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In the previous lecture, I described the structure of the 
Standard Model couplings to massless quarks and leptons.  In 
the 1990’s, this structure was tested by precision experiments 
on the Z resonance in e+e- annihilation at SLC and LEP.  These 
tests continue with the precision measurement of the W boson 
mass at the Tevatron.  I will now discuss these tests and some 
of their implications.



The first question we must address is:  What exactly is the 
definition of the Standard Model that we will test ?  The Standard 
Model has many parameters.  How do we fix them ?

Actually, the model of electroweak interactions in the previous 
lecture has only 3 parameters that affect its tree-level 
predictions:                      Other parameters, such as             
appear at the 1-loop level.  To set up precision tests, we need at 
least to fix the tree-level parameters.

To fix these three parameters, we need 3 precision measurements. 
A standard set is:

Note that I take the running QED coupling at the Z mass.  The 
primary source of error is the value of the hadronic contribution to 
the vacuum polarization, which must be determined from data on 
the e+e- hadronic cross section.

g1, g2, v αs, mt

α−1(mZ) = 128.95 (5)
GF = 1.16637 (1)× 10−5 GeV−2

mZ = 91.1876 (21) GeV



If                      are extracted from these three measurements 
using tree-level formulae, the corresponding value of         is given 
by 

The value is:

We can compare this value to other values of       obtained, for 
example from the value of a Z decay rate or asymmetry or from 
                 .

The accuracy of these numbers is such that 1-loop corrections must 
be applied systematically to make this comparison.

How many such tests can we obtain ? 

g1, g2, v
s2

w

sin2 2θ0 =
πα(mZ)√
2GF m2

Z

s2
0 = 0.23107 (4)

s2
w

mW /mZ



In yesterday’s lecture, I displayed a table of values of the 
couplings        .  Here is that table again, augmented by the 
values of

The      determine the Z partial widths and branching ratios.  
The      determine the parity asymmetry of Z decay in the 
various channels.  Most notably, the         take very different 
values for different quark and lepton species.

Sf = Q2
ZLf + Q2

ZRf Af =
Q2

ZLf −Q2
ZRf

Q2
ZLf + Q2

ZRf

Sf
Af

Af

Q2
Z

ν e u d
Q2

Z = 0.250 0.073 0.120 0.179 L,Q
- 0.053 0.024 0.006 e, u, d

Sf = 0.250 0.126 0.144 0.185
Af = 1.00 0.16 0.67 0.94



The most stringent test of the      comes from the measurement 
of the total width of the Z.  This can be extracted from 
measurement of the Z resonance line shape.  That study actually 
brings in radiative corrections from all three of the fundamental 
interactions -- electroweak corrections to the e+e-Z vertex, QCD 
corrections to the decay amplitude to quarks, and QED 
corrections (up to NNNLL) which distort the resonance shape 
through initial state radiation.

The final results is the very impressive value

in good agreement with the Standard Model predictions.  A 
measure of the quality of the result is the constraint on the width 
of the Z to invisible final states, quoted as a number of neutrinos:

Sf

ΓZ = 2.4952 (23)

nν = 2.9840 (82)
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composite of the four LEP experiments, showing the effect of ISR



A special interesting partial width is                    . The diagrams

contribute a correction to the      Z charge,

This is a -2% correction to the partial width.   It is easier to 
measure the quantity

which is almost independent of       with the SM charge 
assignments for         and       .

QZbL = −(
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3
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The final result is:

                                                      

to be compared to    0.21586  expected in the 
Standard Model,  confirming the -2% shift due to the 
t-W diagrams. 

Rb = 0.21629± 0.00066 (±0.3%)



Measuring the       is trickier:

There are three methods to measure the      for leptons:

1. use the fact that the      lepton decays through weak 
interactions in a way that analyzes its polarization

2. create a polarized       beam, and measure the relative
ability of       and        beams to produce the Z resonance

3. measure the forward-backward asymmetry in unpolarized  
                       : 
   Because        is almost maximal, this measures      .

_ _

e
−

e
−

L
e
−

R

Af

Af

τ

e+e− → bb AFB = (3/4)AeAb
Ab Ae
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         is very sensitive to         and so gives the most precise tests 
for this parameter:

Here are the results (LEP EW Working Group):

A! s2
w

A! = 8(
1
4
− s2

w)



With polarized electron beams, the asymmetries             can be 
measured from the formulae

The SLD experiment made this measurement using the polarized 
beams available at the SLC.

dσ

d cos θ
(e−Le+ → bb) ∼ Q2

ZLb(1 + cos θ)2 + Q2
ZRb(1− cos θ)2

dσ

d cos θ
(e−Re+ → bb) ∼ Q2

ZLb(1− cos θ)2 + Q2
ZRb(1 + cos θ)2

Ab, Ac
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We can interpret these results in several ways.  

The most straightforward way is to compare the observables 
to a reference Standard Model, with the best-fit values of 

The result from the Gfitter group presented at ICHEP 2010 is 
shown on the next slide.

g1, g2, v,αs, mt, mh



Standard Model fit pull 
distribution:

Gfitter group
ICHEP 2010



Another way to make this comparison is to consider the bounds on 
models of new physics.   Takeuchi and I proposed a very general 
framework for doing this.

We assumed that new particles do not couple directly to light 
quarks and leptons.  Then they affect the precision electroweak 
observables only through vacuum polarization corrections.  These 
can be analyzed in a very general way.  Corrections of this type 
are called oblique.

In most models of electroweak symmetry breaking, the dominant 
source of new physics corrections is through vacuum polarization 
diagrams.  Also, the contributions to precision electroweak 
observables from the top quark and the Higgs boson are of this 
form.

I will now present this method of analysis.



To begin the analysis, define

These amplitudes gives corrections to precision electroweak 
observables, for example

    W mass
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2

w

A

A

A

WW

Z

Z Z

A

Z

Z

+

m
2

W =
e
2
v
2

4s
2
w

+
e
2

s
2

W

Π11(m
2

W )

s2

∗
= s2

w − e2(Π3Q − s2

wΠQQ)/m2

Z

= ie2ΠQQgµν

= i
e2

swcw
(Π3Q − s2

wΠQQ)gµν

= i
e2

s2
wc2

w

(Π33 − 2s2
wΠ3Q + s2

wΠQQ)gµν

= i
e2

s2
w

Π11g
µν



These formulae are not yet adequate, because the vacuum 
polarization amplitudes on the previous slide are UV divergent 
and need renormalization.  A convenient way to do this is to 
define the parameters used there

by reference to the three accurately known electroweak 
observables.  Then, for example, we would compute the 
differences

which must be finite, by the renormalizability of the electroweak 
theory.  To do this, we must take into account that the 
observables                    are also shifted by vacuum polarization 
corrections, for example,

e
2
, s

2

w
, v

2
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∗
− s2
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GF
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2
=

e2
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At the end, we find a simple formalism.  The shifts depend 
on two combinations of vacuum polarization amplitudes

(and a third, U, which is typically very small).

In terms of these quantities, the shifts take simple forms.

S =
16π

m2
Z

(Π33(m
2

Z) − Π33(0) − Π3Q(m2

Z))
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4π
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The heavy particles of the Standard Model, top and Higgs, fit into 
the framework.  We find contributions to S and T.

 top:

  Higgs:

A new doublet of heavy fermions gives 

and a (potentially enormous) contribution to T proportional to 

S =
1

6π
log

m2
t

m2

Z
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The contributions from the Higgs boson come from the diagrams

which are part of the cancellation of UV divergences in the W 
and Z vacuum polarizations. We will see later that the vertices 
are those by which the Higgs gives mass to the W and Z bosons. 
If you do not believe in the Higgs boson, you need to explain 
how to treat these terms.  In particular, sending                    
gives large corrections to the electroweak observables.

mh →∞



LEP EWWG: within the MSM  mh < 144 (182) GeV (95% CL)

Here is a sample determination of S,T from three additional 
precision measurements.  The Standard Model line has a fixed
                           and varying        . mt = 171 GeV mh



Here is the allowed (S,T) region from  Gfitter / ICHEP 2010



Here is an 
analysis of a 

4th generation 
model

shown by the 
Gfitter group
at ICHEP 2010



Further evidence for the SU(2)XU(1) gauge structure is given by 
measurements at LEP2 of                      and                             . 

The latter process involves the nonlinear 3-gauge boson coupling 
and tests that this interaction of the Yang-Mills form.

e+e− → ff e+e− →W+W−



DELPHI
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Now we are ready to discuss mass generation in the Standard 
Model.  First, we are ready to appreciate that this is a major 
problem:

The vector bosons obey the Yang-Mills equations, essentially, 
generalized Maxwell equations.  These equations forbid any 
masses for the W and Z bosons.

The fermions coupled to W and Z in a way that displays different 
quantum numbers for the L and R species.  We cannot mix these 
states by a mass term without violating the SU(2)XU(1) symmetry.

Adding explicit SU(2)XU(1) symmetry breaking will ruin the 
model, making it nonrenomalizable and spoiling the sharp and 
correct predictions.



The only option is to add fields that break the SU(2)XU(1) 
symmetry spontaneously.  That is, the Lagrangian is SU(2)XU(1) 
invariant, but the ground state is not.

The coupling of W and Z to these fields will cause these bosons 
to become massive.  By a general argument given in my 
textbook, the coupling of a gauge boson to a Goldstone boson 
resulting from spontaneously broken symmetry leads to a mass 
for the gauge boson. This method of mass generation is called 
the Higgs mechanism.   This idea does not yet require or make 
reference to a Higgs particle.

Πµν(q) = g2F 2
π (gµν − qµqν

q2
)



Nevertheless, the Higgs particle gives the simplest explicit 
realization of a symmetry-breaking mechanism.  

Begin with the symmetry-breaking sector alone.  Introduce a 
scalar field

          
Let the Lagrangian be

Then a minimum of the potential is 

A general parametrization of          is 

But                                   can be removed by SU(2) gauge 
transformations. The field          cannot be removed; this is a 
physical scalar field.

ϕ =
(

ϕ+

ϕ0

)
(
1
2
,
1
2
, 1)

L = Dµϕ†Dµϕ− V (ϕ) V = −µ2|ϕ|2 + λ(|ϕ|2)2

ϕ =
1√
2

(
0
v

)
v = µ/

√
λ

ϕ(x) =
1√
2

(
π1(x) + iπ2(x)

v + h(x) + iπ3(x)

)

h(x)
π1(x), π2(x), π3(x)

ϕ(x)



I claimed that any broken symmetry state would give masses to 
vector bosons.  These masses are found in

It is quite nontrivial that we find the exact form that I claimed 
yesterday was needed to give the Standard Model mass structure.

Dµϕ†Dµϕ = −ϕ†(−iAa σa

2
− iBY )2ϕ

=
1
2
v2

(
0 1

)
(Aa σa

2
+

1
2
B)2

(
0
1

)

=
1
2

v2

4

[
(A1)2 + (A2)2 + (−A3 + B)2

]



Quark and lepton masses come from new terms that we must 
add to the Lagrangian

You can check that each term is SU(2) invariant and has total 
Y = 0.  Without having the object       available, it would not 
be possible to write symmetric terms coupling the L and R 
fermions.  Substituting the ground state value of     , we find 
quark and lepton mass terms with masses

L = yeϕ
†Le + ydϕ

†Qd + yuεabϕaQbu + h.c.

ϕ

mf =
yfv√

2

ϕ



The theory of a simple Higgs boson has one more nontrivial feature 
with respect to fermion mass generation.  In a theory with 3 
generations, the most general fermion coupling to Higgs is more 
complicated:

However, it is possible to diagonalize the coupling matrices 

      
and absorb the tranformations U,V into redefinitions of the quark 
and lepton fields.  Then these factors cancel and disappear from 
the Standard Model Lagrangian except that the W couplings aquire 
a generation mixing:                             .

Among alternative theories of electroweak symmetry breaking, only 
a few have such a simple cancellation of dangerous flavor-changing 
terms. 

L = Y ij
e ϕ†Liej + Y ij

d ϕ†Qid
j
+ Y ij

u εabϕaQi
bu

j + h.c.

Ye = U†
e yeVe Yd = U†

dydVd Yu = U†
uyuVu

VCKM = UuU†
d



If we assume that electroweak symmetry breaking is due to a 
single Higgs field, we expect to see one additional particle, 
the scalar      .    The mass of the      is not determined by any 
current observation.  However, given that mass, the couplings 
of the       are fixed, and we can compute its cross sections 
and branching ratios.

We can find the Feynman rules for the       by noting that this 
field appears in the combination               .  Then from the 
Higgs-induced mass terms, we find

= −i
mf

v

= 2i
m2

W

v
gµν = 2i

m2
Z

v
gµν

h0 h0

h0

h0

(v + h0)



Using these Feynman rules, it is straightforward to work out the 
partial widths of the Higgs boson.   These calculations have some 
theoretically interesting features (which we can discuss offline).

For the Higgs decays to fermions

times the color factor 3 for quarks.

For the Higgs decays to vector bosons

This works out to 

The dependence               is strange but correct and causes these 
modes to dominate all others when kinematically allowed.
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Indeed, even below the threshold for                          , decays 
to one W or Z on-shell and one far off-shell can compete with 
the dominant on-shell decay                . 

Two addition sets of decays arise only a the 1-loop level but can 
still be relevant for a light Higgs boson.  I give the formulae in 
the limit

Putting all of the pieces together: 

h0 →W+W−

h0 → bb

Γ(h0 → gg) =
αwα2

s

288π2

m3
h

m2
W

Γ(h0 → γγ) =
αwα2

576π2

m3
h

m2
W

∣∣∣∣
21
4
− 4

3
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2

mh ! mW



h branching ratios --  light Higgs



h branching ratios --  Higgs near W threshold



h branching ratios --  heavy Higgs



Through the formula

these results for the partial widths also provide information about 
the Higgs production cross sections at the Tevatron and the LHC. 

For example, the amplitude for                  induces a production 
channel at hadron colliders               .   However, I will leave that 
discussion to the other lecturers.

σ(A→ h0 → B) ∼ Γ(h0 → A) · BR(h0 → B)

h0 → gg
gg → h0


