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Quick review of probablility
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Suppose we want to discover this…

high p
T

muons

high p
T

jets 
of hadrons

missing transverse energy

p p

SUSY event (ATLAS simulation):
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But we know we‟ll have lots of this…

SM event also has high  
p

T
jets and muons, and 

missing transverse energy.

→ can easily mimic a SUSY 

event and thus constitutes a

background.

ttbar event (ATLAS simulation)



G. Cowan Statistics for the LHC / Zuoz 2010 6

For each reaction we consider we will have a hypothesis for the

pdf of     , e.g., 

Multivariate statistical analysis

Suppose the result of a measurement for an individual event 

is a collection of numbers

x1 = number of muons,

x2 = mean pt of jets,

x3 = missing energy, ...

follows some n-dimensional joint pdf, which depends on 

the type of event produced, i.e., was it 

etc.

Often call H0 the background hypothesis (e.g. SM events);

H1, H2, ... are possible signal hypotheses.
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Hypotheses

A hypothesis H specifies the probability for the data, i.e., the 

outcome of the observation, here symbolically: x.

x could be uni-/multivariate, continuous or discrete.

E.g. write x ~ f (x|H).

x could represent e.g. observation of a single particle, 

a single event, or an entire “experiment”.

Possible values of x form the sample space S (or “data space”).

Simple (or “point”) hypothesis:  f (x|H) completely specified.

Composite hypothesis:  H contains unspecified parameter(s).

The probability for x given H is also called the likelihood of

the hypothesis, written L(x|H).
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Definition of a test

Goal is to make some statement based on the observed data

x as to the validity of the possible hypotheses.

Consider e.g. a simple hypothesis H0 and alternative H1.

A test of H0 is defined by specifying a critical region W of the

data space such that there is no more than some (small) probability

a, assuming H0 is correct,  to observe the data there, i.e.,

P(x  W | H0 ) ≤ a

If x is observed in the critical region, reject H0.

a is called the size or significance level of the test.

Critical region also called “rejection” region; complement is

acceptance region.
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Definition of a test (2)

But in general there are an infinite number of possible critical 

regions that give the same significance level a.

So the choice of the critical region for a test of H0 needs to take 

into account the alternative hypothesis H1.

Roughly speaking, place the critical region where there is a low 

probability to be found if H0 is true, but high if H1 is true:
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Rejecting a hypothesis

Note that rejecting H0 is not necessarily equivalent to the

statement that we believe it is false and H1 true.  In frequentist

statistics only associate probability with outcomes of repeatable

observations (the data).

In Bayesian statistics, probability of the hypothesis (degree

of belief) would be found using Bayes‟ theorem:

which depends on the prior probability p(H). 

What makes a frequentist test useful is that we can compute

the probability to accept/reject a hypothesis assuming that it

is true, or assuming some alternative is true.
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Type-I, Type-II errors 

Rejecting the hypothesis H0 when it is true is a Type-I error.  

The maximum probability for this is the size of  the test:

P(x  W | H0 ) ≤ a

But we might also accept H0 when it is false, and an alternative 

H1 is true.

This is called a Type-II error, and occurs with probability

P(x  S - W | H1 ) = b

One minus this is called the power of the test with respect to

the alternative H1:

Power = 1 - b
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Defining a multivariate critical region

Each event is a point in x-space; critical region is defined

by a „decision boundary‟ in this space.

What is best way to determine the decision boundary?

W

H1

H0

Perhaps with „cuts‟:
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Other multivariate decision boundaries

Or maybe use some other sort of boundary:

W

H1

H0

W

H1

H0

linear or nonlinear
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Test statistics

The decision boundary can be defined by an equation of the form

We can work out the pdfs

Decision boundary is now a 

single „cut‟ on t, defining 

the critical region.

So for an n-dimensional 

problem we have a 

corresponding 1-d problem.

where t(x1,…, xn) is a scalar test statistic.
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Constructing a test statistic

How can we choose a test‟s critical region in an „optimal way‟?

Neyman-Pearson lemma states:

To get the highest power for a given significance level in a test

H0, (background) versus H1, (signal) (highest es for a given eb)

choose the critical (rejection) region such that

inside the region, and  ≤ c outside, where c is a constant which 

determines  the power.

Equivalently, optimal scalar test statistic is

N.B. any monotonic function of this is leads to the same test.
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Multivariate methods

Many new (and some old) methods for finding decision boundary:

Fisher discriminant

Neural networks

Kernel density methods

Support Vector Machines

Decision trees

Boosting

Bagging

New software for HEP, e.g.,

TMVA , Höcker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039

For more see e.g. references at end of this lecture.

In this lecture we will look at a single interesting example: 

the Boosted Decision Tree.
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Particle i.d. in MiniBooNE
Detector is a 12-m diameter tank 
of mineral oil exposed to a beam 
of neutrinos and viewed by 1520 
photomultiplier tubes:

H.J. Yang, MiniBooNE PID, DNPH.J. Yang, MiniBooNE PID, DNP0606

Search for n
m

to n
e

oscillations 
required particle i.d. using 
information from the PMTs.
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Decision trees
Out of all the input variables, find the one for which with a single cut 
gives best improvement in signal/background separation:

Example by MiniBooNE experiment,
B. Roe et al., NIM 543 (2005) 577

where w
i
. is the weight of the ith event.

Resulting nodes classified as either 
signal/background.

Iterate until stop criterion reached 
based on e.g. purity or minimum 
number of events in a node.

The set of cuts defines the decision 
boundary.
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BDT example from MiniBooNE
~200 input variables for each event (n interaction producing e, m or p).

Each individual tree is relatively weak, with a misclassification 
error rate ~ 0.4 – 0.45 

B. Roe et al., NIM 543 (2005) 577
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Overtraining 

training sample independent test sample

If decision boundary is too flexible it will conform too closely

to the training points  → overtraining.

Monitor by applying classifier to independent test sample.



G. Cowan Statistics for the LHC / Zuoz 2010 26

Monitoring overtraining

From MiniBooNE
example:

Performance stable
after a few hundred
trees.
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Boosted decision tree summary 
Advantage of BDT is it can handle a large number of inputs.

Those that provide little/no separation are rarely used as splitters

and are effectively ignored.

Easy to deal with inputs of mixed types (real, integer, categorical).

BDT is surprisingly insensitive to overtraining:  error rate on

test sample will not rise (much), even if error rate on training

sample goes to zero.

There are a number of boosting algorithms, which differ mainly

in the rule for updating the weights (e-Boost, LogitBoost,...).

Other ways of combining weaker classifiers:  Bagging (Boosted

Aggregating), generates the ensemble of classifiers by random

sampling with replacement from full training sample.
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Testing significance / goodness-of-fit

Suppose hypothesis H predicts pdf 

observations

for a set of

We observe a single point in this space:

What can we say about the validity of H in light of the data?

Decide what part of the 

data space represents less 

compatibility with H than 

does the point less 

compatible

with H

more 

compatible

with H

(Not unique!)
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p-values

where p (H) is the prior probability for H.

Express level of agreement between data and H with p-value:

p = probability, under assumption of H, to observe data with 

equal or lesser compatibility with H relative to the data we got. 

This is not the probability that H is true!

In frequentist statistics we don‟t talk about P(H) (unless H

represents a repeatable observation). In Bayesian statistics we do; 

use Bayes‟ theorem to obtain

For now stick with the frequentist approach; 

result is p-value, regrettably easy to misinterpret as P(H).
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Significance from p-value

Often define significance Z as the number of standard deviations

that a Gaussian variable would fluctuate in one direction

to give the same p-value.

1 - TMath::Freq

TMath::NormQuantile

Statistics for the LHC / Zuoz 2010
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The significance of an observed signal

Suppose we observe n events; these can consist of:

nb events from known processes (background)

ns events from a new process (signal)

If ns, nb are Poisson r.v.s with means s, b, then n = ns + nb

is also Poisson, mean = s + b:

Suppose b = 0.5, and we observe nobs = 5.  Should we claim

evidence for a new discovery?  

Give p-value for hypothesis s = 0:
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When to publish

HEP folklore is to claim discovery when p = 2.9  10-7,

corresponding to a significance Z = 5.

This is very subjective and really should depend on the 

prior probability of the phenomenon in question, e.g.,

phenomenon        reasonable p-value for discovery

D0D0 mixing ~0.05

Higgs ~ 10-7 (?)

Life on Mars ~10-10

Astrology ~10-20

One should also consider the degree to which the data are compatible 

with the new phenomenon and possible systematic errors in the 

model on which the p-value is based: p-value is only first step!

Statistics for the LHC / Zuoz 2010
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Distribution of  the p-value

The p-value is a function of the data, and is thus itself a random

variable with a given distribution.  Suppose the p-value of H is 

found from a test statistic t(x) as

Statistics for the LHC / Zuoz 2010

The pdf of pH under assumption of H is

In general for continuous data,  under 

assumption of H, pH ~ Uniform[0,1]

and is concentrated toward zero for 

Some (broad) class of alternatives. pH

g(pH|H)

0 1

g(pH|H′)
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Using a p-value to define test of H0

So the probability to find the p-value of H0, p0, less than a is

Statistics for the LHC / Zuoz 2010

We started by defining critical region in the original data

space (x), then reformulated this in terms of a scalar test 

statistic t(x).

We can take this one step further and define the critical region 

of a test of H0 with size a as the set of data space where p0 ≤ a.

Formally the p-value relates only to H0, but the resulting test will

have a given power with respect to a given alternative H1.
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Confidence intervals by inverting a test

Confidence intervals for a parameter q can be found by 

defining a test of the hypothesized value q (do this for all q): 

Specify values of the data that are „disfavoured‟ by q

(critical region) such that P(data in critical region) ≤ a

for a prespecified a, e.g., 0.05 or 0.1.

If data observed in the critical region, reject the value q .

Now invert the test to define a confidence interval as:

set of q values that would not be rejected in a test of

size a (confidence level is 1 - a ).

The interval will cover the true value of q with probability ≥ 1 - a.

Equivalent to confidence belt construction; confidence belt is 

acceptance region of a test.

G. Cowan 
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Relation between confidence interval and p-value

Equivalently we can consider a significance test for each

hypothesized value of q, resulting in a p-value, pq..  

If pq < a, then we reject q. 

The confidence interval at CL = 1 – a consists of those values of 

q that are not rejected.

E.g. an upper limit on q is the greatest value for which pq ≥ a. 

In practice find by setting pq = a and solve for q.

G. Cowan 
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A simple example

For each event we measure two variables, x = (x1, x2).

Suppose that for background events (hypothesis H0), 

and for a certain signal model (hypothesis H1) they follow

where x1, x2  ≥ 0 and C is a normalization constant.
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Likelihood ratio as test statistic

In a real-world problem we usually wouldn‟t have the pdfs 

f(x|H0) and f(x|H1), so we wouldn‟t be able to evaluate the

likelihood ratio 

for a given observed x, hence

the need for multivariate 

methods to approximate this 

with some other function.

But in this example we can 

find contours of constant 

likelihood ratio such as:



G. Cowan Statistics for the LHC / Zuoz 2010 39

Event selection using the LR

Using Monte Carlo, we can find the distribution of the likelihood

ratio or equivalently of

signal (H1)

background

(H0)

From the Neyman-Pearson lemma

we know that by cutting on this

variable we would select a signal

sample with the highest signal

efficiency (test power) for a given

background efficiency.
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Search for the signal process

But what if the signal process is not known to exist and we want

to search for it.   The relevant hypotheses are therefore

H0:  all events are of the background type

H1:  the events are a mixture of signal and background

Rejecting H0 with Z > 5 constitutes “discovering” new physics.

Suppose that for a given integrated luminosity, the expected number

of signal events is s, and for background b.

The observed number of events n will follow a Poisson distribution:
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Likelihoods for full experiment

We observe n events, and thus measure n instances of x = (x1, x2). 

The likelihood function for the entire experiment assuming

the background-only hypothesis (H0) is

and for the “signal plus background” hypothesis (H1) it is

where ps and pb are the (prior) probabilities for an event to

be signal or background, respectively.
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Likelihood ratio for full experiment

We can define a test statistic Q monotonic in the likelihood ratio as

To compute p-values for the b and s+b hypotheses given an 

observed value of Q we need  the distributions f(Q|b) and f(Q|s+b).

Note that the term –s in front is a constant and can be dropped.

The rest is a sum of contributions for each event, and each term

in the sum has the same distribution.

Can exploit this to relate distribution of Q to that of single

event terms using (Fast) Fourier Transforms (Hu and Nielsen, 

physics/9906010).



G. Cowan Statistics for the LHC / Zuoz 2010 43

Distribution of Q

Take e.g. b = 100, s = 20.

f (Q|b)

f (Q|s+b)

p-value of b only p-value of s+b

Suppose in real experiment

Q is observed here.
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Systematic uncertainties

Up to now we assumed all parameters were known exactly.

In practice they have some (systematic) uncertainty.

Suppose e.g. uncertainty in expected number of background events

b is characterized by a (Bayesian) pdf p(b).

Maybe take a Gaussian, i.e.,

where b0 is the nominal (measured) value and sb is the estimated

uncertainty.

In fact for many systematics a Gaussian pdf is hard to 

defend – more on this in extra slides.
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Distribution of Q with systematics

To get the desired p-values we need the pdf f (Q), but

this depends on b, which we don‟t know exactly.  

But we can obtain the Bayesian model average:

With Monte Carlo, sample b from p(b), then use this to generate 

Q from f (Q|b), i.e., a new value of b is used to generate the data 

for every simulation of the experiment.

This broadens the distributions of Q and thus increases the 

p-value (decreases significance Z) for a given Qobs.
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Distribution of Q with systematics (2)

For s = 20, b0 = 100, sb = 10 this gives

f (Q|b)

f (Q|s+b)

p-value of b only p-value of s+b
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Using the likelihood ratio L(s)/L(s)ˆ

Instead of the likelihood ratio Ls+b/Lb, suppose we use as a test

statistic 

Intuitively this is a good measure of the level of agreement 

between the data and the hypothesized value of s.

low l:  poor agreement

high l : good agreement

0 ≤ l ≤ 1

maximizes L(s)
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L(s)/L(s) for counting experimentˆ

Consider an experiment where we only count n events with

n ~ Poisson(s + b).  Then                 .

To establish discovery of signal we test the hypothesis s = 0 using

whereas previously we had used

which is monotonic in n and thus equivalent to using  n as

the test statistic.
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L(s)/L(s) for counting experiment (2)ˆ

But if we only consider the possibility of signal being present

when n > b, then in this range l(0) is also monotonic in n,

so both likelihood ratios lead to the same test.

b
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L(s)/L(s) for general experimentˆ

If we do not simply count events but also measure for each some 

set of numbers, then the two likelihood ratios do not necessarily 

give equivalent tests, but in practice will be very close.

l(s) has the important advantage that for a sufficiently large event

sample, its distribution approaches a well defined form (Wilks‟

Theorem).

In practice the approach to the asymptotic form is rapid and 

one obtains a good approximation even for relatively small 

data samples (but need to check with MC).

This remains true even when we have adjustable nuisance 

parameters in the problem, i.e., parameters that are needed for

a correct description of the data but are otherwise not of

interest (key to dealing with systematic uncertainties).
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Prototype LHC search analysis 

Search for signal in a region of phase space; result is histogram

of some variable x giving numbers:

Assume the ni are Poisson distributed with expectation values

G. Cowan Statistics for the LHC / Zuoz 2010

signal

where

background

strength parameter

Cowan, Cranmer, Gross and Vitells, arXiv:1007.1727
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Prototype analysis (II)

Often also have a subsidiary measurement that constrains some

of the background and/or shape parameters:

Assume the mi are Poisson distributed with expectation values

G. Cowan Statistics for the LHC / Zuoz 2010

nuisance parameters (qs, qb,btot)

Likelihood function is

Cowan, Cranmer, Gross and Vitells, arXiv:1007.1727
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The profile likelihood ratio

Base significance test on the profile likelihood ratio:

G. Cowan Statistics for the LHC / Zuoz 2010

maximizes L for

specified m

maximize L

The likelihood ratio of point hypotheses gives optimum test  

(Neyman-Pearson lemma).

The profile LR hould be near-optimal in present analysis 

with variable m and nuisance parameters q.

Cowan, Cranmer, Gross and Vitells, arXiv:1007.1727
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Test statistic for discovery

Try to reject background-only (m = 0) hypothesis using

G. Cowan Statistics for the LHC / Zuoz 2010

i.e. here only regard upward fluctuation of data as evidence 

against the background-only hypothesis.

Cowan, Cranmer, Gross and Vitells, arXiv:1007.1727
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p-value for discovery

G. Cowan Statistics for the LHC / Zuoz 2010

Large q0 means increasing incompatibility between the data

and hypothesis, therefore p-value for an observed q0,obs is

will get formula for this later

From p-value get 

equivalent significance,

Cowan, Cranmer, Gross and Vitells, arXiv:1007.1727
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Expected (or median) significance / sensitivity

When planning the experiment, we want to quantify how sensitive

we are to a potential discovery, e.g., by given median significance

assuming some nonzero strength parameter m ′.

G. Cowan Statistics for the LHC / Zuoz 2010

So for p-value, need f(q0|0), for sensitivity, will need f(q0|m ′), 

Cowan, Cranmer, Gross and Vitells, arXiv:1007.1727
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Distribution of q0

Using an approximation due to Wald (1943), under regularity

conditions and for a sufficiently large data sample, the distribution 

of q0 will approach

G. Cowan Statistics for the LHC / Zuoz 2010

The special case m′ = 0 is a “half chi-square” distribution: 

Cowan, Cranmer, Gross and Vitells, arXiv:1007.1727
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Cumulative distribution of q0, significance

From the pdf, the cumulative distribution of q0 is found to be 

G. Cowan Statistics for the LHC / Zuoz 2010

The special case m′ = 0 is 

The p-value of the m = 0 hypothesis is

Therefore the discovery significance Z is simply

Cowan, Cranmer, Gross and Vitells, arXiv:1007.1727
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Monte Carlo test of asymptotic formula 

G. Cowan Statistics for the LHC / Zuoz 2010

Here take t = 1.

Asymptotic formula is 

good approximation to 5s
level (q0 = 25) already for

b ~ 20.

Cowan, Cranmer, Gross and Vitells, arXiv:1007.1727
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Monte Carlo test of asymptotic formulae 

G. Cowan Statistics for the LHC / Zuoz 2010

Significance from asymptotic formula, here Z0 = √q0 = 4, 

compared to MC (true) value.

For very low b, asymptotic

formula underestimates Z0.

Then slight overshoot before

rapidly converging to MC

value.

Cowan, Cranmer, Gross and Vitells, arXiv:1007.1727
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Monte Carlo test of asymptotic formulae 

G. Cowan Statistics for the LHC / Zuoz 2010

Asymptotic  f (q0|1)  good already for fairly small samples.

Median[q0|1] from Asimov data set; good agreement with MC.

Cowan, Cranmer, Gross and Vitells, arXiv:1007.1727
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Higgs search with profile likelihood

Combination of Higgs boson search channels (ATLAS)

Expected Performance of the ATLAS Experiment:  Detector, 

Trigger and Physics, arXiv:0901.0512, CERN-OPEN-2008-20.

Standard Model Higgs channels considered (more to be used later):

H → gg

H → WW (*) → enmn

H → ZZ(*) → 4l (l = e, m)

H → t+t- → ll, lh

Used profile likelihood method for systematic uncertainties:

background rates, signal & background shapes.
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An example: ATLAS Higgs search

G. Cowan Statistics for the LHC / Zuoz 2010

(ATLAS Collab., CERN-OPEN-2008-020)
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Cumulative distributions of q0

G. Cowan Statistics for the LHC / Zuoz 2010

To validate to 5s level, need distribution out to q0 = 25,

i.e., around 108 simulated experiments.

Will do this if we really see something like a discovery.
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Combined median significance

ATLAS arXiv:0901.0512

N.B. illustrates 

statistical method,

but study did not 

include all usable

Higgs channels.
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Profile likelihood ratio for upper limits

For purposes of setting an upper limit on m use

G. Cowan Statistics for the LHC / Zuoz 2010

Note for purposes of setting an upper limit, one does not regard

an upwards fluctuation of the data as representing incompatibility

with the hypothesized m.

Note also here we allow the estimator for m be negative

(but                  must be positive).

where
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Alternative test statistic for upper limits

Assume physical signal model has m > 0, therefore if estimator

for m comes out negative, the closest physical model has m = 0.

Therefore could also measure level of discrepancy between data 

and hypothesized m with

G. Cowan Statistics for the LHC / Zuoz 2010

Performance not identical to but very close to qm (of previous slide).

qm is simpler in important ways.
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Distribution of qm

Similar results for qm

G. Cowan Statistics for the LHC / Zuoz 2010
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Distribution of qm

G. Cowan Statistics for the LHC / Zuoz 2010

Similar results for qm̃

̃
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Monte Carlo test of asymptotic formulae 

G. Cowan Statistics for the LHC / Zuoz 2010

Consider again n ~ Poisson (ms + b), m ~ Poisson(tb)

Use qm to find p-value of hypothesized m values.

E.g. f (q1|1) for p-value of m =1.

Typically interested in 95% CL, i.e., 

p-value threshold = 0.05, i.e.,

q1 = 2.69 or  Z1 = √q1 =  1.64.

Median[q1 |0] gives “exclusion 

sensitivity”.

Here asymptotic formulae good

for s = 6, b = 9.
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Monte Carlo test of asymptotic formulae 

G. Cowan Statistics for the LHC / Zuoz 2010

Same message for test based on qm.

qm and qm give similar tests to 

the extent that asymptotic

formulae are valid.

~

~
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Example:  exclusion sensitivity

G. Cowan Statistics for the LHC / Zuoz 2010

Median p-value of m = 1 hypothesis versus Higgs mass assuming

background-only data (ATLAS, arXiv:0901.0512).
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Summary on discovery and limits

Test values of the parameter(s) of interest; result is p-value

If p < a , reject hypothesized parameter

Rejecting the background-only hypothesis ≈ discovery

Confidence interval for parameter at CL = 1 – a is range 

of values not rejected in test of size a.

Test can be based on likelihood ratio (or some approximation)

Systematic uncertainties ↔ nuisance parameters

“Tevatron Style”:

Profile Likelihood Ratio:

Can (should) also use Bayesian methods (no time for this today)
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Extra slides
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Frequentist Statistics − general philosophy 

In frequentist statistics, probabilities are associated only with

the data, i.e., outcomes of repeatable observations.

Probability = limiting frequency

Probabilities such as

P (Higgs boson exists), 

P (0.117 < as < 0.121), 

etc. are either 0 or 1, but we don‟t know which.

The tools of frequentist statistics tell us what to expect, under

the assumption of certain probabilities, about hypothetical

repeated observations.

The preferred theories (models, hypotheses, ...) are those for 

which our observations would be considered „usual‟.
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Bayesian Statistics − general philosophy 

In Bayesian statistics, interpretation of probability extended to

degree of belief (subjective probability).  Use this for hypotheses:

posterior probability, i.e., 

after seeing the data

prior probability, i.e.,

before seeing the data

probability of the data assuming 

hypothesis H (the likelihood)

normalization involves sum 

over all possible hypotheses

Bayesian methods can provide more natural treatment of  non-

repeatable phenomena:  

systematic uncertainties, probability that Higgs boson exists,...

No golden rule for priors (“if-then” character of Bayes‟ thm.)
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Significance level and power

Probability to reject H0 if it is true 

(type-I error):

(significance level)

Probability to accept H0 if H1 is 

true (type-II error):

(1 - b = power)
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Signal/background efficiency

Probability to reject background hypothesis for 

background event (background efficiency):

Probability to accept a signal event

as signal (signal efficiency):



G. Cowan Statistics for the LHC / Zuoz 2010 79

Purity of event selection

Suppose only one background type b; overall fractions of signal

and background events are ps and pb (prior probabilities).

Suppose we select signal events with t > tcut.  What is the

„purity‟ of our selected sample?

Here purity means the probability to be signal given that

the event was accepted.  Using Bayes‟ theorem we find:

So the purity depends on the prior probabilities as well as on the

signal and background efficiencies.
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Comparison of boosting algorithms
A number of boosting algorithms on the market; differ in the
update rule for the weights.
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Comparison of boosting algorithms
A number of boosting algorithms on the market; differ in the
update rule for the weights.



G. Cowan Statistics for the LHC / Zuoz 2010 83

Comment on priors

Suppose we measure n ~ Poisson(s+b), goal is to make inference

about s.

Suppose b is not known exactly but we have an estimate b

with uncertainty sb.

For Bayesian analysis, first reflex may be to write down a 

Gaussian prior for b,

But a Gaussian could be problematic because e.g.

b ≥ 0, so need to truncate and renormalize;

tails fall off very quickly, may not reflect true uncertainty.

ˆ
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Gamma prior for b
What is in fact our prior information about b?  It may be that 

we estimated b using a separate measurement (e.g., background 

control sample) with

m ~ Poisson(tb)              (t = scale factor, here assume known)

Having made the control measurement we can use Bayes‟ theorem

to get the probability for b given m,

If we take the “original” prior p0(b) to be to be constant for b ≥ 0,

then the posterior p(b|m), which becomes the subsequent prior 

when we measure n and infer s, is a Gamma distribution with:

mean =  (m + 1) /t

standard dev. = √(m + 1) /t
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Gamma distribution
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Wald approximation for profile likelihood ratio

To find p-values, we need:

For median significance under alternative, need:
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Use approximation due to Wald (1943)

sample size
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Noncentral chi-square for -2lnl(m)
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If we can neglect the O(1/√N) term, -2lnl(m) follows a

noncentral chi-square distribution for one degree of freedom

with noncentrality parameter

As a special case, if m′ = m then L = 0 and -2lnl(m) follows

a chi-square distribution for one degree of freedom (Wilks).
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The Asimov data set

To estimate median value of -2lnl(m), consider special data set

where all statistical fluctuations suppressed and ni, mi are replaced

by their expectation values (the “Asimov” data set):
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Asimov value of

-2lnl(m) gives non-

centrality param. L,

or equivalently, s
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Relation between test statistics and 
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Relation between test statistics and       
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Assuming the Wald approximation for – 2lnl(m), qm and qm

both have monotonic relation with m. 

~

And therefore quantiles

of qm, qm can be obtained

directly from those 

of m (which is Gaussian).ˆ

̃

~
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Combination of channels
For a set of independent decay channels, full likelihood function is

product of the individual ones:

Trick for median significance: estimator for m is equal to the

Asimov value m′ for all channels separately, so for combination,

For combination need to form the full function and maximize to find 

estimators of m, q.

→ ongoing ATLAS/CMS effort with RooStats framework

where
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Discovery significance for n ~ Poisson(s + b)

Consider again the case  where we observe n events,

model as following Poisson distribution with mean s + b

(assume b is known).

1) For an observed n, what is the significance Z0 with which

we would reject the s = 0 hypothesis?

2) What is the expected (or more precisely, median ) Z0 if 

the true value of the signal rate is s?
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Gaussian approximation for Poisson significance

For large s + b, n → x ~ Gaussian(m,s) , m = s + b, s = √(s + b).

For observed value xobs, p-value of s = 0 is Prob(x > xobs | s = 0),:

Significance for rejecting s = 0 is therefore

Expected (median) significance assuming signal rate s is
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Better approximation for Poisson significance

Likelihood function for parameter s is

or equivalently the log-likelihood is

Find the maximum by setting 

gives the estimator for s: 
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Approximate Poisson significance (continued)

The likelihood ratio statistic for testing s = 0 is

For sufficiently large s + b, (use Wilks‟ theorem), 

To find median[Z0|s+b], let n → s + b, 

This reduces to s/√b for s << b.
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Example 2:  Shape analysis
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Look for a Gaussian bump sitting on top of:
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Monte Carlo test of asymptotic formulae 
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Distributions of qm here for m that gave pm = 0.05.
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Using f(qm|0) to get error bands
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We are not only interested in the median[qm|0]; we want to know

how much statistical variation to expect from a real data set.

But we have full f(qm|0); we can get any desired quantiles.
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Distribution of upper limit on m
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±1s (green) and ±2s (yellow) bands from MC;

Vertical lines from asymptotic formulae
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Limit on m versus peak position (mass)
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±1s (green) and ±2s (yellow) bands from asymptotic formulae;

Points are from a single arbitrary data set.


