
WADS: mass terms
masses for all flavors

Wexact = CN,F

(
Λ3N−F

detM

)1/(N−F )
+ mi

jM
j
i

where mi
j is the quark mass matrix. Equation of motion for M

M j
i = (m−1)j

i

(
Λ3N−F

det M

)1/(N−F )
(∗∗)

taking the determinant and plugging the result back in to (**) gives

Φ̄jΦi = M j
i = (m−1)j

i

(
detm Λ3N−F

)1/N



SUSY QCD for F ≥ N

SU(N) SU(F ) SU(F ) U(1) U(1)R

Φ, Q 1 1 F−N
F

Φ, Q 1 -1 F−N
F

define dn
m ≡ 〈Φ∗inΦmi〉
d

n
m = 〈ΦinΦ∗mi〉

maximal rank N . SUSY vacua are D-flat:

Da = T am
n (dn

m − d
n
m) = 0



Flat directions F ≥ N
dn

m and d
n
m are N ×N positive semi-definite Hermitian matrices of max-

imal rank N in a SUSY vacuum :

dn
m − d

n
m = ρI .

dn
m can be diagonalized by an SU(N) gauge transformation:

d =





|v1|2
|v2|2

. . .
|vN |2





In this basis, d
n
m must also be diagonal, with eigenvalues |vi|2, so

|vi|2 = |vi|2 + ρ .



Flat directions F ≥ N
Since dn

m and d
n
m are invariant under flavor transformations, we can

use SU(F )× SU(F ) transformations to put 〈Φ〉 and 〈Φ〉 in the form

〈Φ〉 =




v1 0 . . . 0

. . .
...

...
vN 0 . . . 0



 , 〈Φ〉 =





v1

. . .
vN

0 . . . 0
...

...
0 . . . 0





.

At a generic point in the moduli space the SU(N) is completely broken
vacua are physically distinct, different VEVs correspond to different
masses for the gauge bosons



Classical moduli space for F ≥ N
generic point in the moduli space: SU(N) completely broken

2NF − (N2 − 1) massless chiral supermultiplets
gauge-invariant description “mesons,” “baryons” and superpartners:

M j
i = ΦjnΦni

Bi1,...,iN = Φn1i1 . . .ΦnN iN εn1,...,nN

B
i1,...,iN = Φn1i1

. . .ΦnN iN
εn1,...,nN

constraints relate M and B, since the M has F 2 components, B and

B each have
(

F
N

)
components, and all three constructed out of the

same 2NF underlying squark fields
classically

Bi1,...,iN B
j1,...,jN = M j1

[i1
. . . M jN

iN ]

where [ ] denotes antisymmetrization



Classical moduli space for F ≥ N
up to flavor transformations:

〈M〉 =





v1v1

. . .
vNvN

0
. . .

0





〈B1,...,N 〉 = v1 . . . vN

〈B1,...,N 〉 = v1 . . . vN

all other components set to zero
rank M ≤ N , if less than N , then B or B (or both) vanish
if the rank of M is k, then SU(N) is broken to SU(N − k)
with F − k massless flavors



Quantum moduli space for F ≥ N
classical constraints between M , B, and B may be modified

parameterize the quantum moduli space by M , B, and B
VEVs " Λ perturbative regime
M , B, and B → 0 strong coupling
naively expect a singularity from gluons becoming massless



IR fixed points
F ≥ 3N lose asymptotic freedom: weakly coupled low-energy effec-

tive theory
For F just below 3N we have an IR fixed point (Banks-Zaks)
exact NSVZ β function:

β(g) = − g3

16π2
(3N−F (1−γ))
1−Ng2/8π2

where γ is the anomalous dimension of the quark mass term

γ = − g2

8π2
N2−1

N +O(g4)

16π2β(g) = −g3 (3N − F )− g5

8π2

(
3N2 − 2FN + F

N

)
+O(g7)



IR fixed points
Large N with F = 3N − εN

16π2β(g) = −g3εN − g5

8π2

(
3(N2 − 1) +O(ε)

)
+O(g7)

approximate solution of β = 0 where there first two terms cancel at

g2
∗ = 8π2

3
N

N2−1 ε

O(g7) terms higher order in ε
without masses, gauge theory is scale-invariant for g = g∗
scale-invariant theory of fields with spin ≤ 1 is conformally invariant
SUSY algebra → superconformal algebra

particular R-charge enters the superconformal algebra, denote by Rsc

dimensions of scalar component of gauge-invariant chiral and antichiral
superfields:

d = 3
2Rsc, for chiral superfields

d = − 3
2Rsc, for antichiral superfields



Chiral Ring
charge of a product of fields is the sum of the individual charges:

Rsc[O1O2] = Rsc[O1] + Rsc[O2]

so for chiral superfields dimensions simply add:

D[O1O2] = D[O1] + D[O2]

More formally we can say that the chiral operators form a chiral ring.

ring: set of elements on which addition and multiplication are defined,
with a zero and an a minus sign

in general, the dimension of a product of fields is affected by renormal-
izations that are independent of the renormalizations of the individual
fields



Fixed Point Dimensions
R-symmetry of a SUSY gauge theory seems ambiguous since we can

always form linear combinations with other U(1)’s
for the fixed point of SUSY QCD, Rsc is unique since we must have

Rsc[Q] = Rsc[Q]

denote the anomalous dimension at the fixed point by γ∗ then

D[M ] = D[ΦΦ] = 2 + γ∗ = 3
22 (F−N)

F = 3− 3N
F

and the anomalous dimension of the mass operator at the fixed point is

γ∗ = 1− 3N
F

check that the exact β function vanishes:

β ∝ 3N − F (1− γ∗) = 0



Fixed Point Dimensions
For a scalar field in a conformal theory we also have

D(φ) ≥ 1 ,

with equality for a free field
Requiring D[M ] ≥ 1⇒

F ≥ 3
2N

IR fixed point (non-Abelian Coulomb phase) is an interacting conformal
theory for 3

2N < F < 3N

no particle interpretation, but anomalous dimensions are physical
quantities



Anomalies: triangle diagram
fermion triangle with the global current and two gauge currents

linearly divergent: depends on how the momentum is routed
∫

d4k kµ

(k−p)2−m2 = − iπ2

2 pµ +
∫

d4k kµ+pµ

k2−m2 .

-gauge invariance fixes the correct choice of loop momentum.
-contracting with external momenta gives a nonzero result
-the global current is not conserved



‘t Hooft



‘t Hooft’s anomaly matching
asymptotically free gauge theory, with a global symmetry group G

compute the anomaly for three global G currents in the UV: AUV

imagine that we weakly gauge G with a gauge coupling g ! 1
If AUV "= 0, add spectators that only have G gauge couplings, such that
their G anomaly is AS = −AUV

construct the effective theory at a scale below strong interaction scale
If G is not spontaneously broken by the strong interactions

0 = AIR + AS

Thus

AIR = AUV

taking g → 0 decouples the weakly coupled gauge bosons but does not
change the three-point functions of currents



Seiberg



SUSY QCD for F ≥ N
SU(N) SU(F ) SU(F ) U(1) U(1)R

Φ, Q 1 1 F−N
F

Φ, Q 1 -1 F−N
F



Duality
conformal theory global symmetries unbroken
‘t Hooft anomaly matching should apply to low-energy degrees of freedom

anomalies of the M , B, and B do not match to quarks and gaugino

Seiberg found a nontrivial solution to the anomaly matching using a
“dual” SU(F −N) gauge theory with a “dual” gaugino, “dual” quarks
and a gauge singlet “dual mesino”:

SU(F −N) SU(F ) SU(F ) U(1) U(1)R

q 1 N
F−N

N
F

q 1 − N
F−N

N
F

mesino 1 0 2 F−N
F



Anomaly Matching

global symmetry anomaly = dual anomaly
SU(F )3 −(F −N) + F = N
U(1)SU(F )2 N

F−N (F −N) 1
2 = N

2

U(1)RSU(F )2 N−F
F (F −N) 1

2 + F−2N
F F 1

2 = −N2

2F
U(1)3 0 = 0
U(1) 0 = 0
U(1)U(1)2R 0 = 0
U(1)R

(
N−F

F

)
2(F −N)F +

(
F−2N

F

)
F 2 + (F −N)2 − 1

= −N2 − 1
U(1)3R

(
N−F

F

)3 2(F −N)F +
(

F−2N
F

)3
F 2 + (F −N)2 − 1

= − 2N4

F 2 + N2 − 1

U(1)2U(1)R

(
N

F−N

)2
N−F

F 2F (F −N) = −2N2



Dual Superpotential
W = λM̃ j

i φjφ
i

where φ represents the “dual” squark and M̃ is the dual meson
ensures that the two theories have the same number of degrees of

freedom, M̃ eqm removes the color singlet φφ degrees of freedom
dual baryon operators:

bi1,...,iF−N = φn1i1 . . . φnF−N iF−N εn1,...,nF−N

b i1,...,iF−N = φn1i1 . . .φnF−N iF−N
εn1,...,nF−N

moduli spaces have a simple mapping

M ↔ M̃
Bi1,...,iN ↔ εi1,...,iN ,j1,...jF−N bj1,...,jF−N

B
i1,...,iN ↔ εi1,...,iN ,j1,...jF−N bj1,...,jF−N



Dual β function
β(g̃) ∝ −g̃3(3Ñ − F ) = −g̃3(2F − 3N)

dual theory loses asymptotic freedom when F ≤ 3N/2
the dual theory leaves the conformal regime to become IR free at exactly
the point where the meson of the original theory becomes a free field

strong coupling ↔ weak coupling



Integrating out a flavor
give a mass to one flavor

Wmass = mΦF ΦF

In dual theory

Wd = λM̃ j
i φ

i
φj + mµλM̃F

F

common to write

λM̃ = M
µ

trade the coupling λ for a scale µ and use the same symbol, M , for fields
in the two different theories

Wd = 1
µM j

i φ
i
φj + mMF

F



Integrating out a flavor
The equation of motion for MF

F is:

∂Wd

∂MF
F

= 1
µφ

F
φF + m = 0

dual squarks have VEVs:

φ
F
φF = −µm

along such a D-flat direction we have a theory with one less color, one
less flavor, and some singlets



Integrating out a flavor
SU(F − N − 1) SU(F − 1) SU(F − 1)

q′ 1
q′ 1
M ′ 1
q′′ 1 1
q′′ 1 1
S 1 1 1

MF
j 1 1

M j
F 1 1

MF
F 1 1 1

Weff = 1
µ

(
〈φF 〉M j

F φ′′
j + 〈φF 〉MF

i φ
′′i

+ MF
F S

)
+ 1

µM ′φ
′
φ′

integrate out M j
F , φ′′

j , MF
i , φ

′′i
, MF

F , and S since, leaves just the dual
of SU(N) with F − 1 flavors which has a superpotential

W = 1
µM ′φ

′
φ′



Consistency Checks

• global anomalies of the quarks and gauginos match those of the
dual quarks, dual gauginos, and “mesons.”

• Integrating out a flavor gives SU(N) with F − 1 flavors, with dual
SU(F − N − 1) and F − 1 flavors. Starting with the dual of the
original theory, the mapping of the mass term is a linear term for
the “meson” which forces the dual squarks to have a VEV and
Higgses the theory down to SU(F −N − 1) with F − 1 flavors.

• The moduli spaces have the same dimensions and the gauge invari-
ant operators match.

Classically, the final consistency check is not satisfied



Consistency Checks
moduli space of complex dimension

2FN − (N2 − 1)

2FN chiral superfields and N2 − 1 complex D-term constraints

dual has F 2 chiral superfields (M) and the equations of motion set
the dual squarks to zero when M has rank F

duality: weak ↔ strong also classical ↔ quantum
original theory: rank(M) ≤ N classically

dual theory: Feff = F − rank(M) light dual quarks
If rank(M) > N then Feff < Ñ = F −N , ⇒ ADS superpotential

⇒ no vacuum with rank(M) > N
in dual, rank(M) ≤ N is enforced by nonperturbative quantum effects



Consistency Checks
rank constraint ⇒ number of complex dof in M is F 2 − Ñ2 since rank
N F ×F matrix can be written with an (F −N)× (F −N) block set to
zero.

when M has N large eigenvalues, Feff = Ñ light dual quarks
2Feff Ñ − (Ñ2 − 1) = Ñ2 + 1 complex dof
M eqm removes Ñ2 color singlet dof
dual quark equations of motion enforce that an Ñ × Ñ corner of M is
set to zero

two moduli spaces match:

2FN − (N2 − 1) = F 2 − Ñ2 + Ñ2 + 1− Ñ2 = F 2 − Ñ2 + 1

once nonperturbative effects are taken into account



F = N : confinement with χSB
For F = N ‘t Hooft anomaly matching works with just M , B, and B

confining: all massless degrees of freedom are color singlet particles
For F = N flavors the baryons are flavor singlets:

B = εi1,...,iF Bi1,...,iF

B = εi1,...,iF B
i1,...,iF

classical constraint:

detM = BB

With quark masses:

〈M j
i 〉 = (m−1)j

i

(
det mΛ3N−F

)1/N



Confinement with χSB
Taking a determinant of this equation (using F = N)

det〈M〉 = det (m−1) detmΛ2N = Λ2N

independent of the masses

det m #= 0 sets 〈B〉 = 〈B〉 = 0, can integrate out all the fields that
have baryon number

classical constraint is violated!



Holomorphy and the Symmetries
flavor invariants are:

U(1)A U(1) U(1)R

detM 2N 0 0
B N N 0
B N −N 0

Λ2N 2N 0 0

R-charge of the squarks, (F −N)/F , vanishes since F = N
generalized form of the constraint with correct Λ → 0 and B,B → 0
limits is

detM −BB = Λ2N

(
1 +

∑
pq Cpq

(Λ2N)p
(BB)q

(detM)p+q

)

with p, q > 0. For 〈BB〉 % Λ2N the theory is perturbative, but with
Cpq &= 0 we find solutions of the form

detM ≈
(
BB

)(q−1)/(p+q)

which do not reproduce the weak coupling Λ → 0 limit



Quantum Constraint
For F = N :

detM −BB = Λ2N

correct form to be an instanton effect

e−Sinst ∝ Λb = Λ2N



Instanton Action
The Euclidean action of an instanton configuration can be bounded

0 ≤
∫

d4xTr
(
Fµν ± F̃µν

)2
=

∫
d4xTr

(
2F 2 ± 2FF̃

)

∫
d4xTrF 2 ≥ |

∫
d4xTrF F̃ | = 16π2|n|

one instanton effects are suppressed by

e−Sint = e−(8π2/g2(µ))+iθYM =
(

Λ
µ

)b



Quantum Constraint
For F = N :

detM −BB = Λ2N

correct form to be an instanton effect

e−Sinst ∝ Λb = Λ2N



Quantum Constraint
cannot take M = B = B = 0

cannot go to the origin of moduli space ( “deformed” moduli space)
global symmetries are at least partially broken everywhere



Quantum Constraint
cannot take M = B = B = 0

cannot go to the origin of moduli space ( “deformed” moduli space)
global symmetries are at least partially broken everywhere



Enhanced Symmetry Points
M j

i = Λ2δj
i , B = B = 0

SU(F )× SU(F )× U(1)× U(1)R → SU(F )d × U(1)× U(1)R

chiral symmetry breaking, as in non-supersymmetric QCD

M = 0, BB = −Λ2N

SU(F )× SU(F )× U(1)× U(1)R → SU(F )× SU(F )× U(1)R

baryon number spontaneously broken



Smooth Moduli Space
For large VEVs : perturbative Higgs phase, squark VEVs give masses to
quarks and gauginos

no point in the moduli space where gluons become light
⇒ no singular points

theory exhibits “complementarity”: can go smoothly from a Higgs
phase (large VEVs) to a confining phase (VEVs of O(Λ)) without going
through a phase transition



Enhanced Symmetry Point
M j

i = Λ2δj
i , B = B = 0

Φ and Φ VEVs break SU(N)× SU(F )× SU(F )→ SU(F )d

quarks transform as × = 1 + Ad under SU(F )d

gluino transforms as Ad under SU(F )d

SU(F )d U(1) U(1)R

M − TrM Ad 0 0
TrM 1 0 0
B 1 N 0
B 1 −N 0

TrM gets a mass with the Lagrange multiplier field X



Enhanced Symmetry Points:
Anomalies

global symmetry elem. anomaly = comp. anomaly
U(1)2U(1)R −2FN = −2N2

U(1)R −2FN + N2 − 1 = −(F 2 − 1)− 1− 1
U(1)3R −2FN + N2 − 1 = −(F 2 − 1)− 1− 1
U(1)RSU(F )2d −2N + N = −N

agree because F = N



Enhanced Symmetry Points
At M = 0, BB = −Λ2N only the U(1) symmetry is broken

SU(F ) SU(F ) U(1)R

M 0
B 1 1 0
B 1 1 0

linear combination B + B gets mass with Lagrange multiplier field X

global symmetry elem. anomaly = comp. anomaly
SU(F )3 N = F
U(1)RSU(F )2 −N 1

2 = −F 1
2

U(1)R −2FN + N2 − 1 = −F 2 − 1
U(1)3R −2FN + N2 − 1 = −F 2 − 1

agree because F = N



F = N + 1: s-confinement
For F = N + 1 ‘t Hooft anomaly matching works with M , B, and B
confining

does not require χSB, can go to the origin of moduli space

theory develops a dynamical superpotential

SU(F ) SU(F ) U(1) U(1)R

M 0 2
F

B 1 N N
F

B 1 −N N
F

For F = N + 1 baryons are flavor antifundamentals since they are
antisymmetrized in N = F − 1 colors:

Bi = εi1,...,iN ,iBi1,...,iN

Bi = εi1,...,iN ,iB
i1,...,iN



F = N + 1: Classical Constraints
(M−1)i

jdetM = BiBj

M j
i Bi = M j

i Bj = 0

with quark masses:

〈M j
i 〉 = (m−1)j

i

(
detmΛ2N−1

)1/N

〈Bi〉 = 〈Bj〉 = 0

taking determinant gives

(M−1)i
jdetM = mi

jΛ2N−1 .

Thus, we see that the classical constraint is satisfied as mi
j → 0

taking limit in different ways covers the classical moduli space
classical and quantum moduli spaces are the same
chiral symmetry remains unbroken at M = B = B = 0



Most General Superpotential
W = 1

Λ2N−1

[
αBiM j

i Bj + βdetM + detM f
(

detM
BiMj

i Bj

)]

where f is an as yet unknown function
only f = 0 reproduces the classical constraints:

∂W
∂Mj

i

= 1
Λ2N−1

[
αBiBj + β(M−1)i

jdetM
]

= 0
∂W
∂Bi = 1

Λ2N−1 αM j
i Bj = 0

∂W
∂Bj

= 1
Λ2N−1 αBiM j

i = 0

provided that β = −α



F = N + 1 Superpotential
to determine α, add a mass for one flavor

W = α
Λ2N−1

[
BiM j

i Bj − detM
]

+ mX

M =
(

M ′i
j Zi

Yj X

)
, B =

(
U i, B′) , B =

(
U j

B
′

)

∂W
∂Y = α

Λ2N−1

(
B′U − cof(Y )

)
= 0

∂W
∂Z = α

Λ2N−1

(
UB

′ − cof(Z)
)

= 0
∂W
∂U = α

Λ2N−1 ZB
′ = 0

∂W
∂U

= α
Λ2N−1 B′Y = 0

∂W
∂X = α

Λ2N−1

(
B′B

′ − detM ′
)

+ m = 0



F = N + 1 Superpotential
solution of eqms:

Y = Z = U = U = 0
detM ′ −B′B

′ = mΛ2N−1

α = 1
αΛ2N

N,N

correct quantum constraint for F = N flavors if and only if α = 1

Plugging back in superpotential with mΛ2N−1 = Λ2N
N,N :

Weff = X
Λ2N−1

(
B′B

′ − detM ′ + Λ2N
N,N

)

Holding ΛN,N fixed as m→∞ ⇒ Λ→ 0
X becomes Lagrange multiplier
reproduce the superpotential for F = N



F = N + 1 Superpotential
superpotential for confined SUSY QCD with F = N + 1 flavors is:

W = 1
Λ2N−1

[
BiM j

i Bj − detM
]

M = B = B = 0 is on the quantum moduli space, possible singular
behavior since naively gluons and gluinos should become massless

actually M , B, B become massless: confinement without χSB



SUSY QCD for F ≥ N
SU(N) SU(F ) SU(F ) U(1) U(1)R

Φ, Q 1 1 F−N
F

Φ, Q 1 -1 F−N
F

Duality
conformal theory global symmetries unbroken
‘t Hooft anomaly matching should apply to low-energy degrees of freedom

anomalies of the M , B, and B do not match to quarks and gaugino

Seiberg found a nontrivial solution to the anomaly matching using a
“dual” SU(F −N) gauge theory with a “dual” gaugino, “dual” quarks
and a gauge singlet “dual mesino”:

SU(F −N) SU(F ) SU(F ) U(1) U(1)R

q 1 N
F−N

N
F

q 1 − N
F−N

N
F

mesino 1 0 2 F−N
F

Dual Banks–Zaks
F = 3Ñ − εÑ = 3

2

(
1 + ε

6

)
N

perturbative fixed point at

g̃2
∗ = 8π2

3
Ñ

Ñ2−1

(
1 + F

Ñ

)
ε

λ2
∗ = 16π2

3Ñ
ε

where D(M̃φφ) = 3 (marginal) since W has R-charge 2
If λ = 0, then M̃ is free with dimension 1
If g̃ near pure Banks-Zaks and λ ≈ 0 then we can calculate the

dimension of φφ from the Rsc charge for F > 3N/2:

D(φφ) = 3(F−Ñ)
F = 3N

F < 2 .

M̃φφ is a relevant operator, λ = 0 unstable fixed point, flows toward λ∗

Dual Banks–Zaks
F = 3Ñ − εÑ = 3

2

(
1 + ε

6

)
N

perturbative fixed point at

g̃2
∗ = 8π2

3
Ñ

Ñ2−1

(
1 + F

Ñ

)
ε

λ2
∗ = 16π2

3Ñ
ε

where D(M̃φφ) = 3 (marginal) since W has R-charge 2
If λ = 0, then M̃ is free with dimension 1
If g̃ near pure Banks-Zaks and λ ≈ 0 then we can calculate the

dimension of φφ from the Rsc charge for F > 3N/2:

D(φφ) = 3(F−Ñ)
F = 3N

F < 2 .

M̃φφ is a relevant operator, λ = 0 unstable fixed point, flows toward λ∗

Dual Banks–Zaks
F = 3Ñ − εÑ = 3

2

(
1 + ε

6

)
N

perturbative fixed point at

g̃2
∗ = 8π2

3
Ñ

Ñ2−1

(
1 + F

Ñ

)
ε

λ2
∗ = 16π2

3Ñ
ε

where D(M̃φφ) = 3 (marginal) since W has R-charge 2
If λ = 0, then M̃ is free with dimension 1
If g̃ near pure Banks-Zaks and λ ≈ 0 then we can calculate the

dimension of φφ from the Rsc charge for F > 3N/2:

D(φφ) = 3(F−Ñ)
F = 3N

F < 2 .

M̃φφ is a relevant operator, λ = 0 unstable fixed point, flows toward λ∗

special cases:

F=N+1 ! confinement without "SB

F=N     ! confinement with "SB

IR Fixed Point

IR Free

IR FreeStrong

Strong

IR Fixed Point

Duality for SUSY QCD



S-color

SU(2)SC SU(2)L SU(2)R U(1) U(1)R

TL 1 1 0

TR 1 −1 0

H 1 0 1

SL 1 1 1 −2 2

SR 1 1 1 2 2

W = λLSLTLTL + λRSRTRTR + λHHTLTR + 1
2µHH

U(1)Y ⊂ SU(2)R, Y ∝ τ3R

Toy-Model of EWSB

Two colors with Two flavors



Confinement

SU(2)L SU(2)R U(1) U(1)R

Π ∼ (TLTR) 0 0

BL ∼ (TLTL) 1 1 2 0

BR ∼ (TRTR) 1 −2 0

H 0 1

SL 1 1 −2 2

SR 1 1 2 2

ConfinementS-color
In order to be realistic, this theory must incorporate soft SUSY break-

ing.
Since the strong dynamics is responsible for breaking electroweak

symmetry, the required soft SUSY breaking terms are not much smaller
than the dynamical scale of the S color dynamics. However, we will see
that naive dimenesional analysis (NDA) indicates that it is sensible to
treat soft SUSY breaking as a perturbation,

Denote the scale where the S-color dynamics becomes strong by Λ.
In a normalization where the composite fields have kinetic terms of order
1, the quantum constraint can be written [?]

det(Π)−BLBR = 1
2f2

and the effective superpotential is

Weff = f [λLSLBL + λRSRBR + λHHΠ] + 1
2µHH

where f = Λ/(4π). We have used our freedom to normalize the fields
to set various coefficients to 1; in this normalization, all of the unknown
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S-color
To solve the quantum constraint, we write

Πj
k = 1√

2
(Π012 + iΠAτA)j

k Hj
k = 1√

2
(H012 + iHAτA)j

k,

where τA (A = 1, 2, 3) are the Pauli matrices. This gives

HΠ = H0Π0 + HAΠA, det(Π) = 1
2

(
Π2

0 + ΠAΠA

)
,

etc. Solving () for Π0 gives

Π0 =
(
f2 + 2BLBR − ΠAΠA

)1/2

We therefore parameterize the moduli space by BL, BR, and ΠA; this
parameterization is non-singular for all vacua where 〈Π0〉 $= 0. In this
way we obtain the unconstrained effective superpotential

Weff = f {λLSLBL + λRSRBR + λH [H0Π0 + HAΠA]}
+ 1

2µ(H2
0 + HAHA),

where Π0 is eliminated using (). Similarly, Π0 should also be eliminated
in the effective Kähler potential ().
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S-color
We now discuss the vacua in the SUSY limit. The H0, HA, and ΠA

equations of motion give respectively

H0 = −λHf
µ Π0

fλHΠA = −µHA

H0ΠA = HAΠ0

so we find three flat directions.

Confinement with  SB!

3 linear combinations of     and 
are undetermined: Goldstone Bosons 

S-color
We now discuss the vacua in the SUSY limit. The H0, HA, and ΠA

equations of motion give respectively

H0 = −λHf
µ

(
f2 − 2BLBR −ΠAΠA

)1/2

fλHΠA = −µHA

H0ΠA = HA

(
f2 − 2BLBR −ΠAΠA

)1/2

Substituting (??) into (??) reproduces (??), so we find three flat di-
rections. The moduli space of vacua includes points where SU(2)L ×
SU(2)R → SU(2). In these vacua, electroweak symmetry is broken in
the correct pattern in the SUSY limit, and the three flat directions are
associated with the Nambu-Goldstone bosons of the symmetry breaking.

To obtain a realistic model we must include soft SUSY breaking with
msoft ∼ Λ/(4π).

We now turn to the fermion masses. An important diagnostic is the
determinant of the second derivative of the effective superpotential:

det〈W ′′
eff〉 = −λ2

Lλ2
Rλ2

Hf11µ
〈Π0〉5

(
f2 − 2〈BL〉〈BR〉

)
(µ〈H0〉+ λHf〈Π0〉)3 .
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equations of motion:



Fat Higgs

we do not generate quark and lepton masses. If µ is small we have light
fermions (see (??)). This is similar to the usual ‘µ problem.’ Fortunately,
a simple modification of the model solves this problem.

1 An Improved Model

We can eliminate this problem simply by replacing the µ term with a
cubic interaction:

W = λLSLTLTL + λRSRTRTR + λHHTLTR + 1
2y(SL + SR)HH

The symmetry between the SL and SR couplings is not essential; it
merely simplifies the form of the VEV’s in the model. We can also
include further cubic interactions for the singlets SL and SR, but these
do not lead to qualitatively different results. Note that all global U(1)
symmetries are broken.

In the SUSY limit, the VEV’s are determined by

Solving the remaining equations for the special case 〈HA〉 = 0, we
obtain

〈H0〉 =
(

2λLλR
9y2

)1/4
f

〈SL〉 = 〈SR〉 = ±λH

(
2

9y2λLλR

)1/4
f

〈BL〉 = −
(

λR
18y2λL

)1/2
f

〈BR〉 = −
(

λL
18y2λR

)1/2
f

We see that there are points on the moduli space where electroweak
symmetry is broken in the correct pattern. In addition, the nonzero
VEV for the singlets gives an effective µ term for the Higgs doublets.

The inclusion of soft SUSY breaking proceeds as for the simpler model
above; see the Appendix. We conclude that we expect to find a vacuum
with the desired properties for reasonable choices of soft masses.

We also computed the determinant of the fermion mass matrix, and
found that there are no light fermions. Again, the discussion is similar
to that for the simpler model, but the expressions are more complicated.

Luty, Terning, Grant hep-ph/0006224
Murayama, Harnik, Kribs, Larsen hep-ph/0311349 



Why is f   msoft?

This can be achieved using the disrupted fixed point idea (c.f. post-
modern technicolor). For example SU(2)SC would have an infrared fixed
point if there were 4 or 5 flavors rather than 2. Suppose that there were
2 other S-color flavors that were electroweak singlets. If they received
masses that were somewhat larger than msoft, then the S-color gauge
coupling will rapidly leave it’s IR fixed point and become strongly cou-
pled. This can be achieved by coupling them to a singlet that gets a
VEV due to a negative soft mass squared. For example consider the
superpotential

W = λ
3 X3

and suppose that X has a soft SUSY-breaking mass that destabilizes the
potential:

V = −m2
softX

†X + |λX|2

The vacuum is at:

X†X = m2
soft
λ
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S-parameter

W j
k ∼

(
WL 0
0 WR

)
∼ Ad.

In this notation, the tree-level superpotential is

W = ΣjkM jk + Y jk!mpqΣjkΣ!mΣpq,

where Y jk!mpq contains the cublic term in (1). In addition, there is an
anomaly-free U(1)R symmetry with

R(M) = 0, R(Σ) = 2, R(Wα) = 1, R(Y ) = −4.

This SU(4)×U(1)R symmetry strongly constrains the form of operators
that can appear in the effective theory.

We begin by noting that the S parameter vanishes in the SUSY limit.
This is because the only operator that can give rise to a gauge kinetic
mixing in the SUSY limit has the form

∫
d2θ (Wα)j

k(Wα)!
mFj!

km(Σ, M, Y ) + h.c.,

1
Λ2

∫
d2θ (Wα)j

k(Wα)!
mεj!npMknMmp + h.c.

Kahler
1
Λ2

∫
d4θ Tr

[
∇∇

(
M†eV

)
∇∇M

]
+ h.c.

If we include SUSY breaking effects, then there are nonvanishing
contributions to the S parameter, but NDA shows that they are highly
suppressed. Essentially this is because the VEV’s of fields and SUSY
breaking paramenters are of order Λ/(4π), while the mass scale that
suppresses higher dimension operators is Λ.

In general an operator which contributes to S has the form (supress-
ing indices):

Leff = c
(4π)2−kΛ1+!+k+j

∫
d4θ (DD̄)"WαWαMkΣj(msoftθ2)p + h.c..

where c ∼ 1 by NDA (Recall that the composite fields M are canonically
normalized.) and Mk, Σj and (msoftθ2)p can include also powers of their
hermitian conjugates.

The VEV’s are

〈FΣ〉 ∼ 〈FM 〉 ∼ f2, 〈Σ〉 ∼ λ〈M〉 ∼ λf,

would contribute to S but cannot appear
due to holomorphy and the weak coupling limit

Kahler term contributes to S 
but the sign is unknown

in principle it could be calculated in some models
eg. the Klebanov-Strassler model 




