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Quick review of probablility

Freguentist (A = outcome of outcome is A
k P(A) = lim

repeatable observation): n

Subjective (A = hypothesis): P(A) = degree of belief that A is true

P(AN B)
P(B)

Conditional probability: P(A|B) =

P(B|A)P(A)  P(B|A)P(A)
P(B)  x;P(B|A)P(A;)

Bayes' theorem:  P(A|B) =
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Suppose we want to discover this...

SUSY event (ATLAS simulation):

high p_. jets
of hadrons

missing transverse energy
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But we know we’ll have lots of this...

ttbar event (ATLAS simulation)

ATLAS atlantis Event: myFiles2_8.4.0_3026_723%02

SM event also has high
prJets and muons, and
missing transverse energy.

— can easily mimic a SUSY
event and thus constitutes a
background.
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Multivariate statistical analysis

Suppose the result of a measurement for an individual event
is a collection of numbers ¥ = (x1,...,xn)

x; = number of muons,
X, = mean p, of jets,
X5 = missing energy, ...

T follows some n-dimensional joint pdf, which depends on
the type of event produced, i.e., was it

pp—tt, PP —4gg,-...

For each reaction we consider we will have a hypothesis for the
pdfof #,e.g., f(Z|Hg), f(F|H1) , etc.

Often call H, the background hypothesis (e.g. SM events);
H,, H,, ... are possible signal hypotheses.
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Hypotheses

A hypothesis H specifies the probability for the data, 1.e., the
outcome of the observation, here symbolically: x.

x could be uni-/multivariate, continuous or discrete.

E.g. write x ~ f (x| H).

x could represent e.g. observation of a single particle,
a single event, or an entire “‘experiment”.

Possible values of x form the sample space S (or “data space”).
Simple (or “point”) hypothesis: f(x|H) completely specified.
Composite hypothesis: H contains unspecified parameter(s).

The probability for x given H is also called the likelihood of
the hypothesis, written L(x|H).
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Definition of a test

Goal 1s to make some statement based on the observed data
x as to the validity of the possible hypotheses.

Consider e.g. a simple hypothesis i, and alternative H,.

A test of H,, 1s defined by specifying a critical region I/ of the
data space such that there 1s no more than some (small) probability
o, assuming H, 1s correct, to observe the data there, 1.e.,

PxeW|Hy,)<«
If x 1s observed 1n the critical region, reject H,,.
a 1s called the size or significance level of the test.

Critical region also called “rejection” region; complement 1s
acceptance region.
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Definition of a test (2)

But in general there are an infinite number of possible critical
regions that give the same significance level a.

So the choice of the critical region for a test of /|, needs to take
into account the alternative hypothesis H,.

Roughly speaking, place the critical region where there 1s a low
probability to be found if H,, is true, but high if /, 1s true:

" e (_rl-'n'ct‘\l Yrenten W
': W‘F(K\Hl)
X
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Rejecting a hypothesis

Note that rejecting H,, 1s not necessarily equivalent to the
statement that we believe it 1s false and H, true. In frequentist

statistics only associate probability with outcomes of repeatable
observations (the data).

In Bayesian statistics, probability of the hypothesis (degree
of belief) would be found using Bayes’ theorem:

P(I|H)’?T(H)

P(H
) = TPl H)r(H) dH

which depends on the prior probability 7(H).

What makes a frequentist test useful 1s that we can compute

the probability to accept/reject a hypothesis assuming that it
1s true, or assuming some alternative is true.
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Type-1, Type-l1I errors

Rejecting the hypothesis /H, when it 1s true is a Type-I error.
The maximum probability for this 1s the size of the test:
PxeW|Hy)S«

But we might also accept /, when it 1s false, and an alternative
H, 1s true.

This 1s called a Type-II error, and occurs with probability

One minus this 1s called the power of the test with respect to
the alternative H,:

Power = I -
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Defining a multivariate critical region

Each event is a point in x-space; critical region 1s defined
by a ‘decision boundary’ in this space.

What is best way to determine the decision boundary?

Perhaps with ‘cuts’:

r;, < C

X j <Cj
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Other multivariate decision boundaries

Or maybe use some other sort of boundary:

linear or nonlinear
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Test statistics
The decision boundary can be defined by an equation of the form

t(il,‘l? e ,_ilfn_) — tcut

where #(x,,..., Xx,) 1s a scalar test statistic.

We can work out the pdfs g(t|Hp), g(t|H1), ...

2

g(®)

ru::L.lt

Decision boundary is now a accept Hy i reject H,

. . 15 F
single ‘cut’ on ¢, defining
the critical region. . | gUHy) _

Q(HHJ
So for an n-dimensional
problem we have a 0
corresponding 1-d problem.
0 | T
0 1 2 3 4 5
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Constructing a test statistic

How can we choose a test’s critical region 1n an ‘optimal way’?

Neyman-Pearson lemma states:

To get the highest power for a given significance level in a test
H,, (background) versus H, (signal) (highest & for a given &)
choose the critical (rejection) region such that

P(X‘Hl) '
P(x|Ho)  ©

inside the region, and < c outside, where c 1s a constant which

determines the power.

~ P(x|Hy)

Equivalently, optimal scalar test statisticis | #(x) = P(x|Hp)
X| L1

N.B. any monotonic function of this is leads to the same test.
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Neyman-Pearson doesn't always help

The problem is that we usually don't have explicit formulae for the pdfs

plxls), p(xlb), so for a given x we can't evaluate the likelihood ratio.

Instead we have Monte Carlo models for signal and background
processes, so we can produce simulated data:

“training data”
generate Y~np(Yls) —* fl "y f,,q, / events of known type

generate iwp{:ﬂb} — ;{‘1

Naive try: enter each (s,b) event into an n-dimensional histogram,
use e.g. M bins for each of the n dimensions, total of M" cells.

n 1s potentially large — prohibitively large number of cells to populate,
can't generate enough training data.

G. Cowan Statistics for the LHC / Zuoz 2010
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Multivariate methods

Many new (and some old) methods for finding decision boundary:
Fisher discriminant
Neural networks
Kernel density methods
Support Vector Machines
Decision trees
Boosting
Bagging

New software for HEP, e.g.,
TMVA , Hocker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039

For more see e.g. references at end of this lecture.

In this lecture we will look at a single interesting example:
the Boosted Decision Tree.

G. Cowan Statistics for the LHC / Zuoz 2010
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Particle 1.d. in MiniBooNE

Detector 1s a 12-m diameter tank

of mineral o1l exposed to a beam  Eectron candidate
. . fuzzy ring, short track
of neutrinos and viewed by 1520 -

photomultiplier tubes: w

MiniBooNE Detector

Muon candidate
sharp ring, filled in

"»:;-—- e - f____d_.-f-'"_'lll_

w
; Pion candidate
* _two "e-like" rings
\"}r-'ﬁ"'“ et o i’i{
Search for v to v oscillations <

required particle i.d. using n_— <A

information from the PMTs. . e
H.J. Yang, MiniBooNE PID, DNP06
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Decision trees

Out of all the input variables, find the one for which with a single cut
gives best improvement in signal/background separation:

E W,

signal !

E , w+§ W.
signal ! background !

where w.. 1s the weight of the ith event.

P=

Resulting nodes classified as either
signal/background.

[terate until stop criterion reached
based on e.g. purity or minimum S B

number of events in a node. /1 2/9
The set of cuts defines the decision Example by MiniBooNE experiment,
boundary. B. Roe et al., NIM 543 (2005) 577
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Decision trees (2)

The terminal nodes (leaves) are classified as signal or background
depending on majority vote (or e.g. signal fraction greater than a
specified threshold).

This classifies every point in input-variable space as either signal
or background, a decision tree classifier, with the discriminant function

f(x)=1if xesignalregion, -1 otherwise

Decision trees tend to be very sensitive to statistical fluctuations in
the training sample.

Methods such as boosting can be used to stabilize the tree.

G. Cowan Statistics for the LHC / Zuoz 2010
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Boosting

Boosting is a general method of creating a set of classifiers
which can be combined to achieve a new classifier that is more stable
and has a smaller error than any individual one.

Often applied to decision trees but, can be applied to any classifier.

Suppose we have a training sample 7 consisting of N events with

X ... X, event data vectors (each x multivariate)

1
Vs ¥, lrue class labels, +1 for signal, —1 for background
W, W o event weights

Now define a rule to create from this an ensemble of training samples
I.T, ... derive aclassifier from each and average them.

G. Cowan Statistics for the LHC / Zuoz 2010
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AdaBoost

A successtul boosting algorithm 1s AdaBoost (Freund & Schapire, 1997).

First initialize the training sample 7' using the original

I],...., Iv event data vectors
1

Voreeurs V true class labels (+1 or -1)

RO NN -
W W event weights N

with the weights equal and normalized such that Z WE-” =1.
i=1

Train the classifier f (x) (e.g. a decision tree) using the weights w'

so as to minimize the classification error rate.
N
_ (1) v :
51_2 w; Iy f1(x;)<0),
i=1

where [(X) = 1 if X 1s true and is zero otherwise.
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Updating the event weights (AdaBoost)

Assign a score to the kth classifier based on its error rate:

1—¢,

o, =In——
3

Define the training sample for step k+1 from that of k by updating

the event weights according to

I e‘%ﬁ yil2
=yl
/ /Z k- ¥~ Normalize so that
[ = event index k = training sample index (k+1)_
& Samp > wkb=1
K
Iterate K times, final classifieris y(X)=)_ o fr(x,T})

k=1
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BDT example from MiniBooNE

~200 input variables for each event (v interaction producing €, u or ).

Each individual tree 1s relatively weak, with a misclassification
error rate ~ 0.4 — 0.45

l ! ! ! | ! I ! | ! I ! | ! I ! | ! I !

1 1 e un-weighted misclassified event rate
08 _: a weighted misclassified event rate, err_ 1
- ] o, = B*In((1-err_)lerr ). !3.=El.f.
= 064 R . ;
g i

=
.

o

I l | I l '
0 200 400 600 a0 1000
Number of Tree [terations

B. Roe et al., NIM 543 (2005) 577
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Overtraining

If decision boundary is too flexible it will conform too closely

to the training points — overtraining.

Monitor by applying classifier to independent test sample.

training sample

G. Cowan

independent test sample
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Monitoring overtraining

From MiniBooNE
example:

Performance stable
after a few hundred

frees.

G. Cowan

Training MC Samples

VS.  Testing MC Samples

1 1500
30000 3 = =
1 I\:I:tfee 1 1 I\:—I.tree 1
20000 3 h 1000 i
1 n N 1
] " "
10000 H 500 — i
] ii . "
1 i
0 T T T T I T T T I T T T T | T T T T D 1 T T T I 1 T T T | T T T T | T T T T
-2 1 0 1 2 -2 1 0 1
10000 —
2000 — Ntl‘E‘E‘! == IUU 8000 3 Ntl‘E‘E‘! = 100
] e 6000 PR
1000 H 4000 3 ’ iy
s 2000 /“_Q/Hﬁﬁllk
a '-_.. ] -
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3000
] — 1 — -
] Ntlee = 500 10000 N oo = 200
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. 1 i .
5000 . -,
1000 5000 — E L
] 2500 4 t
. 1™ T,
0 I 0 ! | | |
2000 -20 20 0 20
= IUUD 8000 N. =1000
1500 IIEE' 1 tree
.. 6000 —
: Ill. II|
1000 1000 3 ' N,
500 — zoo0 4 & ﬂ
. "'— e T
0 0 ————e—
0 10 -20 0 20

Boosting Outputs

Boosting Outputs
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Boosted decision tree summary

Advantage of BDT 1s it can handle a large number of inputs.
Those that provide little/no separation are rarely used as splitters
and are effectively 1gnored.

Easy to deal with inputs of mixed types (real, integer, categorical).

BDT i1s surprisingly insensitive to overtraining: error rate on
test sample will not rise (much), even if error rate on training
sample goes to zero.

There are a number of boosting algorithms, which differ mainly
in the rule for updating the weights (&-Boost, LogitBoost,...).

Other ways of combining weaker classifiers: Bagging (Boosted
Aggregating), generates the ensemble of classifiers by random
sampling with replacement from full training sample.
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Testing significance / goodness-of-fit

Suppose hypothesis H predicts pdf f(Z|H) fora setof

observations & = (z1,...,xn) .
We observe a single point in this space: Zgpg

What can we say about the validity of A in light of the data?

Decide what part of the T Tobs .
data space represents less \ v more.:
compatibility with H than // cqmpaﬂble
does the point Zgps - 7 less with
(Not unique!) compatible
with H
» XLy
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p-values

Express level of agreement between data and H with p-value:

p = probability, under assumption of H, to observe data with
equal or lesser compatibility with H relative to the data we got.

ﬂ This 1s not the probability that A 1s true!

In frequentist statistics we don’t talk about P(H) (unless H
represents a repeatable observation). In Bayesian statistics we do;
use Bayes’ theorem to obtain

P(Z|H)n(H)

PUH|Z) = [ P(Z|H)x(H) dH

where 7z (H) 1s the prior probability for A.

For now stick with the frequentist approach;
result is p-value, regrettably easy to misinterpret as P(H).
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Significance from p-value

Often define significance Z as the number of standard deviations
that a Gaussian variable would fluctuate in one direction
to give the same p-value.

AR

e e — P

2.0

< 1 2
p:_/z —%e_m ﬁdaf::l—q)(Z) 1 - TMath::Freq

Z =®"1(1-p) TMath: :NormQuantile
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The significance of an observed signal

Suppose we observe n events; these can consist of:

n, events from known processes (background)
n, events from a new process (signal)

If ng, n, are Poisson r.v.s with means s, b, then n = n, + n,
1s also Poisson, mean = s + b:

(s + b)ne—(s-l—b)
I

n.

P(n;s,b) =

Suppose b = 0.5, and we observe n_, = 5. Should we claim
evidence for a new discovery?

Give p-value for hypothesis s = 0:
p-value = P(n>5;b=0.5,s=0)
= 1.7x107% £ P(s=0)!
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When to publish

HEP folklore is to claim discovery when p =2.9 x 107/,
corresponding to a significance Z = 5.

This 1s very subjective and really should depend on the
prior probability of the phenomenon in question, e.g.,

phenomenon reasonable p-value for discovery
DYDY mixing ~0.05
Higgs ~ 1077 (?)
Life on Mars ~10-19
Astrology ~10-2Y

One should also consider the degree to which the data are compatible
with the new phenomenon and possible systematic errors in the
model on which the p-value is based: p-value 1s only first step!
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Distribution of the p-value

The p-value 1s a function of the data, and 1s thus itself a random
variable with a given distribution. Suppose the p-value of H 1s
found from a test statistic #(x) as

o0
pu= [ (EH)
t
The pdf of p,, under assumption of H 1s

FEIH)  fH) |
Opu /0t~ F(tH) 8

g(pu|H) =

assumption of H, p, ~ Uniform[0,1]
and 1s concentrated toward zero for

Some (broad) class of alternatives. 0 , Pu
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Using a p-value to define test of H,,

So the probability to find the p-value of H,, p,, less than « 1s
P(py < a|Hy) = «

We started by defining critical region in the original data
space (x), then reformulated this in terms of a scalar test
statistic #(x).

We can take this one step further and define the critical region
of a test of H, with size « as the set of data space where p, < .

Formally the p-value relates only to H,,, but the resulting test will
have a given power with respect to a given alternative H,.

G. Cowan Statistics for the LHC / Zuoz 2010
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Confidence 1ntervals by inverting a test

Confidence intervals for a parameter & can be found by
defining a test of the hypothesized value & (do this for all 6):

Specify values of the data that are ‘disfavoured’ by &
(critical region) such that P(data in critical region) < «
for a prespecified «, e.g., 0.05 or 0.1.

If data observed in the critical region, reject the value 6.
Now invert the test to define a confidence interval as:

set of @ values that would not be rejected in a test of
size  (confidence levelis 1 — ).

The interval will cover the true value of & with probability > 1 — c.

Equivalent to confidence belt construction; confidence belt is
acceptance region of a test.

G. Cowan Statistics for the LHC / Zuoz 2010
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Relation between confidence interval and p-value

Equivalently we can consider a significance test for each
hypothesized value of 6, resulting in a p-value, p,..

If p,< a, then we reject 6.

The confidence interval at CL = 1 — «a consists of those values of
@ that are not rejected.

E.g. an upper limit on &1s the greatest value for which p,> «.

In practice find by setting p,= « and solve for 6.
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A simple example

For each event we measure two variables, x = (x,, x,).
Suppose that for background events (hypothesis H)),
1 _ I
f(x|Hy) = —e¢ T1/&n Z /&

&1 9

and for a certain signal model (hypothesis /) they follow

! o—(T1—p1)? /207 !

V 2To 209

where x,, x, > 0 and C is a normalization constant.

o—(T2—p2)? /203

f(x|Hy) =C

G. Cowan Statistics for the LHC / Zuoz 2010
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Likelithood ratio as test statistic

In a real-world problem we usually wouldn’t have the pdfs
f(x|H,) and f(x|H,), so we wouldn’t be able to evaluate the
likelihood ratio e

Hx) = f(x|Hy)

~ f(x|Ho)

for a given observed x, hence ' [

the need for multivariate o
methods to approximate this ol
with some other function. ‘ '

But in this example we can
find contours of constant
likelihood ratio such as:

G. Cowan Statistics for the LHC / Zuoz 2010
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Event selection using the LR

Using Monte Carlo, we can find the distribution of the likelihood
ratio or equivalently of

2 2 ; ¢
r1 — I To — (L 20 20
7= (‘” ’“‘1) + (‘“" ’“’2) -SSR olni(x) + C

o1 09 &1 &9

0.5

fig)

From the Neyman-Pearson lemma

signal (/) we know that by cutting on this

/ variable we would select a signal
background sample with the highest signal

o] (H,) efficiency (test power) for a given

. / background efficiency.

04

03 H

0 I_ 1 1 1 1 I 1 1 I |
-5 0 5 10

q =-2Int|::{1. :2]
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Search for the signal process

But what 1f the signal process is not known to exist and we want
to search for it. The relevant hypotheses are therefore

H,: all events are of the background type
H,: the events are a mixture of signal and background

Rejecting H, with Z > 5 constitutes “discovering” new physics.

Suppose that for a given integrated luminosity, the expected number
of signal events 1s s, and for background b.

The observed number of events n will follow a Poisson distribution:

T
b b

" (8 +0)" _(s+b)
1.

n!

P(n|b) =

P(n|s+b) =
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Likelihoods for full experiment

We observe n events, and thus measure » instances of x = (x,, x,).

The likelihood function for the entire experiment assuming
the background-only hypothesis (/) 1s

b-;r 1 T

and for the “signal plus background” hypothesis (/) it 1s

S + (s
Lgyp = ( —(51) H f(xi]s) +m, f(xi]b))

where 7, and 7, are the (prior) probablhties for an event to
be signal or background, respectively.
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Likelihood ratio for full experiment

We can define a test statistic O monotonic in the likelihood ratio as

I

Q= —2In 5t — In (1 “f&)
R "*Z”( e

To compute p-values for the b and s+b hypotheses given an
observed value of O we need the distributions f(Q|b) and f(Q|s+b).

Note that the term —s 1n front 1s a constant and can be dropped.

The rest 1s a sum of contributions for each event, and each term
in the sum has the same distribution.

Can exploit this to relate distribution of QO to that of single

event terms using (Fast) Fourier Transforms (Hu and Nielsen,
physics/9906010).

G. Cowan Statistics for the LHC / Zuoz 2010
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Take e.g. b= 100, s = 20.

0.06

J(Qls*b)

0.02

Distribution of O

Suppose

in real experiment

/ O 1s observed here.

_ /(Qbb)

n 1 1 1 1
-80 - -40 0
D

p-value of b only p-value of

G. Cowan
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Systematic uncertainties

Up to now we assumed all parameters were known exactly.
In practice they have some (systematic) uncertainty.

Suppose e.g. uncertainty in expected number of background events
b is characterized by a (Bayesian) pdf #(b).

Maybe take a Gaussian, 1.¢.,

7(b) = —— e~ (bb0)?/20}
2Ty,

where b, 1s the nominal (measured) value and g, 1s the estimated
uncertainty.

In fact for many systematics a Gaussian pdf 1s hard to
defend — more on this in extra slides.

G. Cowan Statistics for the LHC / Zuoz 2010

44



Distribution of O with systematics

To get the desired p-values we need the pdf / (Q), but
this depends on b, which we don’t know exactly.

But we can obtain the Bayesian model average:

£(Q) = [ F(Qlby()

With Monte Carlo, sample b from 7(b), then use this to generate
Q from f (Q|b), 1.e., a new value of b 1s used to generate the data
for every simulation of the experiment.

This broadens the distributions of O and thus increases the

p-value (decreases significance Z) for a given Q..

G. Cowan Statistics for the LHC / Zuoz 2010

45



Distribution of O with systematics (2)

For s =20, b, = 100, o, = 10 this gives

ED.DE
0.06 - ?nhs _ f(Qlb)
f(Qlstb) | o
04 —
I
0.02 _—
qﬂ_ﬂ — Idjﬁﬂ -40 -20 0
/ \ @
p-value of b only p-value of s+b
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Using the likelihood ratio L(s)/L(5)

Instead of the likelihood ratio L, /L, suppose we use as a test
statistic

™ maximizes L(s)
Intuitively this 1s a good measure of the level of agreement
between the data and the hypothesized value of s.

low A: poor agreement
high 4 : good agreement
0<A<1

G. Cowan Statistics for the LHC / Zuoz 2010
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L(s)/L(s) for counting experiment

Consider an experiment where we only count n events with
n ~ Poisson(s +b). Then s =n—10b .

To establish discovery of signal we test the hypothesis s = 0 using

InA0) =nln(b) —b—nlnn+n

whereas previously we had used

L.
In Ijb =nln (l — ;) — 5

which 1s monotonic in # and thus equivalent to using » as
the test statistic.
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L(s)/L(s) for counting experiment (2)

But if we only consider the possibility of signal being present
when n > b, then 1n this range A(0) 1s also monotonic in #,
so both likelihood ratios lead to the same test.

n{L L]
- b s=8 b=16
50F  « Ina(o)

b

=50

G. Cowan Statistics for the LHC / Zuoz 2010
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L(s)/L(s) for general experiment

If we do not simply count events but also measure for each some
set of numbers, then the two likelihood ratios do not necessarily
give equivalent tests, but 1n practice will be very close.

A(s) has the important advantage that for a sufficiently large event
sample, 1ts distribution approaches a well defined form (Wilks’
Theorem).

In practice the approach to the asymptotic form 1s rapid and
one obtains a good approximation even for relatively small
data samples (but need to check with MC).

This remains true even when we have adjustable nuisance
parameters 1n the problem, 1.e., parameters that are needed for
a correct description of the data but are otherwise not of
interest (key to dealing with systematic uncertainties).
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Cowan, Cranmer, Gross and Vitells, arXiv:1007.1727
Prototype LHC search analysis

Search for signal in a region of phase space; result 1s histogram
of some variable x giving numbers:

Assume the n; are Poisson distributed with expectation values

En;| = ps; + b

strength parameter
where

Si = Stot fs(x:0s)dr, b = byoy fo(w:0y) dr .

\ bin 1 bin 7

signal background
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Cowan, Cranmer, Gross and Vitells, arXiv:1007.1727
Prototype analysis (1I)

Often also have a subsidiary measurement that constrains some
of the background and/or shape parameters:

Assume the m; are Poisson distributed with expectation values
Em;] = u;(80)

\

nuisance parameters (8., 6,,b,,)
Likelihood function is

N - M my
1S - b )T . umk
L(u.6)=T[ it )™ syt T o
=1 nj. Lo Mg
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Cowan, Cranmer, Gross and Vitells, arXiv:1007.1727

The profile likelihood ratio

Base significance test on the profile likelihood ratio:

/ maximizes L for
specified u

x maximize L

The likelihood ratio of point hypotheses gives optimum test
(Neyman-Pearson lemma).

The profile LR hould be near-optimal in present analysis
with variable 1 and nuisance parameters 6.
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Cowan, Cranmer, Gross and Vitells, arXiv:1007.1727

Test statistic for discovery

Try to reject background-only (1= 0) hypothesis using

—21n A(0) >0

qo =
0 <0

1.e. here only regard upward fluctuation of data as evidence
against the background-only hypothesis.
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Cowan, Cranmer, Gross and Vitells, arXiv:1007.1727
p-value for discovery

Large g, means increasing incompatibility between the data
and hypothesis, therefore p-value for an observed gy, 18

po = / £(q010) dgo
q40,0bs
AN

will get formula for this later

From p-value get
equivalent significance,

Z=3o"11-p)
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Cowan, Cranmer, Gross and Vitells, arXiv:1007.1727

Expected (or median) significance / sensitivity

When planning the experiment, we want to quantify how sensitive
we are to a potential discovery, e.g., by given median significance
assuming some nonzero strength parameter .

So for p-value, need f(g,|0), for sensitivity, will need f{g,|u ),
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Cowan, Cranmer, Gross and Vitells, arXiv:1007.1727

Distribution of g,

Using an approximation due to Wald (1943), under regularity

conditions and for a sufficiently large data sample, the distribution
of g, will approach

. . . ) 2
ny no_ (1 ,:’a_’.f ., _£ 1 1 . _i J”_f
Haol') = (l (I}(a»””“) 2V vi P T2\ T,

The special case ' = 0 1s a “half chi-square” distribution:

1 1
f(q0|0) = 50(%) +5——
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Cowan, Cranmer, Gross and Vitells, arXiv:1007.1727

Cumulative distribution of g, significance

From the pdf, the cumulative distribution of ¢, 1s found to be

F(ql|p') =@ ( q0 — g)
The special case ¢/ =0 1s
F(qo|0) = @( qﬂ)
The p-value of the 1= 0 hypothesis is
po =1— F(q|0)

Therefore the discovery significance Z is simply

Z=d" 11 —po) = Voo
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Cowan, Cranmer, Gross and Vitells, arXiv:1007.1727

Monte Carlo test of asymptotic formula

n ~ Poisson(us + b)

m ~ Poisson(7b) E
Here take 7= 1. E
Asymptotic formula 1s E
good approximation to So 1
level (g, = 25) already for E
b ~ 20. E
10_3_||||I||||I||||I||| Lo b NI L]
0 5 10 15 20 25 30 35 40
qEI
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Cowan, Cranmer, Gross and Vitells, arXiv:1007.1727

Monte Carlo test of asymptotic formulae

Significance from asymptotic formula, here Z, = \/qo =4,
compared to MC (true) value.

p 6
For very low b, asymptotic 51
formula underestimates Z,,.
Then slight overshoot before drTTe
rapidly converging to MC
value. 3 - Monte Carlo
----- Nominal significance
1 10 10
b
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Cowan, Cranmer, Gross and Vitells, arXiv:1007.1727
Monte Carlo test of asymptotic formulae

Asymptotic f(q,/1) good already for fairly small samples.
Median[g,|1] from Asimov data set; good agreement with MC.

10grmmrrm™ IIIIIIIII|""|""I""|""§I 091025
N s=10,b=10,1=1 ] |
A f - s = 20
0 N S, - felh ] \
1073 \ s 1- ‘s s = 10
— N o b 3 % - S=5
1074 - . S _E, | 0_1? \
107" L N T ; s=2
10_5 L”: . é 10'2;‘ _qD,Asi.mmr s =
10—? f(qD|D) E; . mEd|an[q{j|1]
10_8""|I||||||||||||||||||||||'|-'-|"i|||||||: 10_3 1 "'-'IO ' ""'102
0 5 10 15 20 25 30 35 40
9 b
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Higgs search with profile likelihood

Combination of Higgs boson search channels (ATLAS)
Expected Performance of the ATLAS Experiment: Detector,
Trigger and Physics, arX1v:0901.0512, CERN-OPEN-2008-20.

Standard Model Higgs channels considered (more to be used later):
H—yy

H—> WW %) — evuy
H—ZZ™® — 4] ([=¢, )
Hott— 1, h

Used profile likelihood method for systematic uncertainties:
background rates, signal & background shapes.
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An example: ATLAS Higgs search

(ATLAS Collab., CERN-OPEN-2008-020)

Statistical Combination of Several Important Standard Model Higgs
Boson Search Channels.

E"\- l T T T I LI I LI T T 1 T T 1 I T T 1 I T T 1 I T I_ a"\- _I_ LI I LI I T T 1 T T 1 T T 1 I T T 1 I LI I T I_
o : ATLAS H— 't ] o 1 H-tt |
L=2f" 3 L=10f" 3
(a) E ] (b)
107 F E 107 g E
10° F E 107 3
107 £ 3 107 3
; 11 1 I 11 1 I 11 1 I 11 1 I 11 I 11 1 ﬂl I: -r 11 1 I 11 1 I 111 I 111 I 1 111 H I 1 H I 1 I:
0 2 4 6 &8 10 12 14 0 2 4 & 8 10 12 14
I::IIII ql:

Figure 12: The distribution of the test statistic ¢o for H — t+ 7~ under the null background-only hypothesis,
for myg = 130GeV with an integrated luminosity of 2 (a) and 10 (b) bl A %;ff distribution is superimposed.
Figures (c¢) and (d) show 1 — F(gp) where F(qg) is the corresponding cumulative distribution. The small excess
of events at high gq is statistically compatible with the expected curves. as can be seen by comparison with the
dotted histograms that show the 68.3% central confidence intervals for p = 1 — F(qp|0). The lower dotted line at

2.87 x 10~/ shows the 5¢ discovery threshold.
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Cumulative distributions of g,

To validate to Solevel, need distribution out to g, = 25,
i.e., around 108 simulated experiments.

Will do this if we really see something like a discovery.

(¢)
m'E:E 10°F E
m'EE 10 E E
_“:I_?||||||| ] ] ] ] ] 1|:]_?Iu: ] ] ] ] ] | ]
0 2 4 6 8 10 12 14 0 2 4 6 & 10 12 14
I:IIZI ql]
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Combined median significance

ATLAS arXiv:0901.0512

—A
oo

—%
(8)
T

—
N
I

expected significance
IS
l

—
o
T

ATLAS - Coppined
L — 10 fb-1 .......... Yy ~

..... TT
WWO0j — ev uv
- WW2j — ev v

.......

G. Cowan

200 220
m, (GeV)

120 140 160 180

Statistics for the LHC / Zuoz 2010

N.B. illustrates
statistical method,
but study did not
include all usable
Higgs channels.
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Profile likelithood ratio for upper limits

For purposes of setting an upper limit on # use

where  A(p) =

—2InXp) p<p L(j1,0)
4y = =
"o o> L(j,0)

Note for purposes of setting an upper limit, one does not regard
an upwards fluctuation of the data as representing incompatibility
with the hypothesized .

Note also here we allow the estimator for # be negative
(but [is; + b; must be positive).

G. Cowan Statistics for the LHC / Zuoz 2010
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Alternative test statistic for upper limits

Assume physical signal model has ¢ > 0, therefore 1f estimator
for 12 comes out negative, the closest physical model has 1= 0.

Therefore could also measure level of discrepancy between data

and hypothesized u with

~
o~

L(g-,ﬁ(:u-)) ﬁ > ().

[ 921n S\(p{-) <

0 > p

\

Performance not identical to but very close to g, (of previous slide).

q, 1s simpler in important ways.

G. Cowan
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Distribution of g,

Similar results for g,

o= N 1 1 1 1 #_
f('-?n‘#!) = ¢ ( ) O(%) + E - exp [2 v du —

1 11 1 _
f(q |f‘-£) — —(S(q ) + —= : E;_(I,Lc/z
' 2 22 /4,
1 — 1
F(qﬂ_“.{.f) — P ( Qi — (1 g:‘{ ))

pp=1—=F(q,|pn) =1- @(@)

G. Cowan Statistics for the LHC / Zuoz 2010
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Distribution of g,

Similar results for g,

Faui) = {I>(’” _”)am

(& ( [T — @) 0 < G, < p2/o?,
F(@,&L“ifj = 3

Gu—(p?—2pp')/o? - 2/ 92
hfIl( & e qu > p=/o* .

G. Cowan Statistics for the LHC / Zuoz 2010
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Monte Carlo test of asymptotic formulae

Consider again n ~ Poisson (us + b), m ~ Poisson( zb)
Use ¢, to tind p-value of hypothesized x values.

E.g. f(g,|1) for p-value of u=1. 1— s=6,b=9,1=1 1
Typically interested in 95% CL, i.e., ]
p-value threshold = 0.05, 1.e.,
g, =2.69or Z, =g, = 1.64.

107
Median[g, |0] gives “exclusion

ce . 2|
sensitivity”. 107

Here asymptotic formulae good i S
fors=6,b=09. B DT TP TV I TN TR N\
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Monte Carlo test of asymptotic formulae

Same message for test based on g,

q,and g, give similar tests to
the extent that asymptotic T e
formulae are valid. |

107"

1072

1D—SIIIIIIIIIIIIIIIIIIIIIIII I
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Example: exclusion sensitivity

Median p-value of 1= 1 hypothesis versus Higgs mass assuming
background-only data (ATLAS, arXiv:0901.0512).

— '] =
1 E
Zot Lo~ . ATLAS
o 10 E e - .
% Ta, ™o, '.-"' ‘-H
= 1072 .
> "
o -
S 10° F -
@
Ei]_ ’lD“d L
il ’ID_E L
g
10° & L=21b
7 —Comblned
107 --=7Z7 = 4
& f I
10 3 -eme TT
9 [ expected WWOj — ev v
10 ¢ - . ; — e WW2) > ev
05% CL exclusion ] v
,ID-'“:' A [ T R S R A B
100 120 140 160 180 200 220
my (GeV)
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Summary on discovery and limits

Test values of the parameter(s) of interest; result 1s p-value
If p < a, reject hypothesized parameter
Rejecting the background-only hypothesis = discovery

Confidence interval for parameter at CL = 1 — « 1s range
of values not rejected in test of size c.

Test can be based on likelihood ratio (or some approximation)
Systematic uncertainties <> nuisance parameters
“Tevatron Style™: Q@ = —2In(Lsp/Ly)

Profile Likelihood Ratio: ¢, = —21n(L(y1.6)/L(j1.6))

Can (should) also use Bayesian methods (no time for this today)
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Frequentist Statistics — general philosophy

In frequentist statistics, probabilities are associated only with
the data, 1.e., outcomes of repeatable observations.

Probability = limiting frequency
Probabilities such as

P (Higgs boson exists),
P (0.117 < ¢, < 0.121),

etc. are either O or 1, but we don’t know which.

The tools of frequentist statistics tell us what to expect, under
the assumption of certain probabilities, about hypothetical
repeated observations.

The preferred theories (models, hypotheses, ...) are those for
which our observations would be considered ‘usual’.
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Bayesian Statistics — general philosophy

In Bayesian statistics, interpretation of probability extended to
degree of belief (subjective probability). Use this for hypotheses:

probability of the data assuming

. 1 rior probability, 1.e.,
hypothesis  (the likelihood) . / Eeforg’ secing tge o

o _ _ P@H)T(H)
/P (H|z) [ P(Z|H)x(H) dH

posterior probability, 1.¢., \ normalization involves sum
after seeing the data over all possible hypotheses

Bayesian methods can provide more natural treatment of non-
repeatable phenomena:

systematic uncertainties, probability that Higgs boson exists,...

No golden rule for priors (“if-then” character of Bayes’ thm.)

G. Cowan Statistics for the LHC / Zuoz 2010
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Significance level and power

Probability to reject H, 1f 1t 1s true
(type-I error):

- 2
5 t
@) out
o = / g(t|Ho) dt accept HI:] iy MEjECT Hﬂ
tcut 15 o
(significance level)
: g(1H;) ]
Probability to accept H, if H, 1s e |
true (type-II error): |
t t 0 e T—
B = /Cu g(t|Hy) dt 0 1 4 5
— 00
i
(1 — B =power)
G. Cowan Statistics for the LHC / Zuoz 2010
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Signal/background efficiency

Probability to reject background hypothesis for

background event (background efficiency):

o0 5
Ep = / g(t|b)dt = «
tout 15
Probability to accept a signal event
as signal (signal efficiency):

05

5.9
Eg = / g(tls)dt =1—-p 0
t

cut

1 }

llu::L.lt
accept Hjy i reject iy
g(t|H [})
g(tH,)
I T '
0 1 2 3 4
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Purity of event selection

Suppose only one background type b; overall fractions of signal
and background events are 7, and 7, (prior probabilities).

Suppose we select signal events with £ > ¢, .. What 1s the

cut®
‘purity’ of our selected sample?

Here purity means the probability to be signal given that
the event was accepted. Using Bayes’ theorem we find:

P(t > teut|s)ms
P(t > teut|s)ms + Pt > teut D)

P(h‘f > tcut)

EgTlg

EsTs + EpTh

So the purity depends on the prior probabilities as well as on the
signal and background efficiencies.

G. Cowan Statistics for the LHC / Zuoz 2010
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Resources on multivariate methods
Books:

C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006

T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical
Learning, Springer, 2001

R. Duda, P. Hart, D. Stork, Pattern Classification, 2 ed., Wiley, 2001
A. Webb, Statistical Pattern Recognition, 2™ ed., Wiley, 2002

Materials from some recent meetings:

PHYSTAT conference series (2002, 2003, 2005, 2007....) see
www.phystat.org

Caltech workshop on multivariate analysis, 11 February, 2008
indico.cern.ch/conferenceDisplay.py?confld=27385

SLAC Lectures on Machine Learning by Ilya Narsky (2006)

www-group.slac.stanford.edu/sluo/Lectures/Stat2006 Lectures.html

G. Cowan Statistics for the LHC / Zuoz 2010
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Comparison of boosting algorithms

A number of boosting algorithms on the market; differ in the
update rule for the weights.

%]
sy

3 LY
] I3 ] ;
] ® =-Boost(45) 0 ] ® e-Boost(45) £
2.5 1 a AdaBoost(45) i i 2.5 1 a AdaBoost(45) I E
1 ¢ e-logitBoost(45) §f & j= 1 ¢ e-logitBoost(45) ik
E 24 e—hi]lge]i":c:-os.t(3()}‘1-'Jr iy E 2 J * e-hingeBoost(30) /
g L5 AdaPoost(8) ' ;C" g 1.5 1 v AdaBoost(8)
‘é = é 1 _; ] E.-hingeBo-Dst{Bfll g
0.5 e 0.5
1— e Ntree = 500 Ntree = 1000
[} T | T T T I T T T I T T T I T 0 T I T T T I T T T I T T T I T
20 40 60 80 20 40 60 80
Signal Efficiency (%) Signal Efficiency (%)
3 7 T 3 3 i
1 ® e-Boost(45) i g i ® e-Boost(45)
2.5 4 a4 AdaBoost(45) i E 2.5 4 Ao AdaBoost(45)
1o §7'—|_|:-1_:_[1E).-:|-:|Hr|:—|_-:_|:| i 19 5_—'—]::-;|_1EJ.-:||:-tJI:-l-:_|:I
:; 2 4 * e-hingeBoost(30) F E 2 4 * £-hingeBoost(30)
e 157" AdaBoost(8) L 15 1 v AdaBoost(8) v
= 1 ®m e-hingeBoost(8)4 - = _E ® ¢ hingeBoost(8)%" /
s cIRE s ()
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Comparison of boosting algorithms

A number of boosting algorithms on the market; differ in the
update rule for the weights.

%]
sy

3 7

1 - H
] ® =-Boost(45) 0 ] ® £-Boost(45) ]
2.5 1 a AdaBoost(45) i i 2.5 4 o AdaBoost(45) I E
1 ¢ e-logitBoost(45) #F © jz- 1 ¢ e-logitBoost(45) ik
E 24 e—hi]lge]i":c:-os.t(3()}‘1-'Jr hy: r-:% 2 J * e-hingeBoost(30) /
g 1.5 ER AdaPoost(8) j .{‘: g 1.5 ER AdaBoost(8)
ﬁ . _; é 1 _; ™ e-hingeBoost(8)¢ 2 i
0.5 oo 05 1
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Comment on priors

Suppose we measure n ~ Poisson(s+b), goal 1s to make inference
about s.

Suppose b 1s not known exactly but we have an estimate b
with uncertainty o;.

For Bayesian analysis, first reflex may be to write down a
Gaussian prior for b,

m(b) = 1 E—(b—g)g/ﬁf
2Ty

But a Gaussian could be problematic because e.g.
b > 0, so need to truncate and renormalize;
tails fall off very quickly, may not reflect true uncertainty.
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Gamma prior for b

What is 1n fact our prior information about 5? It may be that
we estimated b using a separate measurement (e.g., background
control sample) with

m ~ Poisson(zb) (7= scale factor, here assume known)

Having made the control measurement we can use Bayes’ theorem
to get the probability for b given m,

Th)m -
( fl?.n)1 e b 0 ( b)

[f we take the “original” prior 7(b) to be to be constant for 5 > 0,
then the posterior 7z(b|m), which becomes the subsequent prior
when we measure 7 and infer s, 1S a Gamma distribution with:

w(blm) x P(m|b)my(b)

mean= (m+ 1)/t
standard dev. =\(m + 1) /7

G. Cowan Statistics for the LHC / Zuoz 2010 84



Gamma distribution

1 21 e—zc/ﬁ

flz;a,p) = OV
Elx] = af
Viz] = aB?

G. Cowan
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Wald approximation for profile likelihood ratio

To find p-values, we need: f(qo|0), f(qu|pn)

For median significance under alternative, need: f(q,|/’)

Use approximation due to Wald (1943)

—2In A\(p) = (n gf)g +O(1/VN)
AN

;. ‘ 1 "s / °
jr ~ Gaussian(y’, o) sample size

ie., Elul =p

o from covariance matrix V. use, e.g..
0%1n L

00,00

Vi=-F {

86

G. Cowan Statistics for the LHC / Zuoz 2010



Noncentral chi-square for —2InA( )

If we can neglect the O(1/\VN) term, —2InA(y) follows a
noncentral chi-square distribution for one degree of freedom
with noncentrality parameter

0k

o2

As a special case, 1f ¢/ = g then A =0 and —2InA(u) follows
a chi-square distribution for one degree of freedom (Wilks).
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The Asimov data set

To estimate median value of —2InA(x), consider special data set
where all statistical fluctuations suppressed and n,, m; are replaced
by their expectation values (the “Asimov” data set):

!/
ni = s+ b

m; = U

: = Asimov value of
N La(p, 0 ,
La(f1,0) ali', 0) —2InA() gives non-
| (11— LI)‘Z / centrality param. A,
—2InAa(p) = o = A or equivalently, o
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Relation between test statistics and

Assuming Wald approximation, the relation between gy and /i is

q0
12 /o >0

qo =
0 <0

o

fi

Monotonic, therefore quantiles of jt map one-to-one onto those of
q0, ©.&-,

! 2

med[qo] = qo(med[i]) = qo(i) = L = —21n A (0)

a

med|Zy| = \/ 21n Aa (0
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Relation between test statistics and N

Assuming the Wald approximation for — 2InA(x), g, and g,

both have monotonic relation with g

r

G. Cowan

52
o
{

0

\

2 2}(,5.’\.
— =5
2

qwl"e':

(1=

=

( (p—p)
=f)”

[t <
[L > [

f< 0
0<p<p

[ > i,

"
m

o

fi

f

And therefore quantiles
of ¢, g, can be obtained
directly from those

of /1 (which is Gaussian).
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Combination of channels

For a set of independent decay channels, full likelithood function is
product of the individual ones:

L(1,0) = HL (11, 0;)

For combination need to form the full function and maximize to find
estimators of 1, 6.

— ongoing ATLAS/CMS effort with RooStats framework

Trick for median significance: estimator for u 1s equal to the
Asimov value ¢/ for all channels separately, so for combination,

Li(“;? 9)

— H )\A,i (p{) where )\A,i (P{) —
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Discovery significance for n ~ Poisson(s + b)

Consider again the case where we observe n events,
model as following Poisson distribution with mean s + b
(assume b 1s known).

1) For an observed n, what 1s the significance Z, with which
we would reject the s = 0 hypothesis?

2) What is the expected (or more precisely, median ) Z, if
the true value of the signal rate is s?
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Gaussian approximation for Poisson significance

For large s + b, n — x ~ Gaussian(x,0) , u=s + b, o = (s + b).

For observed value x_,, p-value of s = 0 1s Prob(x > x| s = 0),:

Tobs — b
P{}:1—¢‘( Gl:;g )

Significance for rejecting s = 0 1s therefore

Tobs — b
Vb

Expected (median) significance assuming signal rate s 1s

Zo =011 —pg) =

s
median|Zy|s + b] = —
Vb
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Better approximation for Poisson significance

Likelihood function for parameter s is

L(s) = (5+6)" (st

e
n!

or equivalently the log-likelihood 1s

InL(s) =nln(s+b) — (s+b) — Inn!

Find the maximum by setting d;n L_ 0
S
gives the estimator for s: s=mn—>b
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Approximate Poisson significance (continued)

The likelihood ratio statistic for testing s = 0 1s

L(0)
L(3)

gy = —2In = 2 (n In - E + b — n) for n > b, 0 otherwise

For sufficiently large s + b, (use Wilks’ theorem),

Zoy = \/qo = \/ n 1]:1 —+b— n) for n > b, 0 otherwise

To find median[Z,|s+b], let n — s + b,

median|Zy|s + b] ~ \/2 ((s+b)In(1+ s/b) — s)

This reduces to s/\b for s <<b.
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Example 2: Shape analysis

Look for a Gaussian bump sitting on top of:

il
i, “%% |
iy

0 10 200 30 40 50 90 100
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Monte Carlo test of asymptotic formulae

Distributions of g, here for x that gave p , = 0.05.

q
f(qulm) }

G. Cowan Statistics for the LHC / Zuoz 2010
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Using f(¢,/0) to get error bands

We are not only interested in the median[qm|0]; we want to know
how much statistical variation to expect from a real data set.

But we have full f(g,|0); we can get any desired quantiles.

' -——m————

_ 5/15.87% quantile (median—10)
- 3
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Distribution of upper limit on x

+1 o (green) and £2 o (yellow) bands from MC;
Vertical lines from asymptotic formulae
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Limit on w versus peak position (mass)

+1 o (green) and £2 o (yellow) bands from asymptotic formulae;

Points are from a single arbitrary data set.
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