W_{ADS} : mass terms

masses for all flavors

$$W_{\text{exact}} = C_{N,F} \left(\frac{\Lambda^{3N-F}}{\det M}\right)^{1/(N-F)} + m_j^i M_i^j$$

where m_{j}^{i} is the quark mass matrix. Equation of motion for M

$$M_i^j = (m^{-1})_i^j \left(\frac{\Lambda^{3N-F}}{\det M}\right)^{1/(N-F)} \qquad (**)$$

taking the determinant and plugging the result back in to (**) gives

$$\bar{\Phi}^{j}\Phi_{i} = M_{i}^{j} = (m^{-1})_{i}^{j} \left(\det m \Lambda^{3N-F}\right)^{1/N}$$

SUSY QCD for $F \ge N$

	SU(N)	SU(F)	SU(F)	U(1)	$U(1)_R$
Φ,Q			1	1	$\frac{F-N}{F}$
$\overline{\Phi},\overline{Q}$		1		-1	$\frac{F-N}{F}$

define
$$d_m^n \equiv \langle \Phi^{*in} \Phi_{mi} \rangle$$

 $\overline{d}_m^n = \langle \overline{\Phi}^{in} \overline{\Phi}_{mi}^* \rangle$

maximal rank N. SUSY vacua are D-flat:

$$D^a = T_n^{am}(d_m^n - \overline{d}_m^n) = 0$$

Flat directions $F \ge N$

 d_m^n and \overline{d}_m^n are $N \times N$ positive semi-definite Hermitian matrices of maximal rank N in a SUSY vacuum :

$$d_m^n - \overline{d}_m^n = \rho I \; .$$

 d_m^n can be diagonalized by an SU(N) gauge transformation:

$$d = \begin{pmatrix} |v_1|^2 & & & \\ & |v_2|^2 & & \\ & & \ddots & \\ & & & |v_N|^2 \end{pmatrix}$$

In this basis, \overline{d}_m^n must also be diagonal, with eigenvalues $|\overline{v}_i|^2$, so $|v_i|^2 = |\overline{v}_i|^2 + \rho$.

Flat directions $F \ge N$

Since d_m^n and \overline{d}_m^n are invariant under flavor transformations, we can use $SU(F) \times SU(F)$ transformations to put $\langle \Phi \rangle$ and $\langle \overline{\Phi} \rangle$ in the form

$$\langle \Phi \rangle = \begin{pmatrix} v_1 & 0 & \dots & 0 \\ & \ddots & \vdots & & \vdots \\ & & v_N & 0 & \dots & 0 \end{pmatrix} , \ \langle \overline{\Phi} \rangle = \begin{pmatrix} \overline{v}_1 & & & \\ & \ddots & & \\ & & \overline{v}_N \\ 0 & \dots & 0 \\ \vdots & & \vdots \\ 0 & \dots & 0 \end{pmatrix}$$

At a generic point in the moduli space the SU(N) is completely broken vacua are physically distinct, different VEVs correspond to different masses for the gauge bosons

Classical moduli space for $F \ge N$

generic point in the moduli space: SU(N) completely broken $2NF - (N^2 - 1)$ massless chiral supermultiplets gauge-invariant description "mesons," "baryons" and superpartners:

$$M_{i}^{j} = \overline{\Phi}^{jn} \Phi_{ni}$$

$$B_{i_{1},...,i_{N}} = \Phi_{n_{1}i_{1}} \dots \Phi_{n_{N}i_{N}} \epsilon^{n_{1},...,n_{N}}$$

$$\overline{B}^{i_{1},...,i_{N}} = \overline{\Phi}^{n_{1}i_{1}} \dots \overline{\Phi}^{n_{N}i_{N}} \epsilon_{n_{1},...,n_{N}}$$

constraints relate M and B, since the M has F^2 components, B and \overline{B} each have $\begin{pmatrix} F \\ N \end{pmatrix}$ components, and all three constructed out of the same 2NF underlying squark fields classically

$$B_{i_1,\ldots,i_N}\overline{B}^{j_1,\ldots,j_N} = M^{j_1}_{[i_1}\ldots M^{j_N}_{i_N]}$$

where [] denotes antisymmetrization

Classical moduli space for $F \ge N$

up to flavor transformations:

$$\langle M \rangle = \begin{pmatrix} v_1 \overline{v}_1 & & & \\ & \ddots & & \\ & & v_N \overline{v}_N & \\ & & & 0 & \\ & & & \ddots & \\ B_{1,\dots,N}^1 \rangle = v_1 \dots v_N & & \\ \overline{B}^{1,\dots,N} \rangle = \overline{v}_1 \dots \overline{v}_N$$

all other components set to zero rank $M \leq N$, if less than N, then B or \overline{B} (or both) vanish if the rank of M is k, then SU(N) is broken to SU(N-k)with F - k massless flavors

Quantum moduli space for $F \ge N$

classical constraints between M, B, and \overline{B} may be modified

parameterize the quantum moduli space by M, B, and BVEVs $\gg \Lambda$ perturbative regime M, B, and $\overline{B} \to 0$ strong coupling naively expect a singularity from gluons becoming massless

IR fixed points

 $F \geq 3N$ lose asymptotic freedom: weakly coupled low-energy effective theory

For F just below 3N we have an IR fixed point (Banks-Zaks) exact NSVZ β function:

$$\beta(g) = -\frac{g^3}{16\pi^2} \frac{(3N - F(1 - \gamma))}{1 - Ng^2/8\pi^2}$$

where γ is the anomalous dimension of the quark mass term

$$\gamma = -\frac{g^2}{8\pi^2} \frac{N^2 - 1}{N} + \mathcal{O}(g^4)$$

 $16\pi^2\beta(g) = -g^3 \left(3N - F\right) - \frac{g^5}{8\pi^2} \left(3N^2 - 2FN + \frac{F}{N}\right) + \mathcal{O}(g^7)$

IR fixed points

Large N with $F = 3N - \epsilon N$

$$16\pi^2\beta(g) = -g^3\epsilon N - \frac{g^5}{8\pi^2} \left(3(N^2 - 1) + \mathcal{O}(\epsilon)\right) + \mathcal{O}(g^7)$$

approximate solution of $\beta=0$ where there first two terms cancel at

$$g_*^2 = \frac{8\pi^2}{3} \frac{N}{N^2 - 1} \,\epsilon$$

 $\mathcal{O}(g^7)$ terms higher order in ϵ

without masses, gauge theory is scale-invariant for $g = g_*$

scale-invariant theory of fields with spin ≤ 1 is conformally invariant SUSY algebra \rightarrow superconformal algebra

particular R-charge enters the superconformal algebra, denote by $R_{\rm sc}$ dimensions of scalar component of gauge-invariant chiral and antichiral superfields:

$$d = \frac{3}{2}R_{\rm sc}, \text{ for chiral superfields} d = -\frac{3}{2}R_{\rm sc}, \text{ for antichiral superfields}$$

Chiral Ring

charge of a product of fields is the sum of the individual charges:

$$R_{\rm sc}[\mathcal{O}_1\mathcal{O}_2] = R_{\rm sc}[\mathcal{O}_1] + R_{\rm sc}[\mathcal{O}_2]$$

so for chiral superfields dimensions simply add:

$$D[\mathcal{O}_1\mathcal{O}_2] = D[\mathcal{O}_1] + D[\mathcal{O}_2]$$

More formally we can say that the chiral operators form a chiral ring.

ring: set of elements on which addition and multiplication are defined, with a zero and an a minus sign

in general, the dimension of a product of fields is affected by renormalizations that are independent of the renormalizations of the individual fields

Fixed Point Dimensions

R-symmetry of a SUSY gauge theory seems ambiguous since we can always form linear combinations with other U(1)'s

for the fixed point of SUSY QCD, $R_{\rm sc}$ is unique since we must have

$$R_{\rm sc}[Q] = R_{\rm sc}[\overline{Q}]$$

denote the anomalous dimension at the fixed point by γ_* then

$$D[M] = D[\Phi\overline{\Phi}] = 2 + \gamma_* = \frac{3}{2}2\frac{(F-N)}{F} = 3 - \frac{3N}{F}$$

and the anomalous dimension of the mass operator at the fixed point is

$$\gamma_* = 1 - \frac{3N}{F}$$

check that the exact β function vanishes:

$$\beta \propto 3N - F(1 - \gamma_*) = 0$$

Fixed Point Dimensions

For a scalar field in a conformal theory we also have

 $D(\phi) \ge 1$,

with equality for a free field Requiring $D[M] \ge 1 \Rightarrow$

$$F \geq \frac{3}{2}N$$

IR fixed point (non-Abelian Coulomb phase) is an interacting conformal theory for $\frac{3}{2}N < F < 3N$

no particle interpretation, but anomalous dimensions are physical quantities

Anomalies: triangle diagram

fermion triangle with the global current and two gauge currents

linearly divergent: depends on how the momentum is routed

$$\int d^4k \, \frac{k^{\mu}}{(k-p)^2 - m^2} = -\frac{i\pi^2}{2} p^{\mu} + \int d^4k \, \frac{k^{\mu} + p^{\mu}}{k^2 - m^2}$$

-gauge invariance fixes the correct choice of loop momentum. -contracting with external momenta gives a nonzero result -the global current is not conserved

't Hooft

't Hooft's anomaly matching

asymptotically free gauge theory, with a global symmetry group G compute the anomaly for three global G currents in the UV: A^{UV}

imagine that we weakly gauge G with a gauge coupling $g \ll 1$ If $A^{UV} \neq 0$, add spectators that only have G gauge couplings, such that their G anomaly is $A^S = -A^{UV}$

construct the effective theory at a scale below strong interaction scale If G is not spontaneously broken by the strong interactions

$$0 = A^{IR} + A^S$$

Thus

$$A^{IR} = A^{UV}$$

taking $g \to 0$ decouples the weakly coupled gauge bosons but does not change the three-point functions of currents

Seiberg

Duality

conformal theory global symmetries unbroken 't Hooft anomaly matching should apply to low-energy degrees of freedom anomalies of the M, B, and \overline{B} do not match to quarks and gaugino

Seiberg found a nontrivial solution to the anomaly matching using a "dual" SU(F - N) gauge theory with a "dual" gaugino, "dual" quarks and a gauge singlet "dual mesino":

	SU(F-N)	SU(F)	SU(F)	U(1)	$U(1)_R$
q			1	$rac{N}{F-N}$	$rac{N}{F}$
\overline{q}		1		$-\frac{N}{F-N}$	$rac{N}{F}$
mesino	1			0	$2 \frac{F-N}{F}$

Anomaly Matching

global symmetry	anomaly $=$ dual anomaly
$SU(F)^3$	-(F-N) + F = N
$U(1)SU(F)^2$	$\frac{N}{F-N}(F-N)\frac{1}{2} = \frac{N}{2}$
$U(1)_R SU(F)^2$	$\frac{N-F}{F}(F-N)\frac{1}{2} + \frac{F-2N}{F}F\frac{1}{2} = -\frac{N^2}{2F}$
$U(1)^{3}$	0 = 0
U(1)	0 = 0
$U(1)U(1)_{R}^{2}$	0 = 0
$U(1)_R$	$\left(\frac{N-F}{F}\right)2(F-N)F + \left(\frac{F-2N}{F}\right)F^2 + (F-N)^2 - 1$
	$= -N^2 - 1$
$U(1)_{R}^{3}$	$\left(\frac{N-F}{F}\right)^3 2(F-N)F + \left(\frac{F-2N}{F}\right)^3 F^2 + (F-N)^2 - 1$ = $-\frac{2N^4}{F} + N^2 - 1$
$U(1)^2 U(1)_R$	$\frac{-F^2}{\left(\frac{N}{F-N}\right)^2} \frac{N-F}{F} 2F(F-N) = -2N^2$

Dual Superpotential $W = \lambda \widetilde{M}_i^j \phi_j \overline{\phi}^i$

where ϕ represents the "dual" squark and \widetilde{M} is the dual meson ensures that the two theories have the same number of degrees of freedom, \widetilde{M} eqm removes the color singlet $\phi \overline{\phi}$ degrees of freedom dual baryon operators:

moduli spaces have a simple mapping

$$\begin{split} & M \leftrightarrow \widetilde{M} \\ & B_{i_1, \dots, i_N} \leftrightarrow \epsilon_{i_1, \dots, i_N, j_1, \dots, j_{F-N}} b^{j_1, \dots, j_{F-N}} \\ & \overline{B}^{i_1, \dots, i_N} \leftrightarrow \epsilon^{i_1, \dots, i_N, j_1, \dots, j_{F-N}} \overline{b}_{j_1, \dots, j_{F-N}} \end{split}$$

Dual β function

$$\beta(\widetilde{g}) \propto -\widetilde{g}^3(3\widetilde{N} - F) = -\widetilde{g}^3(2F - 3N)$$

dual theory loses asymptotic freedom when $F \leq 3N/2$ the dual theory leaves the conformal regime to become IR free at exactly the point where the meson of the original theory becomes a free field

strong coupling \leftrightarrow weak coupling

Integrating out a flavor

give a mass to one flavor

$$W_{\rm mass} = m \overline{\Phi}^F \Phi_F$$

In dual theory

$$W_d = \lambda \widetilde{M}_i^j \overline{\phi}^i \phi_j + m\mu\lambda \widetilde{M}_F^F$$

common to write

$$\lambda \widetilde{M} = \frac{M}{\mu}$$

trade the coupling λ for a scale μ and use the same symbol, M, for fields in the two different theories

$$W_d = \frac{1}{\mu} M_i^j \overline{\phi}^i \phi_j + m M_F^F$$

Integrating out a flavor

The equation of motion for M_F^F is:

$$\frac{\partial W_d}{\partial M_F^F} = \frac{1}{\mu} \overline{\phi}^F \phi_F + m = 0$$

dual squarks have VEVs:

$$\overline{\phi}^F \phi_F = -\mu m$$

along such a D-flat direction we have a theory with one less color, one less flavor, and some singlets

$$W_{\text{eff}} = \frac{1}{\mu} \left(\langle \overline{\phi}^F \rangle M_F^j \phi_j'' + \langle \phi_F \rangle M_i^F \overline{\phi}''^i + M_F^F S \right) + \frac{1}{\mu} M' \overline{\phi}' \phi'$$

integrate out M_F^j , ϕ_j'' , M_i^F , $\overline{\phi}''^i$, M_F^F , and S since, leaves just the dual of SU(N) with F-1 flavors which has a superpotential

$$W = \frac{1}{\mu} M' \overline{\phi}' \phi'$$

Consistency Checks

- global anomalies of the quarks and gauginos match those of the dual quarks, dual gauginos, and "mesons."
- Integrating out a flavor gives SU(N) with F-1 flavors, with dual SU(F-N-1) and F-1 flavors. Starting with the dual of the original theory, the mapping of the mass term is a linear term for the "meson" which forces the dual squarks to have a VEV and Higgses the theory down to SU(F-N-1) with F-1 flavors.
- The moduli spaces have the same dimensions and the gauge invariant operators match.

Classically, the final consistency check is not satisfied

Consistency Checks

moduli space of complex dimension

 $2FN - (N^2 - 1)$

2FN chiral superfields and $N^2 - 1$ complex *D*-term constraints

dual has F^2 chiral superfields (M) and the equations of motion set the dual squarks to zero when M has rank F

duality: weak \leftrightarrow strong also classical \leftrightarrow quantum

original theory: $\operatorname{rank}(M) \leq N$ classically

dual theory: $F_{eff} = F - \operatorname{rank}(M)$ light dual quarks

If rank(M) > N then $F_{eff} < \tilde{N} = F - N$, \Rightarrow ADS superpotential \Rightarrow no vacuum with rank(M) > N

in dual, $\operatorname{rank}(M) \leq N$ is enforced by nonperturbative quantum effects

Consistency Checks

rank constraint \Rightarrow number of complex dof in M is $F^2 - \tilde{N}^2$ since rank $N \ F \times F$ matrix can be written with an $(F - N) \times (F - N)$ block set to zero.

when M has N large eigenvalues, $F_{eff} = \tilde{N}$ light dual quarks $2F_{eff}\tilde{N} - (\tilde{N}^2 - 1) = \tilde{N}^2 + 1$ complex dof M eqm removes \tilde{N}^2 color singlet dof dual quark equations of motion enforce that an $\tilde{N} \times \tilde{N}$ corner of M is set to zero

two moduli spaces match:

$$2FN - (N^2 - 1) = F^2 - \widetilde{N}^2 + \widetilde{N}^2 + 1 - \widetilde{N}^2 = F^2 - \widetilde{N}^2 + 1$$

once nonperturbative effects are taken into account

F = N: confinement with χ SB

For F = N 't Hooft anomaly matching works with just M, B, and B confining: all massless degrees of freedom are color singlet particles For F = N flavors the baryons are flavor singlets:

$$B = \epsilon^{i_1, \dots, i_F} B_{i_1, \dots, i_F}$$
$$\overline{B} = \epsilon_{i_1, \dots, i_F} \overline{B}^{i_1, \dots, i_F}$$

classical constraint:

$$\det M = B\overline{B}$$

With quark masses:

$$\langle M_i^j \rangle = (m^{-1})_i^j \left(\det m \Lambda^{3N-F} \right)^{1/N}$$

Confinement with χSB

Taking a determinant of this equation (using F = N)

$$\det \langle M \rangle = \det \left(m^{-1} \right) \det m \Lambda^{2N} = \Lambda^{2N}$$

independent of the masses

det $m \neq 0$ sets $\langle B \rangle = \langle \overline{B} \rangle = 0$, can integrate out all the fields that have baryon number

classical constraint is violated!

Holomorphy and the Symmetries

flavor invariants are:

	$U(1)_A$	U(1)	$U(1)_R$
$\det M$	2N	0	0
B	N	N	0
\overline{B}	N	-N	0
Λ^{2N}	2N	0	0

R-charge of the squarks, (F - N)/F, vanishes since F = N generalized form of the constraint with correct $\Lambda \to 0$ and $B, \overline{B} \to 0$ limits is

$$\det M - \overline{B}B = \Lambda^{2N} \left(1 + \sum_{pq} C_{pq} \frac{\left(\Lambda^{2N}\right)^p (\overline{B}B)^q}{(\det M)^{p+q}} \right)$$

with p,q > 0. For $\langle \overline{B}B \rangle \gg \Lambda^{2N}$ the theory is perturbative, but with $C_{pq} \neq 0$ we find solutions of the form

$$\det M \approx \left(\overline{B}B\right)^{(q-1)/(p+q)}$$

which do not reproduce the weak coupling $\Lambda \to 0$ limit

Quantum Constraint For F = N: $det M - \overline{B}B = \Lambda^{2N}$

Instanton Action

The Euclidean action of an instanton configuration can be bounded

$$0 \leq \int d^4 x Tr \left(F_{\mu\nu} \pm \widetilde{F}_{\mu\nu} \right)^2 = \int d^4 x Tr \left(2F^2 \pm 2F\widetilde{F} \right)$$
$$\int d^4 x Tr F^2 \geq |\int d^4 x Tr F\widetilde{F}| = 16\pi^2 |n|$$

one instanton effects are suppressed by

$$e^{-S_{\rm int}} = e^{-(8\pi^2/g^2(\mu)) + i\theta_{\rm YM}} = \left(\frac{\Lambda}{\mu}\right)^b$$

Quantum Constraint For F = N: $\det M - \overline{B}B = \Lambda^{2N}$

correct form to be an instanton effect

$$e^{-S_{\rm inst}} \propto \Lambda^b = \Lambda^{2N}$$

Quantum Constraint

cannot take $M = B = \overline{B} = 0$

cannot go to the origin of moduli space ("deformed" moduli space) global symmetries are at least partially broken everywhere

Quantum Constraint

cannot take $M = B = \overline{B} = 0$

cannot go to the origin of moduli space ("deformed" moduli space) global symmetries are at least partially broken everywhere

Enhanced Symmetry Points

 $M_i^j = \Lambda^2 \delta_i^j, \ B = \overline{B} = 0$ $SU(F) \times SU(F) \times U(1) \times U(1)_R \to SU(F)_d \times U(1) \times U(1)_R$ chiral symmetry breaking, as in non-supersymmetric QCD

 $M = 0, \ B\overline{B} = -\Lambda^{2N}$ $SU(F) \times SU(F) \times U(1) \times U(1)_R \to SU(F) \times SU(F) \times U(1)_R$ baryon number spontaneously broken

Smooth Moduli Space

For large VEVs : perturbative Higgs phase, squark VEVs give masses to quarks and gauginos

no point in the moduli space where gluons become light \Rightarrow no singular points

theory exhibits "complementarity": can go smoothly from a Higgs phase (large VEVs) to a confining phase (VEVs of $\mathcal{O}(\Lambda)$) without going through a phase transition

Enhanced Symmetry Point

 $M_i^j = \Lambda^2 \delta_i^j, \ B = \overline{B} = 0$ Φ and $\overline{\Phi}$ VEVs break $SU(N) \times SU(F) \times SU(F) \rightarrow SU(F)_d$ quarks transform as $\Box \times \overline{\Box} = \mathbf{1} + \mathbf{Ad}$ under $SU(F)_d$ gluino transforms as \mathbf{Ad} under $SU(F)_d$

	$SU(F)_d$	U(1)	$U(1)_R$
$M - \mathrm{Tr}M$	\mathbf{Ad}	0	0
${ m Tr}M$	1	0	0
B	1	N	0
\overline{B}	1	-N	0

 $\mathrm{Tr}M$ gets a mass with the Lagrange multiplier field X

Enhanced Symmetry Points: Anomalies

global symmetry	elem. anomaly	=	comp. anomaly
$U(1)^2 U(1)_R$	-2FN	=	$-2N^{2}$
$U(1)_R$	$-2FN + N^2 - 1$	—	$-(F^2-1)-1-1$
$U(1)_{R}^{3}$	$-2FN + N^2 - 1$	=	$-(F^2-1)-1-1$
$U(1)_R SU(F)_d^2$	-2N+N	=	-N

agree because F = N

Enhanced Symmetry Points

At $M = 0, B\overline{B} = -\Lambda^{2N}$ only the U(1) symmetry is broken

linear combination $B + \overline{B}$ gets mass with Lagrange multiplier field X

global symmetry	elem. anomaly	=	comp. anomaly
$SU(F)^3$	N	=	F
$U(1)_R SU(F)^2$	$-N\frac{1}{2}$	—	$-F\frac{1}{2}$
$U(1)_R$	$-2FN + \tilde{N}^2 - 1$	=	$-F^2 - 1$
$U(1)_{R}^{3}$	$-2FN + N^2 - 1$	=	$-F^2 - 1$

agree because F = N

F = N + 1: s-confinement

For F = N + 1 't Hooft anomaly matching works with M, B, and \overline{B} confining

does not require χ SB, can go to the origin of moduli space

theory develops a dynamical superpotential

For F = N + 1 baryons are flavor antifundamentals since they are antisymmetrized in N = F - 1 colors:

$$B^{i} = \epsilon^{i_{1},...,i_{N},i}B_{i_{1},...,i_{N}}$$
$$\overline{B}_{i} = \epsilon_{i_{1},...,i_{N},i}\overline{B}^{i_{1},...,i_{N}}$$

$$F = N + 1$$
: Classical Constraints
 $(M^{-1})_{j}^{i} \det M = B^{i}\overline{B}_{j}$
 $M_{i}^{j}B^{i} = M_{i}^{j}\overline{B}_{j} = 0$

with quark masses:

$$\begin{array}{lll} \langle M_i^j \rangle &=& (m^{-1})_i^j \left(\det m \Lambda^{2N-1} \right)^{1/N} \\ \langle B^i \rangle &=& \langle \overline{B}_j \rangle = 0 \end{array}$$

taking determinant gives

$$(M^{-1})^i_j \det M = m^i_j \Lambda^{2N-1}$$

٠

Thus, we see that the classical constraint is satisfied as $m_j^i \to 0$ taking limit in different ways covers the classical moduli space classical and quantum moduli spaces are the same chiral symmetry remains unbroken at $M = B = \overline{B} = 0$

Most General Superpotential

$$W = \frac{1}{\Lambda^{2N-1}} \left[\alpha B^{i} M_{i}^{j} \overline{B}_{j} + \beta \det M + \det M f \left(\frac{\det M}{B^{i} M_{i}^{j} \overline{B}_{j}} \right) \right]$$

where f is an as yet unknown function only f = 0 reproduces the classical constraints:

$$\frac{\partial W}{\partial M_i^j} = \frac{1}{\Lambda^{2N-1}} \left[\alpha B^i \overline{B}_j + \beta (M^{-1})_j^i \det M \right] = 0$$

$$\frac{\partial W}{\partial B^i} = \frac{1}{\Lambda^{2N-1}} \alpha M_i^j \overline{B}_j = 0$$

$$\frac{\partial W}{\partial \overline{B}_j} = \frac{1}{\Lambda^{2N-1}} \alpha B^i M_i^j = 0$$

provided that $\beta = -\alpha$

F = N + 1 Superpotential

to determine α , add a mass for one flavor

$$W = \frac{\alpha}{\Lambda^{2N-1}} \left[B^{i} M_{i}^{j} \overline{B}_{j} - \det M \right] + mX$$

$$M = \begin{pmatrix} M_{j}^{\prime i} & Z^{i} \\ Y_{j} & X \end{pmatrix}, \quad B = (U^{i}, B^{\prime}), \quad \overline{B} = \begin{pmatrix} \overline{U}_{j} \\ \overline{B}^{\prime} \end{pmatrix}$$

$$\frac{\partial W}{\partial Y} = \frac{\alpha}{\Lambda^{2N-1}} \left(B^{\prime} \overline{U} - \operatorname{cof}(Y) \right) = 0$$

$$\frac{\partial W}{\partial W} = -\frac{\alpha}{\Lambda^{2N-1}} \left(U \overline{B}^{\prime} - \operatorname{cof}(Z) \right) = 0$$

$$\frac{\partial W}{\partial Y} = \frac{\alpha}{\Lambda^{2N-1}} \left(B'U - \operatorname{cof}(Y) \right) = 0$$

$$\frac{\partial W}{\partial Z} = \frac{\alpha}{\Lambda^{2N-1}} \left(U\overline{B}' - \operatorname{cof}(Z) \right) = 0$$

$$\frac{\partial W}{\partial U} = \frac{\alpha}{\Lambda^{2N-1}} Z\overline{B}' = 0$$

$$\frac{\partial W}{\partial \overline{U}} = \frac{\alpha}{\Lambda^{2N-1}} B'\overline{Y} = 0$$

$$\frac{\partial W}{\partial X} = \frac{\alpha}{\Lambda^{2N-1}} \left(B'\overline{B}' - \operatorname{det}M' \right) + m = 0$$

F = N + 1 Superpotential

solution of eqms:

$$Y = Z = U = \overline{U} = 0$$
$$\det M' - B'\overline{B}' = \frac{m\Lambda^{2N-1}}{\alpha} = \frac{1}{\alpha}\Lambda^{2N}_{N,N}$$

correct quantum constraint for F = N flavors if and only if $\alpha = 1$

Plugging back in superpotential with $m\Lambda^{2N-1} = \Lambda^{2N}_{N,N}$:

$$W_{\text{eff}} = \frac{X}{\Lambda^{2N-1}} \left(B' \overline{B}' - \det M' + \Lambda^{2N}_{N,N} \right)$$

Holding $\Lambda_{N,N}$ fixed as $m \to \infty \Rightarrow \Lambda \to 0$ X becomes Lagrange multiplier reproduce the superpotential for F = N

F = N + 1 Superpotential

superpotential for confined SUSY QCD with F = N + 1 flavors is:

$$W = \frac{1}{\Lambda^{2N-1}} \left[B^i M_i^j \overline{B}_j - \det M \right]$$

 $M = B = \overline{B} = 0$ is on the quantum moduli space, possible singular behavior since naively gluons and gluinos should become massless actually M, B, \overline{B} become massless: confinement without χ SB

Duality for SUSY QCD

Toy-Model of EWSB

	$SU(2)_{\rm SC}$	$SU(2)_L$	$SU(2)_R$	U(1)	$U(1)_R$
T_L			1	1	0
T_R		1		-1	0
H	1			0	1
S_L	1	1	1	-2	2
S_R	1	1	1	2	2

 $W = \lambda_L S_L T_L T_L + \lambda_R S_R T_R T_R + \lambda_H H T_L T_R + \frac{1}{2} \mu H H$ $U(1)_Y \subset SU(2)_R, Y \propto \tau_{3R}$ Two colors with Two flavors

Confinement

 $W_{\text{eff}} = f \left[\lambda_L S_L B_L + \lambda_R S_R B_R + \lambda_H H \Pi \right] + \frac{1}{2} \mu H H$

Confinement with XSB

 $\det(\Pi) - B_L B_R = \frac{1}{2} f^2$ $f = \frac{\Lambda}{4\pi}$ $W_{\text{eff}} = f \left[\lambda_L S_L B_L + \lambda_R S_R B_R + \lambda_H H \Pi\right] + \frac{1}{2} \mu H H$ $\Pi^j{}_k = \frac{1}{\sqrt{2}} (\Pi_0 \mathbf{1}_2 + i \Pi_A \tau_A)^j{}_k$ $\det(\Pi) = \frac{1}{2} \left(\Pi_0^2 + \Pi_A \Pi_A\right)$ $\Pi_0 = \left(f^2 + 2B_L B_R - \Pi_A \Pi_A\right)^{1/2}$

Confinement with XSB

equations of motion: $H_{0} = -\frac{\lambda_{H}f}{\mu}\Pi_{0}$ $f\lambda_{H}\Pi_{A} = -\mu H_{A}$ $H_{0}\Pi_{A} = H_{A}\Pi_{0}$

3 linear combinations of Π_A and H_A are undetermined: Goldstone Bosons

Fat Higgs

 $W = \lambda_L S_L T_L T_L + \lambda_R S_R T_R T_R + \lambda_H H T_L T_R + \frac{1}{2} y (S_L + S_R) H H$

$$\langle H_0 \rangle = \left(\frac{2\lambda_L \lambda_R}{9y^2} \right)^{1/4} f$$

$$\langle S_L \rangle = \langle S_R \rangle = \pm \lambda_H \left(\frac{2}{9y^2 \lambda_L \lambda_R} \right)^{1/4} f$$

$$\langle B_L \rangle = -\left(\frac{\lambda_R}{18y^2 \lambda_L} \right)^{1/2} f$$

$$\langle B_R \rangle = -\left(\frac{\lambda_L}{18y^2 \lambda_R} \right)^{1/2} f$$

Luty, Terning, Grant hep-ph/0006224 Murayama, Harnik, Kribs, Larsen hep-ph/0311349

S-parameter

 $\frac{1}{\Lambda^2} \int d^2\theta \, (W^{\alpha})^j{}_k (W_{\alpha})^\ell{}_m \epsilon_{j\ell np} M^{kn} M^{mp} + h.c.$

would contribute to S but cannot appear due to holomorphy and the weak coupling limit

$\frac{1}{\Lambda^2} \int d^4\theta \operatorname{Tr} \left[\overline{\nabla} \nabla \left(M^{\dagger} e^V \right) \overline{\nabla} \nabla M \right] + h.c.$

Kahler term contributes to S but the sign is unknown

in principle it could be calculated in some models eg. the Klebanov-Strassler model