LHC commissioning

(early) Beyond Standard Model (BSM) physics

Daniel Treille ETHZ/CERN LHC commissioning and (early) BSM physics ... a most exciting adventure!

> Where do we start from? The possible BSM roads
> Status of LHC, machine and detectors, and their commissioning

 Re-discovering the Standard Model BSM explorations
 * Supersymmetry

***** Other scenarios

Towards a model-independent approach

LECTURE 1 A

WHAT DO WE KNOW?

OVERVIEW OF BSM PHYSICS

WHERE DO WE START FROM?

• Constraints from the Earth: LEP/SLC, Tevatron, HERA, (lower energies)

• Constraints from the sky Dark matter, others

What did we learn from LEP, etc, about:

Standard Model

Higgs

MSSM (Minimal Supersymmetric SM)

0511088 is hep-ph/ unless stated otherwise 0710.3022 is arXiv

But some searches missing (or not ADLO) ex. h \rightarrow aa \rightarrow 4 τ possible in NMSSM, even MSSM? h would be the "97 GeV" bump, the next boson would be the "115 GeV"

Next?

 $(m_{\mu} + m_{d})/2$ [GeV]

• S,T (ε_i) global variables

• What was "felt" at LEP

• The ρ parameter

• The b coupling

To parameterize potential new physics contributions to e.w. radiative corrections one needs 4 vacuum polarization functions: self-energies of γ , Z, W and γ -Z mixing induced by loop diagrams

 \sim

expand in powers of q^2/M^2

$$\begin{split} \Pi_{\gamma\gamma}(q^2) &= q^2 \Pi'_{\gamma\gamma}(0) + \dots \\ \Pi_{Z\gamma}(q^2) &= q^2 \Pi'_{Z\gamma}(0) + \dots \\ \Pi_{ZZ}(q^2) &= \Pi_{ZZ}(0) + q^2 \Pi'_{ZZ}(0) + \dots \\ \Pi_{WW}(q^2) &= \Pi_{WW}(0) + q^2 \Pi'_{WW}(0) + \dots \end{split}$$

define S, T, U

measures the difference between the number of LH and RH doublets carrying weak isospin

measures isospin violation

$$\begin{split} &\alpha S = 4s_w^2 c_w^2 \left[\Pi'_{ZZ}(0) - \frac{c_w^2 - s_w^2}{s_w c_w} \Pi'_{Z\gamma}(0) - \Pi'_{\gamma\gamma}(0) \right] \\ &\alpha T = \frac{\Pi_{WW}(0)}{M_W^2} - \frac{\Pi_{ZZ}(0)}{M_Z^2} \end{split}$$

both sensitive to the Higgs mass

T (~ ϵ_1) : heavy degenerate fermions do not contribute S (~ ϵ_3) : heavy degenerate fermions contribute

"Thus the statement that the precision data favors a light Higgs, as opposed to no Higgs at all, relies upon some theoretical baggage." Joe Lykken

The ρ parameter

$$\rho = \frac{M_W^2}{\cos^2 \theta_W M_Z^2}$$

$$\rho = \frac{g^2}{8\cos^2\theta_W M_Z^2} \left/ \frac{g^2}{8M_W^2} \right. \label{eq:rho}$$

relative intensity of the neutral et charged effective Lagrangians

good test of the isospin structure, also sensitive to radiative corrections

only Higgs singlets + doublets $\rightarrow \rho = 1$

LEP paradox hep-ph/0007265 $\mathcal{L}_{eff}(E < \Lambda) = \mathcal{L}_{SM} + \sum \frac{c_i}{\Lambda p} \mathcal{O}_i^{(4+p)}$							
1	$c_{WB} = -1$					$_{i,p}$	
higgs mass in TeV			LEP2 sen $\frac{4\pi}{\Lambda^2}(\bar{e}\gamma_\mu e)$ sparticles with coeffi $\rightarrow m_{\rm SUS}$	sitive to $(\bar{f}\gamma_{\mu}f)$ s generations cients $\gamma_{ m Y} \gtrsim g^2$	4-f opera up to Λ te such op $4\pi/\Lambda^2 \sim$ $\Lambda/(4\pi)$	$\approx \sqrt{\frac{sN^{1}}{\alpha}}$ $\approx \frac{sN^{1}}{\alpha}$ $\sim \frac{g^{4}}{4}$	malized as $\frac{1}{2}$ $\approx 10 \mathrm{TeV}$ at 1-loop $(\pi m_{\mathrm{SUSY}})^2$ $100 \mathrm{GeV}$
1 3 10 30 100 Scale of new physics in TeV			do	oes not	t apply	to SUS	SY
	Dimensions six	$m_h =$	$= 115 \mathrm{GeV}$	$m_h = 3$	$300{ m GeV}$	$m_h = 8$	$300{ m GeV}$
	operators	$c_i = -$	$-1 c_i = +1$	$c_i = -1$	$c_i = +1$	$c_i = -1$	$c_i = +1$
\mathcal{O}_{WI}	$B = (H^{\dagger} \tau^a H) W^a_{\mu\nu} B_{\mu\nu}$	9.7	10	7.5			
\mathcal{O}_{I}	$H = H^{\dagger}D_{\mu}H ^2$	4.6	5.6	3.4		2.8	
\mathcal{O}_L	$L = \frac{1}{2} (L\gamma_{\mu}\tau^{a}L)^{2}$	7.9	6.1				
\mathcal{O}'_{H}	$L = i(H^{\dagger}D_{\mu}\tau^{a}H)(L\gamma_{\mu}\tau^{a}L)$	8.4	8.8	7.5			
\mathcal{O}'_{HG}	$Q = i(H^{\dagger}D_{\mu}\tau^{a}H)(Q\gamma_{\mu}\tau^{a}Q)$	6.6	6.8				
$\mathcal{O}_{H_{*}}$	$L = i(H^{\dagger}D_{\mu}H)(L\gamma_{\mu}L)$	7.3	9.2				
\mathcal{O}_{HG}	$Q = i(H^{\dagger}D_{\mu}H)(Q\gamma_{\mu}Q)$	5.8	3.4				
\mathcal{O}_{HI}	$E = i(H^{\dagger}D_{\mu}H)(E\gamma_{\mu}E)$	8.2	7.7				
\mathcal{O}_{Hl}	$U = i(H^{\dagger}D_{\mu}H)(U\gamma_{\mu}U)$	2.4	3.3				
\mathcal{O}_{H1}	$D = i(H'D_{\mu}H)(D\gamma_{\mu}D)$	2.1	2.5			—	

Challenge: push Λ up to ~ 10 TeV while keeping the Higgs light

How to keep it light? Higgs as a pseudo-Goldstone boson Gauge invariance: gauge-Higgs unification

How to satisfy the electroweak constraints? Custodial symmetry Custodial parity

SUSY after LEP2, etc: it hides well...

LEP2 electroweak measurements have cancelled the slight preference of LEP1 measurements for light SUSY (g-2?) hep-ph/0502095

Many final state topologies have been explored

Many lower mass limits set, usually close to LEP beam energy

In MSSM the LSP neutralino is heavier than about 50 GeV

Not much has been done outside the MSSM frame

quasi perfect convergence of coupling strengths at 10¹⁶ GeV in low mass SUSY

all low energy measurements ~ SM-like, except maybe g-2 of muon

CKM matrix and its unitarity

atomic parity violation

 $Q_W(Cs) = -72.39$ ± 0.29(exp) ± 0.51(th) $(Q_W(Cs)^{SM} = -72.885)$

hope in B physics, rare decays, electric dipole moments etc

THE BASIC TECHNIQUE

Kl.Kirch

STANDARDISSIMO !

except g–2 of the muon?

But:

neutrino masses are not zero SM ignores gravity dark matter convergence of couplings

THE POSSIBLE ROADS

The "agnostic experimentalist".... Theory inspired scenarios

GLIMPSE AT LHC PHYSICS

objects

1/ re-discover the SM

2/ establish the existence of signals BSM, if any3/ find out what they are: the LHC "inverse problem"

Remarks

 many BSM models (quickly) reviewed.
 For agnostic experimentalists, the goal is to get as many suggestions of eventual "signatures" as possible: the wilder, the better...

• some "préjugé favorable" concerning SUSY. I will be brief on the MSSM and review its variants

many "theorist" analyses, i.e. at the parton level or so. Excellent. A necessary step to show whether a channel is accessible, but not a sufficient one.

SHORT PARENTHESIS

CUSTODIAL SYMMETRY

CUSTODIAL PARITY

• Higgs potential
$$V = \lambda \left(\phi^{\dagger}\phi - \mu^{2}\right)^{2}$$
 renormalizable,
invariant under SM
 $\phi = \frac{1}{\sqrt{2}} \left(\begin{array}{c} \phi_{1} + i\phi_{2} \\ \phi_{4} + i\phi_{3} \end{array}\right) \quad V = \frac{\lambda}{4} \left(\phi_{1}^{2} + \phi_{2}^{2} + \phi_{3}^{2} + \phi_{4}^{2} - 2\mu^{2}\right)^{2}$
 $SO(4)$ isomorphic to $SU(2)_{L} \otimes SU(2)_{R}$
 $\phi_{4} = H + v \quad V = \frac{\lambda}{4} \left(\phi_{1}^{2} + \phi_{2}^{2} + \phi_{3}^{2} + H^{2} + 2Hv + v^{2} - 2\mu^{2}\right)^{2}$
 $SO(3)$ isomorphic to $SU(2)_{V}$ (diagonal part)
• origin of SU(2)_{R}? see later
 ϕ_{i} and i $\varepsilon_{ij} (\phi^{*})^{j}$ transform the same way
 $\phi = \frac{1}{\sqrt{2}} \left[\begin{array}{c} \phi_{4} - i\phi_{3} & \phi_{1} + i\phi_{2} \\ -(\phi_{1} - i\phi_{2}) & \phi_{4} + i\phi_{3} \end{array}\right]$
 $\psi' = U_{L} \phi U_{R}^{\dagger}$
 $Tr(\phi^{\dagger}\phi)$ is left invariant $U_{L(R)} \in SU(2)_{L(R)}$
 $\theta_{L} = \theta_{R} \rightarrow SU(2)_{V}$

Parenthesis: Custodial Parities

remember **R-parity**

In UED no reference brane is breaking translation invariance in ED. This implies ED momentum conservation. After compactification and inclusion of boundary terms at fixed points, the conservation law preserves a discrete parity called KK-parity. The KK parity of the nth KK mode is (-1)ⁿ.

The first KK can only be pair-produced and their virtual effect comes only from loops.

• T-parity

In Little Higgs models it exchanges the $[SU(2)\times U(1)]_1$ and $[SU(2)\times U(1)]_2$ gauge factors. SM gauge bosons are T-even, the new heavy ones T-odd. All the SM fermions are T-even.

Results: ★ new particles produced in pairs ★ they intervene in e.w. at loop level, not tree level ★ bonus of a potential candidate for dark matter, the lightest odd-parity particle

Experimentalist questions concerning BSM physics

are the new objects sufficiently coupled to LHC colliding partons? e.g. yes if they carry SM color and are produced by QCD Or should one rely on vector boson fusion?

• which type of signals can one expect?

	no light vector resonance	light vector resonances		
no light Higgs	Chiral lagrangians	LSTC Higgsless (D)BESS		
light Higgs	SM, Strongly Interacting Light Higgs (SILH)	Warped/composite- Holographic-, Little- Gaugephobic-, Twin- Higgs LDBESS, Gauge-Higgs		

from C.Grojean

• what are the main decay modes to expect? e.g. more difficult situation if the decays are mostly into top pairs

(SUSY)	HIC	GGSL	COMPOSITE			
		Higgs	sless	Composite		
VV amplitude	$\rightarrow A(VV)$	$\approx s_{/}$	v^2	$pprox s/f^2$		
mass of first	$ \longrightarrow m_{\hat{V}} $	$\approx g_S v$ g_S $\approx g(g/g_S)$ $?$ $-$		$\approx g_S f$ g_S		
KK vector	$\hat{V}VV$					
coupling to light fermions	$\rightarrow f\bar{f}\hat{V}$			$\approx g(g/g_S)$		
coupling to	$\blacktriangleright Q_3 \bar{Q}_3 \hat{V}$			$\operatorname{strongish}$		
3rd generation	KK - quarks			Yes, with \approx TeV mass		
$\mathbf{v} = 175 \mathbf{CoV}$			mSUGRA			
v -1/3 Gev	$\int L dt < 1$	$f b^{-1}$	$pp \to \tilde{g}\tilde{g}, \tilde{t}\tilde{t}$			
	$J = \dots = J$			$\frac{\chi \to g_{3/2} + \gamma/Z/h}{D}$		
				R-hadrons		
	$\int L dt = 1 \div 3$	$\int L dt = 1 \div 30 f b^{-1} \qquad \qquad$		SM-like Higgs boson		
	J 1 400 1 . 6			KK quarks		
		$\int I dt > 30 f h^{-1}$		Susy Higgs boson system		
	$\int I dt > 30$			Minimal Dark Matter		
Barbieri 0802.3988	$\int L u > 30$	50	KK weak bosons			
			KK gluons			

Rather than on physics scenarios (of which at most one is correct) one should focus on all accessible topologies (i.e. instrumentally manageable and for which the SM "background" is mastered)

n leptons + m photons + p jets (+ E_T^{miss})

Re-discover the SM

first benchmarks are ratios (W/Z, jets "in"/jets "out", etc check e/µ universality

Promising search channels are:

di-leptons ("Drell-Yan") di-jets di-bosons, e.g. WZ top-antitop

and peculiar signatures: heavy stables, displaced vertices

SM 15-15%

			10 ^{meas} -0 ^{fit} 1/0 ^{meas}
Variable	Measurement	Fit	0 1 2 3
$\Delta \alpha_{had}^{(5)}(m_{\chi})$	0.02758 ± 0.00035	0.02768	
m _Z [GeV]	91.1875 ± 0.0021	91.1875	
$\Gamma_{\rm Z}$ [GeV]	2.4952 ± 0.0023	2.4957	
σ_{had}^0 [nb]	41.540 ± 0.037	41.477	
R ₁	20.767 ± 0.025	20.744	
A ^{0,1}	0.01714 ± 0.00095	0.01645	
$A_{I}(P_{\tau})$	0.1465 ± 0.0032	0.1481	
R _b	0.21629 ± 0.00066	0.21586	
Re	0.1721 ± 0.0030	0.1722	
A ^{0,b}	0.0992 ± 0.0016	0.1038	
A ^{0,e}	0.0707 ± 0.0035	0.0742	
Ab	0.923 ± 0.020	0.935	
Ae	0.670 ± 0.027	0.668	
$A_{I}(SLD)$	0.1513 ± 0.0021	0.1481	
$\sin^2 \theta_{eff}^{lept}(Q_{n})$	0.2324 ± 0.0012	0.2314	
m _w [GeV]	80.398 ± 0.025	80.374	
m, [GeV]	170.9 ± 1.8	171.3	
Γ _w [GeV]	2.140 ± 0.060	2.091	

SUSY well hidden, but h0 nearby!

Heinemeyer, Daegu 2007

$$\begin{aligned} (1 - \frac{m_W^2}{m_Z^2})\frac{m_W^2}{m_Z^2} &= \frac{\pi\alpha(m_Z)}{\sqrt{2}G_F m_Z^2(1 - \Delta r_W)} \\ \epsilon_1 &= \Delta\rho, \\ \epsilon_2 &= c_0^2 \Delta\rho + \frac{s_0^2 \Delta r_W}{c_0^2 - s_0^2} - 2s_0^2 \Delta k, \\ \epsilon_3 &= c_0^2 \Delta\rho + (c_0^2 - s_0^2) \Delta k. \end{aligned} \qquad \begin{aligned} g_A &= -\frac{\sqrt{\rho}}{2} \sim -\frac{1}{2}(1 + \frac{\Delta\rho}{2}), \\ x &= \frac{g_V}{g_A} = 1 - 4\sin^2\theta_{eff} = 1 - 4(1 + \Delta k)s_0^2. \end{aligned}$$

$$\begin{aligned} \epsilon_1 &= \frac{3G_F m_t^2}{8\pi^2 \sqrt{2}} - \frac{3G_F m_W^2}{4\pi^2 \sqrt{2}} \tan^2 \theta_W \ln \frac{m_H}{m_Z} + \dots, \\ \epsilon_2 &= -\frac{G_F m_W^2}{2\pi^2 \sqrt{2}} \ln \frac{m_t}{m_Z} + \dots, \\ \epsilon_3 &= \frac{G_F m_W^2}{12\pi^2 \sqrt{2}} \ln \frac{m_H}{m_Z} - \frac{G_F m_W^2}{6\pi^2 \sqrt{2}} \ln \frac{m_t}{m_Z} \dots, \\ \epsilon_b &= -\frac{G_F m_t^2}{4\pi^2 \sqrt{2}} + \dots. \end{aligned}$$

custodial symmetry

SUSY

- -> great merits from the theoretical side
- -> relatively abundantly produced
- -> mostly MSSM and SUGRA are studied
- $m_h > 114 \text{ GeV} \rightarrow \text{ some "tension", O(1\%) fine tuning}$

ways to escape:

- ? we missed a non SM-like light Higgs at LEP: e.g. h (97) \rightarrow aa \rightarrow 4 τ (0801.4554)
- ? consider hidden sectors: "Hidden Valleys", etc (0712.2041)
- **? move to NMSSM: proposed benchmarks (0801.4321)**
- ? ignore the tension: Split SUSY \rightarrow long-lived gluino, R-hadrons

(0612161, 0611040)

R-parity? proton stability, LSP dark matter, missing E_T but is it wishful thinking?
 proposed benchmarks (0710.2287)

• missing E_T + as a privileged handle but try also "positive" identification (0801.3799)