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The goal of this school is to prepare you to think about physics 
results from the LHC.

At the LHC, we hope to discover laws of physics that are now 
unknown.

However, any new physics must stand on the foundation of what is 
already understood.  In these lectures, I will present some 
essential features of the ‘Standard Model’ of elementary particle 
physics.



The Standard Model is a theory of vector bosons, fermions, and 
one scalar boson that gives an internally self-consistent model of 
strong, weak, and electromagnetic interactions.   The model is 
well tested and, plausibly, explains all aspects of elementary 
particle behavior seen in accelerator experiments.

The predictions of the model divide into two classes.  First, there 
are predictions that are derived in weak-coupling perturbation 
theory.  Second, there are predictions of the theory that require 
analysis of strongly coupled quantum field theory.  For LHC 
physics, we need to understand both aspects.  We collide protons, 
strong interaction bound states, but the reaction we are most 
interested in involve weak interactions of the proton components.

In this lecture, I will give a general introduction to both aspects of 
the model. 



We first discuss weakly coupled theories of vector bosons and 
fermions. The most general renomalizable Lagrangian for such a 
system is very simple.  It is a Yang-Mills theory.

Let G be a simple Lie group with structure constants

Then the unique renormalizable Lagrangian is

where

The field strength          is associated with a covariant derivative

by the relation 

This theory has G as a local (‘gauge’) symmetry, a property 
essential for forming a consistent renormalizable quantum theory. 
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Fermion and boson matter fields couple to the vector fields by 
using the covariant derivative in their Lagrangian.  For example, 
for a massless fermion in the representation R of G

with

I have written the fermion as a 2-component fermion field.  That 
is the minimal spin-1/2 representation of the Lorentz algebra.

We can also add mass terms for the fermions.  In the Standard 
Model, it turns out, all fermion mass terms are forbidden by 
symmetry, unless we add a scalar or some other ingredient to the 
model.   In this lecture, I will say the very minimum about 
masses, reserving that discussion for later.

L = ψ†(iσµDµ)ψ

σµ = (1,−"σ)µ Dµ = ∂µ − iAa
µtaR



That is the whole structure.

We can have several commuting local symmetry groups and several 
representations of fermions.  Then the most general Lagrangian is

We need to pick a set of gauge groups G representations R, and 
coupling constants g that describe the real world.  Then all of the 
consequences of the Standard Model must come out of this formula 
(and assumptions about how masses are generated).
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4

∑

i

1
g2

i

(F a
iµν)2 +

∑

j

ψ†
j (iσ · Dµ)ψj



The correct choices are that G should be a product of three groups

describing the electroweak and strong interactions, and that the 
fermions should give three copies of the representations

indicated by the charge under the U(1), the spin under the SU(2), 
and the representation under the SU(3).

The fermions shown are left-handed; their antiparticles, with the 
opposite quantum numbers, are right-handed.
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Here is a simple example of the dynamics in the gauge theory 
Lagrangian: the coupling of a massive vector boson to a massless 
fermion and antifermion:

Then, with the spinors

We find

The vector is proportional to the                             polarization 
vector, as should be expected.

u†(q†) =
√

2E

(
−1
0

)
u(q) =

√
2E

(
0
1

)

iM = iG ε∗µ(W ) u†(q†)σµu(q)

iM = iG mW ε∗µ(W ) (0, 1,−i, 0)µ

J = 1, J3 = −1



Then, for example, the process                                    yields 
a W boson with                     .

A complete process                     has an angular distribution

Similarly, 

Compare the QED formula for 
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We can now compute the width and partial widths of the W boson. 
To be a little more careful about the normalization, write

The kinetic term of SU(2) bosons written earlier is normalized to 

so with the definition of the W field above

Then the W vertex becomes

or 

W± =
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Now we can work out all of the properties of the W boson.

We need the experimental values:   

Then

Similarly, including a factor 3 for color, and a QCD correction,

This gives

and the branching ratios:

mW = 80.4 GeV
g2

4π
= αw = 1/29.6

Γ(W+ → ud) = (αwmW /12) · 3 · (1 +
αs(mW )

π
) = 702 MeV

Γ(W+ → !+ν) =
1
3

1
2mW

1
8π

∣∣g2mW

∣∣2 =
αw

12
mW = 226 MeV

ΓW = 3 · 0.226 + 2 · 0.702 = 2.08 GeV

BR(W+ → e+ν) = 11% BR(W+ → ud) = 34%



To discuss the Z boson and the weak neutral current, I need to 
say more about the vector boson mass matrix.  I will start by 
postulating the following mass matrix of SU(2)XU(1) bosons:

In the Lagrangian, this reads

This mass matrix has the following properties:

It couples SU(2) (    )  and U(1)  (   )  gauge bosons.
It contains a zero eigenvector  (which will give the photon).
The pure SU(2) part is isospin-symmetric (custodial symmetry).
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The mass eigenstates are given by the W fields above and by 
rewriting

The following notation is useful:

Then

and 

The mass eigenstate vector bosons are thus:

From these formulae,

Experimentally,                                                      (not so bad)
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=
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The couplings of A and Z are derived from the basic form

by the substitutions on the previous slide

In these formulae, I identify

and 

A3
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=
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g2
1 + g2

2
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e2 =
g2
1g2

2

g2
1 + g2

2

g2
1 + g2

2 =
e2

s2
wc2

w

Q = (I3 + Y ) QZ = (I3 − s2
wQ)



From these formulae, we can compute the properties of the Z:

For any fermion species

The values of        are:

Then we find for the total width:

and for the branching ratios:

ν e u d
Q2

Z = 0.250 0.073 0.120 0.179 L,Q
- 0.053 0.024 0.006 e, u, d

sum = 0.250 0.126 0.144 0.185

ΓZ = (667 MeV) · [3 · 0.250 + 3 · (0.126) + (3.1) · (3 · 0.185 + 2 · 0.144)]
= 2.49 GeV

3ν e u d
BR(Z0 → ff) 20.% 3.4% 11.9% 15.3%
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1
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w
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As along as we only deal with leptons, we can easily compute the 
cross sections for W and Z production:

or finally

To include a finite boson width

However, at the LHC, we do collider hadrons, so we must include 
some results from the SU(3) part of the Standard Model, QCD.

σ(e+e− → Z0) =
1
2s

∫
d3p

(2π)32EZ
(2π)4δ(4)(p1 + p2 − pZ)

1
4
∣∣
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ZΓ2
Z

σ(e+e− → Z0) =
2π2αw
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(Q2
ZL + Q2
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Frank Petriello will give a comprehensive introduction to QCD in his 
lectures at this school.  But I would like to introduce the most basic 
concepts now.

The coupling constant of QCD exhibits asymptotic freedom

At high Q, QCD is a weak interaction and perturbation theory applies.
at low Q, QCD is a strong interaction.  We find quark confinement 
           and hadronic bound states.

To compute the rates of reactions at the LHC, it would be good to 
deal as little as possible with the nonperturbative aspects of QCD.  
However, we are colliding protons, so we need to know something 
about the proton bound state.  How do we encode that information ?

g2
3

4π
≡ αs(Q) =

αs(Q0)
1 + (b0/2π) log Q/Q0

=

{
0.18 at Q = 10 GeV
0.12 at Q = 100 GeV



Consider a proton at high energy.

Each constituent has most of its momentum in the direction of the 
proton’s momentum.  In order for a constituent to have high 
momentum transverse to the proton direction, it must have 
exchanged large momentum with another constituent.  This is a 
weak effect and can be added later using QCD perturbation theory.

So, model the proton as a collection of collinear massless 
constituents (partons).  Let

be the probability of find the parton p  (e.g. a u quark or a gluon) 
at the fraction                            of the proton’s momentum.

This is the parton model, as first introduced by Feynman.

dξ fp(ξ)

ξ (0 < ξ < 1)



The parton model had its first success in application to deep 
inelastic scattering:                             at energies                 .

In the parton model, this is described as 
electron-quark scattering:

The cross section for the underlying process is

obtained by crossing our earlier result for                          .  The 
hats denote the invariants in the reaction of partons. Then the 
parton model cross section for ep scattering should then be

e

q

p+q
P

p

e−p→ e− + X Ee ! mp

dσ
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=

πα2

ŝ
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f (
ŝ2 + û2

t̂2
)
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σ =
∫

dξ
∑

f

Q2
fff (ξ)

∫
d cos θ

πα2

ŝ

ŝ2 + û2

t̂2



In the deep inelastic experinents, we measures the recoil momentum 
of the electron. Then it is possible to infer the momentum transfer 
q.  From this, all of the invariants can be computed.

The initial quark momentum is               .  Now comes Feynman’s 
remarkable observation:  the final quark must be on shell, so 

(ignoring                            ).  Then

In each event, we know the momentum fraction     of the struck 
quark !   Further,

The value of y is observable, equal to the fraction of the e- energy 
that is tranfered to the hadronic system in the lab frame.  Note also

t̂ = q2 ≡ −Q2 ŝ = 2k · p û = 2(k − q) · p

p = ξP

(p + q)2 = (ξP + q)2 = 2ξP · q −Q2

ξ =
Q2

2P · q
≡ x

∫
d cos θ =

∫
2dû/ŝ =

∫
2dy

P 2 = m2
p ! Q2

ξ

û

ŝ
=

2(k − q) · p

2k · p
= 1− y , with y ≡ 2q · P

2k · P



Finally, we obtain

where f is summed over all species of quarks and antiquarks.

The factorization of this formula is remarkable.  The quantity

is predicted to depend only on x and to be independent of       .
This property is called Bjorken scaling.

The original data from SLAC supported this scaling strongly.  
Today, with data over a larger range of      , we know that 
also has a slow dependence on        .  As Frank Petriello will 
explain, this     - dependence of the parton distributions is 
predicted by QCD, and the observed variation is in good 
agreement with the predictions.

Q2

Q2

Q2

Q2

dσ

dxdy
=

[∑

f

Q2
fxff (x)

]
· 2πα2s

Q4
[1 + (1− y)2]

F2(x) =
∑

f

Q2
fxff (x)



the SLAC-MIT deep inelastic scattering experiment
1967



SLAC-MIT





H1 -   920 GeV p   x 27.6 GeV e-



Now apply this logic to the cross section for W and Z production -- 
the Drell-Yan process.  The picture is 

The quark level cross section formulae are

The factor 1/3 appears because the quark and antiquark must be 
of the same color to annihilate.   Then we find

σ(qq → Z0) =
2π2αw

3c2
w

(Q2
ZL + Q2

ZR)δ(s−m2
Z)

σ(ud→W+) =
π2αw

3c2
w

δ(s−m2
W )

σ(pp→ Z0) =
∫

dx1dx2

∑

f

ff (x1)ff (x2)[Q2
ZL + Q2

ZR]
2π2αw

3c2
w

δ(s−m2
Z)

σ(pp→W+) =
∫

dx1dx2 [fu(x1)fd(x2) + · · · ]π
2αw

3c2
w

δ(s−m2
W )



In this case, there are two partons with unknown momentum 
fractions.  But it is possible to identify both fractions for each event.

The rapidity of the W or Z is given by

Then 

From these formulae

Then the Drell-Yan cross section can be written

This factorization is called Drell-Yan scaling.

Y =
1
2

log
q0 + q3

q0 − q3
=

1
2

log
q+

q−
=

1
2

log
x1

x2

x1 = (mW /s)eY x2 = (mW /s)e−Y

dx1dx2 =
dŝ

ŝ
dY

m2
W = ŝ = (p1 + p2)2 = 2p1 · p2 = 2x1x2P1 · P2 = x1x2s

dσ

dY
(pp→W+) =

[
x1fu(x1)x2fd(x2) + · · ·

]
π2αw

3m2
W



This formula has an interesting physical consequence.

Consider first proton-antiproton scattering at the Tevatron.

The proton has hard quarks and the antiproton has hard 
antiquarks.  The u quarks are more likely to carry a large 
fraction of the momentum than the d quarks.  Then most W+ 
will be made from        and go forward, while most W- will be 
made from       and go backward.

Next, recall that the leptons from W+ go backward with respect 
to the quark direction, while the leptons from W- go forward 
with respect to the quark direct.  This gives a symmetric 
pattern in which the leptons are more central than the W’s.

ud
du



W+W-
e+e-

rapidity distributions - Tevatron



CDF



Muon charge asymmetry vs. muon rapidity, from DO



What about at the LHC ?  Here W’s are made by annihilation of 
valence quarks on low-momentum antiquarks. 

Both the W+ and W- distributions must be symmetric about Y=0.  
However, the W+ distribution will be broader in Y, reflecting the 
higher momentum of the u quarks.

The W+’s then decay to a backward lepton, giving a narrow 
distribution for the l+’s.  The W-’s decay to a forward lepton, 
broadening the distribution of the l-’s.



W+

W- e+

e-

rapidity distributions - LHC



The parton model is a very general tool for computing cross 
sections at the LHC.  It applies both the Standard Model and 
Beyond the Standard Model physics.  As the school progresses, 
you will see many applications of this model to LHC processes.


