, Lepage]

 $\mathcal{L}_{\mathrm{NRQED}}(\psi_s,\psi_p,A_s^{\mu},A_p^{\mu},A_{us}^{\mu})$

effective theory II (Quantum Mechanics) [Pineda, Soto]

 $\mathcal{L}_{\text{pNRQED}}(\psi_p, A_{us}^{\mu})$

- match free QED Lagrangian $\mathcal{L}_{QED}^{(0)} = \bar{\Psi}(iD^{\mu}\gamma_{\mu} m)\Psi$ to NRQED counterpart
- introduce separate fields for annihilating electrons ψ and creating positrons χ : $\Psi = \psi + \chi$
- expand in $p/m \sim v$ spinors u(p) (and v(p)) in momentum space, $E = \sqrt{\vec{p}^2 + m^2}$

$$u(\vec{p}) = \begin{pmatrix} \sqrt{\frac{E+m}{2E}}\xi \\ \frac{\vec{\sigma}\cdot\vec{p}}{\sqrt{2E(E+m)}}\xi \end{pmatrix} = \begin{pmatrix} \left(1 - \frac{\vec{p}^2}{8m^2} + \frac{11\vec{p}^4}{128m^4}\right)\xi \\ \left(\frac{1}{2m} - \frac{3\vec{p}^2}{16m^2} + \frac{31\vec{p}^4}{256m^4}\right)\vec{\sigma}\cdot\vec{p}\,\xi \end{pmatrix} + \mathcal{O}\left(\frac{1}{m^6}\right)$$

• expand in $p/m \sim v$:

$$\bar{u}(\vec{p})(\not\!p-m)u(\vec{p}) = \left(E - m - \frac{p^2}{2m} + \frac{p^4}{8m^3}\right)\,\xi^{\dagger}\xi + \mathcal{O}\left(\frac{1}{m^4}\right)$$

free non-relativistic Lagrangian

$$\mathcal{L}_{\mathrm{NRQED}}^{(0)} = \psi^{\dagger} \left(i \,\partial_0 + \frac{\vec{\nabla}^2}{2m} + \frac{\vec{\nabla}^4}{8m^3} \right) \psi + \chi^{\dagger} \left(i \,\partial_0 - \frac{\vec{\nabla}^2}{2m} - \frac{\vec{\nabla}^4}{8m^3} \right) \chi + \mathcal{O} \left(\frac{1}{m^4} \right)$$
$$\psi^{\dagger} \vec{\nabla}^4 \psi \sim O_j \text{ and } 1/(8m^3) \sim c_j$$

- including interactions $\mathcal{L}_{QED}^{int} = e \bar{\Psi} A^0 \gamma^0 \Psi e \bar{\Psi} \vec{A} \cdot \vec{\gamma} \Psi$
- from gauge invariance we could anticipate $\partial_0 \to \partial_0 ie A^0$ and $\vec{\nabla} \to \vec{\nabla} + ie \vec{A}$
- here we stubbornly follow matching procedure
 note: L_{UT} is gauge invariant and all our operators O_j in L_{UT} are gauge invariant
 ⇒ the c_j must be gauge invariant as well
- then with $\vec{q} = \vec{p}' \vec{p}$ we get (and similar for $\bar{v}(\vec{p}')$ and $v(\vec{p})$)

$$\bar{u}(\vec{p}\,')\gamma^{0}u(\vec{p}) = \left(1 - \frac{\vec{q}\,^{2}}{8m^{2}}\right)\xi^{\dagger}\xi + \frac{i}{4m^{2}}\xi^{\dagger}\vec{\sigma}\cdot(\vec{p}\,'\times\vec{p})\xi + \mathcal{O}\left(\frac{1}{m^{3}}\right)$$
$$\bar{u}(\vec{p}\,')\vec{\gamma}\,u(\vec{p}) = \frac{1}{2m}\xi^{\dagger}\left((\vec{p}+\vec{p}\,')+i(\vec{\sigma}\times\vec{q})\right)\xi + \mathcal{O}\left(\frac{1}{m^{3}}\right)$$

• the interaction part of the non-relativistic Lagrangian

$$\begin{aligned} \mathcal{L}_{\mathrm{NRQED}}^{\mathrm{int}} &= e \, A^0 \, \psi^{\dagger} \psi - \frac{e}{2m} \psi^{\dagger} \vec{A} \cdot (\vec{p} + \vec{p}') \psi - \frac{e}{8m^2} A^0 \, \psi^{\dagger} \vec{q}'^2 \psi \\ &+ \frac{i \, e}{4m^2} A^0 \, \psi^{\dagger} \vec{\sigma} \cdot (\vec{p}' \times \vec{p}) \psi - \frac{i \, e}{2m} \psi^{\dagger} \vec{A} \cdot (\vec{\sigma} \times \vec{q}) \psi + \chi \text{-terms} + \mathcal{O}\left(\frac{1}{m^3}\right) \end{aligned}$$

combine:

$$\begin{split} \mathcal{L}_{\mathrm{NRQED}} &= \psi^{\dagger} \left(i \,\partial_{0} + \frac{\vec{\nabla}^{2}}{2m} + \frac{\vec{\nabla}^{4}}{8m^{3}} \right) \psi + e \,A^{0} \,\psi^{\dagger} \psi - \frac{e}{2m} \,\psi^{\dagger} \vec{A} \cdot (\vec{p} + \vec{p}') \psi \\ &- \frac{e}{8m^{2}} \,A^{0} \,\psi^{\dagger} \vec{q}^{\,\prime 2} \psi + \frac{i \,e}{4m^{2}} A^{0} \,\psi^{\dagger} \vec{\sigma} \cdot (\vec{p}\,\prime \times \vec{p}) \psi - \frac{i \,e}{2m} \,\psi^{\dagger} \vec{A} \cdot (\vec{\sigma} \times \vec{q}) \psi \\ &= \psi^{\dagger} \left(i \,D_{0} + \frac{\vec{D}^{2}}{2m} + \frac{\vec{D}^{4}}{8m^{3}} \right) \psi - \frac{e}{2m} \,\psi^{\dagger} \vec{\sigma} \cdot \vec{B} \,\psi + \frac{e}{8m^{2}} \,\psi^{\dagger} (\vec{D} \cdot \vec{E} - \vec{E} \cdot \vec{D}) \psi \\ &+ \frac{i e}{8m^{2}} \,\psi^{\dagger} \vec{\sigma} \cdot (\vec{D} \times \vec{E} - \vec{E} \times \vec{D}) \psi + \chi \text{-terms} + \mathcal{O} \left(\frac{1}{m^{4}} \right) \end{split}$$
with $E^{i} = F^{i0} \quad \text{and} \quad B^{i} = -1/2 \,\epsilon^{i j k} F_{j k} \quad \text{or}$

$$\vec{E} = -\vec{\nabla} (A^{0}) - \partial^{0} \vec{A} - i g \left[T^{b}, T^{c} \right] \vec{A}^{\,b} (A^{0})^{c} \quad \text{and} \quad \vec{B} = \vec{\nabla} \times \vec{A} - \frac{i g}{2} \left[T^{b}, T^{c} \right] \vec{A}^{\,b} \times \vec{A}^{\,c} \end{split}$$

note: all operators are gauge independent! even in non-abelian case

$$\vec{E}^{a} \to \vec{E}^{a} + f^{abc} \vec{E}^{b} \omega^{c}$$
$$\vec{B}^{a} \to \vec{B}^{a} + f^{abc} \vec{B}^{b} \omega^{c}$$

going from QED to QCD and preparing for loops

loop calculations to be done in D dimensions (dimensional regularization): avoid intrinsic 4-dim objects like ϵ^{ijk} , × etc.

$$\mathcal{L}_{\text{NRQCD}} = \psi^{\dagger} \left(i D_0 + \frac{\vec{D}^2}{2m} + \frac{\vec{D}^4}{8m^3} \right) \psi - \frac{c_F g}{2m} \psi^{\dagger} \left(\frac{-\sigma^{ij} F^{ij}}{2} \right) \psi + \frac{c_D g}{8m^2} \psi^{\dagger} \left[D^i, E^i \right] \psi \\ + \frac{c_s i g}{8m^2} \psi^{\dagger} \sigma^{ij} \left[D^i, E^j \right] \psi + \mathcal{L}_{\text{light}} + \chi \text{-terms} + \mathcal{O} \left(\frac{1}{m^4} \right)$$

define *D*-dimensional Pauli "algebra":

$$\sigma^{ij} = \frac{\begin{bmatrix} \sigma^i, \sigma^j \end{bmatrix}}{2i} \xrightarrow{D \to 4} \epsilon^{ijk} \sigma^k$$
$$\frac{-\sigma^{ij} F^{ij}}{2} \xrightarrow{D \to 4} \vec{\sigma} \cdot \vec{B}$$

matching coefficients:

 $c_i(\mu_h) = 1 + \alpha_s \left(\log(\mu_h/m) + \operatorname{cst} \right) + \mathcal{O}(\alpha_s^2)$

contain effects of hard modes

- effects of hard loops are encoded in matching coefficients $d \sim \mathcal{O}(\alpha)$
- compare "standard" BSM effective operators

we have now a theory with new Feynman rules

 this theory reproduces QED/QCD Green functions in the non-relativistic limit up to the order to which the matching has been done

- expansion in $\sim p/m \sim v$ is trivial (if tedious) at tree level
- how to expand in loops ?
 - loop momentum k runs through all scales $0 o m \, v^2 o m \, v o m o \infty$
 - computing full integral and then expanding is neither efficient nor systematic (power counting)
- method of regions (expand before doing the integration)
 - separate expansion of integrand in all regions
 - sum of all regions add up to full result
 - each part is simpler and has unique power counting
 - identify modes [Beneke, Smirnov] \Rightarrow asymptotic expansion (method of regions)

 $\begin{array}{ll} \text{hard} & k^{\mu} \sim m \\ \text{soft} & k^{\mu} \sim mv \\ \text{potential} & k^{0} \sim mv^{2}; \ \vec{k} \sim mv \\ \text{ultrasoft} & k^{\mu} \sim mv^{2} \end{array} \right\} \text{ expand integrand not integral}$

•
$$\int d^D k f(k, p, m) = \int d^D k f_{\rm h} + \int d^D k f_{\rm p} + \int d^D k f_{\rm s} + \int d^D k f_{\rm us}$$

$$\int \frac{d^d k}{(k^2 - p^2)(k^2 - M^2)}$$

$$\int \frac{d^d k}{(k^2 - p^2)(k^2 - M^2)}$$
$$= \int_{|k| < \mu} \frac{d^d k}{(k^2 - p^2)(k^2 - M^2)} + \int_{|k| > \mu} \frac{d^d k}{(k^2 - p^2)(k^2 - M^2)}$$

$$\int \frac{d^d k}{(k^2 - p^2)(k^2 - M^2)}$$

$$= \int_{|k|<\mu} \frac{d^d k}{(k^2 - p^2)(k^2 - M^2)} + \int_{|k|>\mu} \frac{d^d k}{(k^2 - p^2)(k^2 - M^2)}$$
$$= \int_{|k|<\mu} \frac{d^d k}{(k^2 - p^2)} \sum_n \frac{(k^2)^n}{(M^2)^{n+1}} + \int_{|k|>\mu} \frac{d^d k}{(k^2 - M^2)} \sum_n \frac{(p^2)^n}{(k^2)^{n+1}}$$

$$\int \frac{d^d k}{(k^2 - p^2)(k^2 - M^2)}$$

$$= \int_{|k|<\mu} \frac{d^d k}{(k^2 - p^2)(k^2 - M^2)} + \int_{|k|>\mu} \frac{d^d k}{(k^2 - p^2)(k^2 - M^2)}$$
$$= \int_{|k|<\mu} \frac{d^d k}{(k^2 - p^2)} \sum_n \frac{(k^2)^n}{(M^2)^{n+1}} + \int_{|k|>\mu} \frac{d^d k}{(k^2 - M^2)} \sum_n \frac{(p^2)^n}{(k^2)^{n+1}}$$
$$= \int \frac{d^d k}{(k^2 - p^2)} \sum_n \frac{(k^2)^n}{(M^2)^{n+1}} + \int \frac{d^d k}{(k^2 - M^2)} \sum_n \frac{(p^2)^n}{(k^2)^{n+1}} + tadpoles$$

Let $p^2 \ll M^2$ and assume we want to compute (the first few terms in an expansion in $p^2/M^2 \ll 1$ of) the integral (pick μ s.t. $p^2 \ll \mu^2 \ll M^2$)

$$\int \frac{d^d k}{(k^2 - p^2)(k^2 - M^2)}$$

$$\begin{split} &= \int_{|k|<\mu} \frac{d^d k}{(k^2 - p^2)(k^2 - M^2)} + \int_{|k|>\mu} \frac{d^d k}{(k^2 - p^2)(k^2 - M^2)} \\ &= \int_{|k|<\mu} \frac{d^d k}{(k^2 - p^2)} \sum_n \frac{(k^2)^n}{(M^2)^{n+1}} + \int_{|k|>\mu} \frac{d^d k}{(k^2 - M^2)} \sum_n \frac{(p^2)^n}{(k^2)^{n+1}} \\ &= \int \frac{d^d k}{(k^2 - p^2)} \sum_n \frac{(k^2)^n}{(M^2)^{n+1}} + \int \frac{d^d k}{(k^2 - M^2)} \sum_n \frac{(p^2)^n}{(k^2)^{n+1}} \end{split}$$

additional UV - IR singularities possible

$$\int \frac{d^d k}{(k^2 - p^2)(k^2 - M^2)}$$

$$= \underbrace{\int \frac{d^d k}{(k^2 - p^2)} \sum_n \frac{(k^2)^n}{(M^2)^{n+1}}}_{\text{soft}} + \underbrace{\int \frac{d^d k}{(k^2 - M^2)} \sum_n \frac{(p^2)^n}{(k^2)^{n+1}}}_{\text{hard}}$$

- identify modes: soft $(k \sim p)$ and hard $(k \sim M)$ (in general more)
- expand integrand in each region to whatever order required
- each term has a well-defined scaling in $p^2/M^2
 ightarrow$ power counting
- no explicit cutoff needed (dimensional regularization is important)

$$\int \frac{d^{a}k}{(k^{2}-p^{2})^{a}(k^{2}-M^{2})^{b}}$$

$$= \frac{i(-1)^{a+b}}{(4\pi)^{d/2}} \left(M^{2}\right)^{\frac{d}{2}-a-b} \frac{\Gamma(a+b-\frac{d}{2})}{\Gamma(a+b)} {}_{2}F_{1} \left(\overset{a;a+b-\frac{d}{2}}{a+b} \left|1-\frac{p^{2}}{M^{2}}\right)\right)$$

$$= \sum_{n=0}^{\infty} \frac{(-n-b+1)_{n}}{\Gamma(n+1)} \left(-M^{2}\right)^{-b-n} \int \frac{d^{d}k}{(k^{2})^{-n}(k^{2}-p^{2})^{a}}$$

$$+ \sum_{n=0}^{\infty} \frac{(-n-a+1)_{n}}{\Gamma(n+1)} \left(-p^{2}\right)^{n} \int \frac{d^{d}k}{(k^{2})^{a+n}(k^{2}-M^{2})^{b}}$$

$$= \frac{i(-1)^{a}}{(4\pi)^{d/2}} \left(p^{2}\right)^{\frac{d}{2}-a} \left(-M^{2}\right)^{-b} \frac{\Gamma(a-\frac{d}{2})}{\Gamma(a)} {}_{2}F_{1} \left(\frac{\frac{d}{2}; \ b}{1-a+\frac{d}{2}} \left|\frac{p^{2}}{M^{2}}\right)$$

$$+ \frac{i(-1)^{a+b}}{(4\pi)^{d/2}} \left(M^{2}\right)^{\frac{d}{2}-a-b} \frac{\Gamma(\frac{d}{2}-a)\Gamma(a+b-\frac{d}{2})}{\Gamma(b)\Gamma(\frac{d}{2})} {}_{2}F_{1} \left(\frac{a;a+b-\frac{d}{2}}{1+a-\frac{d}{2}} \left|\frac{p^{2}}{M^{2}}\right)$$

loops

example of hard loop

before expansion

$$I_{\rm full} = \int \frac{d^D k}{k^2 \left[(k+p)^2 - m_1^2 \right] (k+p-p')^2 \left[(k-\bar{p})^2 - m_2^2 \right]}$$

after expansion

$$I_{\rm h} = \int rac{d^D k}{k^2 \left[k^2 - m_2^2\right] k^2 \left[k^2 - m_1^2\right]}$$

- *I*_h is much simpler
- $I_{\rm full}$ and $I_{\rm h}$ have the same UV-singularities \Longrightarrow renormalization
- $I_{\rm h}$ has IR singularities not present in $I_{\rm full} \Longrightarrow$ canceled by UV singularities of ET
- scaling in v: $I_{
 m h} \sim 1$ (known before integration) $k \sim m \sim 1$
- scaling in v: $I_{\rm full}$ not uniform (different scales) $p_0 \sim mv^2$, $p \sim mv^2$, $k \sim$ anything

loops

renormalization group improvement

- explicit computation of matching coefficients at one-loop after UV renormalization typically yields $c_i(\mu) = 1 + \alpha(\mu) \left(\gamma_i^0 \left[\frac{1}{\epsilon} \log \frac{m}{\mu}\right] + \#\right)$
- the singularity is cancelled by a UV singularity of NRQCD (anomlaous dimension γ_i of NRQCD operators)
- the hard matching coefficient has to be computed at a hard scale $\mu \to \mu_h \sim m$ to avoid large logs
- when used in NRQCD it has to be evaluated at the soft scale $\mu
 ightarrow \mu_s \sim m \, v$
- solution to standard rge for anomlaous dimension $\mu \frac{d}{d\mu}c_i(\mu) = \gamma_i c_i(\mu)$ is given by

$$c_i(\mu_s) = c_i(\mu_h) \exp \int_{\alpha(\mu_s)}^{\alpha(\mu_h)} \frac{\gamma_i(\alpha) \, d\alpha}{2 \, \beta(\alpha)}$$

- this resums all (potentially large) logarithms $L \equiv \log \mu_h / \mu_s \sim \log \alpha \sim \log v$
- with γ_i^0 we get NLL (next-to-leading logarithmic) accuracy, i.e. $\alpha^n L^{n-1}$

NRQCD Lagrangian [Caswell, Bodwin, Braaten, Lepage]

but now in $D = 4 - 2\epsilon$ dimensions

$$\mathcal{L}_{\text{NRQCD}} = \psi^{\dagger} \left(iD^{0} + c_{k} \frac{\vec{D}^{2}}{2m} \right) \psi + \frac{c_{4}}{8m^{3}} \psi^{\dagger} \vec{D}^{4} \psi - \frac{g c_{F}}{2m} \psi^{\dagger} \sigma^{i} B^{i} \psi$$

$$+ \frac{g c_{D}}{8m^{2}} \psi^{\dagger} \left[D^{i}, E^{i} \right] \psi + \frac{ig c_{S}}{8m^{2}} \psi^{\dagger} \sigma^{ij} \left[D^{i}, E^{j} \right] \psi + (\psi \leftrightarrow \chi)$$

$$+ \frac{\alpha_{s} d_{ss}}{m^{2}} \psi^{\dagger} \psi \chi^{\dagger} \chi + \frac{\alpha_{s} d_{sv}}{m^{2}} \psi^{\dagger} \sigma^{i} \psi \chi^{\dagger} \sigma^{i} \chi$$

$$+ \frac{\alpha_{s} d_{vs}}{m^{2}} \psi^{\dagger} T^{a} \psi \chi^{\dagger} T^{a} \chi + \frac{\alpha_{s} d_{vv}}{m^{2}} \psi^{\dagger} \sigma^{i} T^{a} \psi \chi^{\dagger} \sigma^{i} T^{a} \chi + \mathcal{L}_{\text{light}}$$

• resum $\ln(\mu_h/\mu_s) = \ln v$ in c_i and d_{ij} using renormalization group

 RGI: single heavy quark sector as in HQET [Bauer, Manohar, ...] RGI: four heavy quark operators [Pineda]

- QED \rightarrow NRQED: hard loops $p^{\mu} \sim m$ integrated out, not dynamical any longer (we exploited $m \gg mv$)
- we are left with

soft	$p^{\mu}\simmv$
potential	$p^0 \sim mv^2; \ ec{p} \sim mv$
ultrasoft	$p^{\mu}\simmv^2$

- an operator like $\psi^{\dagger}\left[D^{i},E^{i}
 ight]\psi$ does not have a fixed power in v
- final state has only potential fermions and ultrasoft photons
- NRQED → potential NRQED (pNRQED): integrate out soft fermions and potential and soft photons
- in pNRQED only potential fermions and ultrasoft photons are dynamical (exploit also $mv \gg mv^2$)
- "integrating out" technically again with method of regions

outlook pNRQED/pNRQCD

After a few slides we will end up with the pNRQCD Lagrangian in $d = 3 - 2\epsilon$ dimensions

$$\begin{split} \mathcal{L}_{\text{QED}} &\Rightarrow \mathcal{L}_{\text{NRQED}} \Rightarrow \\ \mathcal{L}_{\text{pNRQCD}} &= \psi^{\dagger} \left(i D^{0} + \frac{\partial^{2}}{2m} \right) \psi + \chi^{\dagger} \left(i D^{0} - \frac{\partial^{2}}{2m} \right) \chi \\ &+ \int d^{3} r \left(\psi^{\dagger} T^{a} \psi \right) V \left(\chi^{\dagger} T^{a} \chi \right) \\ &+ \psi^{\dagger} \left(\frac{\partial^{4}}{8m^{3}} - g_{s} \, \vec{x} \cdot \vec{E} \right) \psi + \chi^{\dagger} \left(-\frac{\partial^{4}}{8m^{3}} - g_{s} \, \vec{x} \cdot \vec{E} \right) \chi \\ V &= -4\pi C_{F} \frac{\alpha_{s}}{\vec{q}^{2}} - C_{F} \frac{\alpha_{s}^{2}}{\vec{q}^{2}} \left(a_{1} - \beta_{0} \ln \frac{\vec{q}^{2}}{\mu^{2}} \right) + \dots \\ &- C_{F} C_{A} \alpha_{s}^{2} D_{s}^{(1)} \frac{\pi^{2} \mathcal{K}(\epsilon)}{m q^{1+2\epsilon}} + \frac{3\pi C_{F} \alpha_{s} D_{d,s}^{(2)}}{m^{2}} - \frac{4\pi C_{f} D_{s^{2}}^{(2)}}{dm^{2}} [s_{1}^{i}, s_{1}^{j}] [s_{2}^{i}, s_{2}^{j}] \,. \end{split}$$

- static potential (known to a_3), non-analytic potential . . ., *d*-dim generalization of Breit-Fermi potential (with spin-spin, L^2 etc)
- resum $\ln(\mu_s/\mu_{us}) = \ln v$ in matching coefficients $D_s^{(1)}, D_{d,s}^{(2)}, D_{s^2}^{(2)} \dots$

Power counting

	mom	prop form	prop.	d^4k	field	$\left \langle \psi(x)\psi(0) angle = \int rac{d^4k}{k^2} ight.$
pot. Q	$(v^2, ec v)$	$[k^0 - \vec{k}^2/(2m)]^{-1}$	v^{-2}	v^5	$v^{3/2}$	J K-
pot. g		$[-\vec{k}^{2}]^{-1}$	v^{-2}	v^5	$v^{3/2}$	
soft Q	(v,ec v)	$[k^0]^{-1}$	v^{-1}	v^4	$v^{3/2}$	
soft g		$[k^2]^{-1}$	v^{-2}	v^4	v	
US g	$(v^2,ec v^{2})$	$[k^2]^{-1}$	v^{-4}	v^8	v^2	

operators in \mathcal{L}_{pNRQCD}

$$\begin{split} \psi^{\dagger} \left(i\partial^{0} + (\partial^{2}/2m) \right) \psi & v^{3/2} v^{2} v^{3/2} = v^{5} & \text{LO} \\ \left(\psi^{\dagger} T^{a} \psi \right) \left(\alpha_{s}/\vec{q}^{2} \right) \left(\chi^{\dagger} T^{a} \chi \right) & v^{3} \left(\alpha_{s}/v^{2} \right) v^{3} = \alpha_{s} v^{4} & \text{LO} \\ \left(\psi^{\dagger} T^{a} \psi \right) \left(\alpha_{s}^{2}/\vec{q}^{2} \right) \left(\chi^{\dagger} T^{a} \chi \right) & v^{3} \left(\alpha_{s}^{2}/v^{2} \right) v^{3} = \alpha_{s}^{2} v^{4} & \text{NLO} \\ \left(\psi^{\dagger} T^{a} \psi \right) \left(\alpha_{s}^{2}/q \right) \left(\chi^{\dagger} T^{a} \chi \right) & v^{3} \left(\alpha_{s}^{2}/v \right) v^{3} = \alpha_{s}^{2} v^{3} & \text{NNLO} \\ \psi^{\dagger} \left(g_{s} \vec{x} \cdot \vec{E} \right) \psi & v^{3/2} \sqrt{\alpha_{s}} v^{4} v^{3/2} = \sqrt{\alpha_{s}} v^{7} & \text{NNNLO} \end{split}$$

Breit potential the naive diagram we started with now looks like

pNRQED

Power counting potential ladder diagrams have to be resummed

This gives the Green function in momentum space

$$\tilde{G}_{c}(\vec{p},\vec{p}',E) = (2\pi)^{d} \delta^{(d)} \left(\vec{p}-\vec{p}'\right) \frac{-1}{E-\vec{p}^{2}/m} \\ + \frac{4\pi C_{F} \alpha_{s}}{(E-\vec{p}^{2}/m) (\vec{p}-\vec{p}')^{2} (E-\vec{p}'^{2}/m)} + \text{finite}$$

or via Fourier in coordinate space ($\nu \equiv C_F \, \alpha_s / (2 \sqrt{-E/m})$)

$$G_c(0,0,E) = \frac{\alpha_s C_F m^2}{8\pi} \left(\frac{1}{2\epsilon} - \ln \frac{-4mE}{\mu^2} - \frac{1}{\nu} - 2\psi(1-\nu) - 2\gamma_E + 1 \right)$$

as an example consider the static potential at NLO

- all diagrams taken separately are gauge dependent
- gauge dependence cancels in sum (as it must) $\rightarrow a_1$ is gauge independent !!
- consider e.g. box diagram
 - hard loop \rightarrow matching coefficient of four-fermion operator
 - potential loop \rightarrow LO Green function
 - soft loop \rightarrow NLO static potential
- an ordinary QED Feynman diagram splits and contributes to different parts

summary pNRQED/pNRQCD

pNRQCD Lagrangian [Pineda, Soto]

$$\mathcal{L}_{\text{pNRQCD}} = \psi^{\dagger} \left(iD^{0} + \frac{\partial^{2}}{2m} \right) \psi + \chi^{\dagger} \left(iD^{0} - \frac{\partial^{2}}{2m} \right) \chi$$

+ $\int d^{3}r \left(\psi^{\dagger}T^{a}\psi \right) V \left(\chi^{\dagger}T^{a}\chi \right)$
+ $\psi^{\dagger} \left(\frac{\partial^{4}}{8m^{3}} - g_{s}\vec{x} \cdot \vec{E} \right) \psi + \chi^{\dagger} \left(-\frac{\partial^{4}}{8m^{3}} - g_{s}\vec{x} \cdot \vec{E} \right) \chi$
 $V = -4\pi C_{F} \frac{\alpha_{s}}{\vec{q}^{2}} + \delta V$

- QFT \rightarrow potential $V^0 + \delta V$
- each term has a well-defined power counting, ultrasoft effects enter at NNNLO
- recall everything you know about QM and do QM pert. theory in momentum space
- for higher-order corrections evaluate single and double insertions

$$\delta G_c(0,0,E) = \int \prod \frac{d^d \vec{p_i}}{(2\pi)^d} \,\tilde{G}_c(\vec{p_1},\vec{p_2},E) \,\delta V(\vec{p_2},\vec{p_3}) \,\tilde{G}_c(\vec{p_3},\vec{p_4},E)$$

all singularities (IR and UV) are consistently treated with dimensional regularization

Applications

Heavy quark pair production: $e^+e^- \rightarrow Q\bar{Q}$ $Q \in \{c, b, (t)\}$ $\sqrt{s} \sim 2m$

cross section:
$$R_{Q\bar{Q}}(s) \equiv \frac{\sigma(e^+e^- \to Q\bar{Q})}{\sigma(e^+e^- \to \mu^+\mu^-)} = 12\pi \operatorname{Im}\left\{\Pi(s+iO^+)\right\}$$

correlator:

$$\Pi^{\mu\nu} \equiv i \int d^4x \, e^{i \, qx} \langle 0|T\{j^{\mu}(x)j^{\nu}(0)|0\rangle = (-q^2 g^{\mu\nu} + q^{\mu} \, q^{\nu}) \, \Pi(q^2)$$

local parton-hadron duality $R_{Qar{Q}} \longrightarrow$ global parton-hadron duality M_n

moments :

ents:
$$M_n^{\text{th}} \equiv \int \frac{ds}{s^{n+1}} R_{Q\bar{Q}}(s) = \frac{12\pi^2}{n!} \left(\frac{d}{dq^2}\right)^n \Pi(q^2) \big|_{q^2=0}$$

$Q\,\bar{Q}$ near threshold

mass of $\Upsilon(nS)$: $M_{\Upsilon(nS)} = 2m_b + E_n$ typical scale: $\mu \sim p \sim \alpha_s C_F m_b/n$ $\mu \sim 1.3 \text{ GeV}$ for n = 1

dominant error non-perturbative \implies later

moments:

$$M_n = \int \frac{ds}{s^{n+1}} R_{b\bar{b}}(s)$$
 typical scale: $\mu \sim 2m_b/\sqrt{n}$

$$\mu \sim 2.5 \text{ GeV}$$
 for $n = 14$

dominant error perturbative

- determination of theoretical moments via integration in complex plane
- typical scale $\mu_s \sim 2m_b/\sqrt{n}$, choose $n \leq 14$
- determine experimental resonanance moments (very well known) and continuum moments (poorly known), choose $n \ge 6$

theoretical moments

perturbative part: gluon (quark) propagator $\sim 1/k^2$, but contains terms to all orders in α_s

- in principle well understood
- can be computed with ever increasing accuracy (at the price of running into technical difficulties, current status 4-loop)

non-perturbative part: modification of gluon propagator from $\sim 1/k^2$ for small k^2

- not very well understood \Rightarrow try to minimize the impact of non-perturbative physics
- parametrize ignorance in terms of (ever more suppressed) condensates
- leading contribution from gluon condensate $\langle \frac{lpha}{\pi} G^2 \rangle$

$$\frac{1}{2} = \frac{1}{2} = \frac{1$$

$Q\,ar{Q}$ near threshold

theory: perturbative part

$$M_n = \int \frac{ds}{s^{n+1}} R_{Q\bar{Q}}(s) \simeq \int \frac{2 \, dE}{(2m)^{2n+1}} \, e^{\frac{-nE}{m}} \, R_{QQ}(E)$$

relativistic sum rules: n "small", i.e $n \leq 4$ continuum contribution relevant FO (fixed order) approach

$$\Pi(q^2) = \frac{N_c \, e_Q^2}{(4\pi)^2} \sum_{n \ge 0} \, C_n \, \left(\frac{q^2}{4m^2}\right)^n \quad \Longleftrightarrow \quad M_n = \frac{3}{4} N_c \, e_Q^2 \, \frac{1}{(2m)^{2n}} \, C_n$$

pole scheme: $C_n^{(\ell)} \sim n^{-3/2} \left(\alpha \sqrt{n} \right)^{\ell}$

non-relativistic sum rules: *n* "large", i.e $n \gtrsim 8$ continuum contribution suppressed ET (effective theory) approach define $E = \sqrt{s} - 2m \equiv mv^2$ ~ kinetic energy of heavy quarks if $v \ll 1$ *n* "large" $\leftrightarrow E \sim m \times 1/n$ and $v \sim 1/\sqrt{n}$ "small" \Rightarrow quantum mechanics

large n (non-relativistic) vs small n (relativistic)

- large *n* corresponds to small $v \sim 1/\sqrt{n}$, conventional fixed order (FO) perturbation theory breaks down (Coulomb singularity), i.e. computing $R_{Q\bar{Q}}$ to α^{ℓ} we have terms $v (\alpha/v)^{\ell} \sim n^{-1/2} (\sqrt{n} \alpha)^{\ell} \longrightarrow$ use effective theory (ET)
- FO: standard expansion in coupling α , keeping full dependence of *E*, i.e. take into account all powers of $E/m = v^2$
- ET: double expansion in α and $v = \sqrt{E/m}$, using non-relativistic QCD.

R_{QQ}	ET: LO	ET : NLO	ET : NNLO	• • •
FO: LO	$vc_{0,1}$	$v^2c_{0,2}$	$v^3c_{0,3}$	$v^4c_{0,4}$
FO: NLO	$lphac_{1,0}$	$lphavc_{1,1}$	$lpha v^2 c_{1,2}$	$lpha v^3 c_{1,3}$
FO: NNLO	$lpha^2 v^{-1} c_{2,-1}$	$lpha^2c_{2,0}$	$lpha^2 v c_{2,1}$	$lpha^2 v^2 c_{2,2}$
:	$lpha^3 v^{-2} c_{3,-2}$	$\alpha^3 v^{-1} c_{3,-1}$	$lpha^3c_{3,0}$	$lpha^3 v c_{3,1}$

mass schemes So far implicitly understood mass = pole mass m_Q but pole mass has non-perturbative ambiguity (renormalon) \Rightarrow IR sensitivity $\sim \Lambda_{QCD}$

For $Q\bar{Q}$ system: m_Q has IR sensitivity, but this cancels in $2m_Q + V_{\rm coul} \simeq M_{\rm meson}$

define PS-mass [Beneke] $m_{\rm PS} = m_Q + \frac{1}{2} \int_{q < \mu_F} \frac{d^3 \vec{q}}{(2\pi)^3} V_{\rm coul}(q)$ with $\mu_F \sim m v \sim m \alpha_s$

other closely related definitions $m_X = m_Q - \delta m$ are possible

these mass definitions are more appropriate for the description of heavy quarks near threshold \Rightarrow threshold mass

mass schemes

- pole mass is more IR sensitive (renormalon ambiguity) than other mass definitions \rightarrow non-perturbative ambiguity $\sim \Lambda_{QCD}$
- use directly $m_{\overline{\text{MS}}}$ where possible (relativistic sum rules)
- if use of $m_{\overline{\text{MS}}}$ impossible (non-relativistic sum rules) use threshold mass (incoorporates renormalon cancellation) [Bigi et.al; Beneke; Hoang et.al; Pineda]
- express observable in terms of threshold mass (here use PS mass [Beneke] and RS mass [Pineda]) then relate threshold mass to $m_{\overline{\text{MS}}}$; (three-loop exact [Melnikov, Ritbergen; Chetyrkin, Steinhauser] and four-loop via large- β_0 approximation)

theory: non-perturbative part

leading contribution from gluon condensate [Shifman et.al; Broadhurst et.al., loffe]

$$\delta M_n^{\rm np} = \frac{12\pi^2 e_Q^2}{(2m_b)^{(2n+4)}} \left\langle \frac{\alpha}{\pi} G^2 \right\rangle a_n \left(1 + \frac{\alpha}{\pi} b_n \right) + \dots$$

- $a_n \sim n^{3/2}$: importance of non-perturbative effects increases with increasing n
- size of corrections $\frac{\alpha}{\pi} b_n$ crucially depends on mass scheme

main questions: • how important are gluon condensate contributions??

- $\langle \frac{\alpha}{\pi} G^2 \rangle = 0.012 \, \text{GeV}^4$ [Shifman et.al. 1978]
- $\langle \frac{\alpha}{\pi} G^2 \rangle = 0.021 \text{ GeV}^4$ [Broadhurst et.al. 1994]
- $\langle \frac{\alpha}{\pi} G^2 \rangle = (0.005 \pm 0.004) \text{ GeV}^4$ [loffe 2005]
- can we trust the perturbative series of the coefficient function?

common wisdom ??:

- we can ignore $\langle rac{lpha}{\pi} G^2
 angle$ contributions in the case of bottom as long as $n \lesssim 16$
- what about the charm case ?

Determination of bottom mass from sum rules take M_{10} as an example:

[Pineda, AS]

through resummation of $\log v = \log \mu_s / \mu_h$:

- size of corrections reduced
- much improved μ_s scale dependence

reduced theoretical error

apply to charm $?? \Rightarrow$ non-perturbative contributions ??

leading contribution from gluon condensate [Shifman et.al; Broadhurst et.al., loffe]

$$\delta M_n^{\rm np} = \frac{12\pi^2 e_q^2}{(2m_b)^{(2n+4)}} \left\langle \frac{\alpha}{\pi} G^2 \right\rangle a_n \left(1 + \frac{\alpha}{\pi} \left[b_n - (2n+4)\delta b_X \right] \right) + \dots \text{ with } a_n \sim n^{3/2}$$

importance of non-perturbative effects increases with increasing n and decreasing m

	n	1	4	8	12	16
bottom	$10^2 \delta M_n^{\rm np} / M_n^{\rm exp}$	-0.003	-0.02	0.02	0.36	1.6
charm	$10^2 \delta M_n^{\rm np}/M_n^{\rm exp}$	0.1	0.7	2.0	3.8	5.9
	$lpha_s b_n^{ m PS}/\pi$	0.75	0.72	0.56	0.34	0.09

ignore non-perturbative effects and use n < 16

Determination of charm mass from sum rules [AS]

n	m	$\delta m^{ m th}$	$\delta m^{ m exp}$	δm^{lpha}	δm^{GG}	δm
3	1508	229	11	41	2	233
6	1506	81	3	27	3	85
10	1503	40	2	19	5	45
16	1500	27	1	14	6	31

"combine": single moment analysis

$m_{\rm PS} = 1.50 \pm 0.04 \; {\rm GeV}$	7
convert to $\overline{\mathrm{MS}}$:	
$\overline{m} = 1.25 \pm 0.04 \text{ GeV}$	

Top threshold scan at linear collider

top pair produced near threshold

 $E\equiv \sqrt{s}-2m\ll m$

non-relativistic \rightarrow NRQCD

- lifetime for top $au \simeq 1/\Gamma_t \simeq 5 imes 10^{-25} ~{
 m s}$
- typical hadronization time $au_{
 m had} \simeq 1/\Lambda_{
 m QCD} \simeq 2 imes 10^{-24}~
 m s$
- $\tau < \tau_{had} \Rightarrow$ top decays before it forms hadrons
- Schrödinger eq: $\left(\frac{\Delta}{m^2} \frac{\alpha_s C_F}{r} + \delta V (E + i\Gamma_t)\right) G(\vec{r}, \vec{r}', E) = \delta(\vec{r} \vec{r}')$
- poles (bound states) become a bump (would-be bound state)
- position of bump \Rightarrow determination of mass
- height and width of bump \Rightarrow determination of Γ_t

• typical scale:
$$\mu \simeq 2 \, m \, v \simeq 2 \left(m \sqrt{E^2 + \Gamma_t^2} \right)^{1/2} \gtrsim 30 \, \text{GeV} \Rightarrow \text{perturbation theory}$$

- normalization of cross section much more stable after resummation
- smaller scale dependence, smaller size of corrections
- potential to measure top mass to an accuracy of $\delta m_t \simeq 200 \; {
 m MeV}$
- potential for a precise measurement of Γ_t and maybe even the Yukawa coupling

Top threshold scan at linear collider

Top "threshold scan" at LHC [Hagiwara et.al.; Kiyo et.al.]

 $m_b \text{ from } M_\Upsilon$

Extraction of bottom mass from $M_{\Upsilon(1S)}$

 $M_{\Upsilon(1S)} = 2m_b + E \implies m_{b, PS} = (4.58 \pm 0.04 \text{ (th)} \pm 0.07 \text{ (non-pert)}) \text{ GeV}$

Adrian Signer, Aug 2012 – p. 54/55

to be continued