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based on earlier work:

Caswell and Lepage (NRQED)

Bodwin, Braaten, Lepage (NRQCD)

Brambilla, Pineda, Soto, Vairo (pNRQCD)

Beneke

Initial work with Michael Luke and Ira Rothstein,

trying to understand how to explain some of

Beneke’s 2-loop computations using pNRQCD.

with Iain Stewart and Andre Hoang. Carried to 3

loops in recent work by Hoang
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General concepts of EFT and the reasons for using

them are discussed in detail in the lectures by Beneke.

In some cases, the fundamental theory is not

known, but one can still compute using an

effective field theory. e.g. Majorana neutrino

masses in the standard model can be included

using dimension 5 operators.

If the fundamental theory is known (e.g. QCD),

then in certain regimes, it is more convenient to

use an EFT.

The relevant degrees of freedom might be

non-perturbative (chiral perturbation theory)
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Converts a multiscale problem into several

much simpler single scale problems: e.g. weak

interactions using

4GF√
2

[

C1 c̄Lβ γ
µ bβL d̄Lλ γµ u

λ
L + C2 c̄Lβ γ

µ bλL d̄Lλ γµ u
β
L

]

New emergent symmetries: heavy quark

spin-flavor symmetry in HQET.

Can sum logs of ratios of scales, which can

be ∼ 1, using the renormalization group:

[

αs ln

(

MW

mb

)]n

,

[

αs ln

(

mb

ΛQCD

)]n

,
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Power Counting

EFT have a systematic expansion in some parameter.

Chiral perturbation theory is an expansion in p2 ∼ m2
π,

so the expansion parameter is λ ∼ p2/Λ2
χ.

One heavy particle: HQET is an expansion in powers

of 1/mb, so L has an expansion in powers of ∂/mb.

In HQET power counting,

iD0 ∼ E ∼ O (1) ,
(iD)2

2mb

∼ p2

2mb

∼ O
(

1

mb

)

Notation: p2 = (p0)2 − p2, p2
⊥ = −p2, ∂ = −∇
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HQET Power Counting

The leading order Lagrangian is

L0 = b̄v iD
0 bv

and

L1 = −b̄v
(iD)2

2mb

bv − a(µ) g b̄v
σµνG

µν

4mb

bv

is treated as a correction.

L0 contributes to the B meson mass at order ΛQCD,

and L1 gives corrections of order Λ2
QCD/mb.
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The heavy quark propagator is

k0

i

k0 + i0+
→ θ(x0) δ(x)

The quark propagates forwards in time.

The quark is static, i.e. it does not move in x.

No antiquarks in bv
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NRQCD

Nonrelativistic Bound States of Two Heavy Particles:

p e− Hydrogen (H) NRQED

e+ e− Positronium (Ps) NRQED

µ+ e− Muonium NRQED

bb̄, cc̄, bc̄ Υ, J/Ψ, Bc NRQCD

tt̄ e+e− → tt̄ NRQCD

NN Deuteron Few nucleon EFT

π+π− Pionic bound states

Study the spectroscopy, decays and production, and

include radiative corrections, relativistic corrections,

and nonperturbative effects in a systematic way.
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In QED, the expansion parameter is α ∼ 1/137 ≪ 1.

Nevertheless, one cannot always use perturbation

theory in α.

Hydrogen Atom: One needs to solve the Schrödinger

equation with the potential

V = −α
r

The Schrödinger equation sums up multiple iterations

of the Coulomb potential. The energies can be

expressed in a series in α [but the wavefunctions

cannot].
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Hydrogen

The Hydrogen atom (Bohr Formula)

H =
p2

2mr

− α

r
,

1

mr

=
1

mp

+
1

me

En = −mrα
2

2n2
, a0 =

1

mrα

So

T ∼ mα2, V ∼ mα2, p ∼ mα, r ∼ 1

mα
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Hydrogen Atom

n-dependence: α2

fine structure: α4

Lamb shift: α5 ln α

hyperfine structure:

α4 me/mp

me ∼ 7.5 × 1014 MHz

meα2 ∼ 4 × 1010 MHz

1S1=2
2S1=2 2P1=22P3=2

1S1=2
1058 MHz9910 MHz2466 THz1420 MHz

178 MHz243 nm243 nm 59 MHz24 MHz

8173 MHz from Dirac theoryF=0F=1
F=1F=0 F=2F=1F=1F=066 6 6?6?

6?
6? 6?6?

6?
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Nonrelativistic Power Counting

Nonrelativistic particles with velocity v ≪ 1

E ∼ mv2, p ∼ mv

If the the heavy quark interacts with light degrees of

freedom, such as light quarks and gluons, then

∆E ∼ ΛQCD, ∆p ∼ ΛQCD

and so ∆v = 0 in the m→ ∞ limit.

But if there are two heavy particles, one can have

∆v 6= 0 interactions in heavy–heavy interactions. The

particles can orbit each other, and so can change

their position x.
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Scales

Scale Power Counting

m1, m2, mr m hard scale

p, 1/r, a−1
0 mv ∼ mα soft scale

E mv2 ∼ mα2 ultrasoft scale

The expansion parameter is v, and the RG will sum

powers of ln v = lnα.

In NRQCD, v ∼ αs, and we also have ΛQCD. We will

assume that mv2 ≥ ΛQCD, so that one has a Coulomb

system with nonperturbative corrections.

True for tt̄ near threshold, and for the Υ. Not a good

approximation for J/Ψ.
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Goal for the Effective Theory

Have a systematic expansion in some small

parameter (v or α)

Separate scales consistently

Sum large logarithms (from ratios of scales)

using the renormalization group

ln
p

m
,

1

2
ln
E

m
, ln

E

p
→ ln v → lnα

Determine scale for αs:

αs(m), αs(mv), αs(mv
2)
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What is the problem?

Graphs involve αs(mv) and αs(mv
2) at the same time.

Usually, one has αs(µ).
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In the effective Lagrangian,

iD0 = E ∼ mv2,
(iD)2

2m
=

p2

2m
∼ mv2

so both terms are the same order in the power

counting.

The Coulomb interaction

V = −α
r
∼ αmv

is also leading order if v ∼ α. So need to solve

nonperturbatively in the Coulomb interaction, i.e.

solve the Schrödinger equation.
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Separate fields for the quark and antiquark, since the

the theory is nonrelativistic.

ψ annihilates quarks, color 3

χ annihilates antiquarks, color 3̄

ψ† creates quarks

χ† creates antiquarks

The full relativistic field Q ∼ ψ + χ†

Dµψ = ∂µψ + ig T aAa
µ ψ

Dµχ = ∂µχ+ ig T̄ aAa
µ χ, T̄ a = −(T a)t

Note that Bodwin, Braaten, Lepage use χ↔ χ†.
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Quarks have E ∼ mv2, p ∼ mv, and couple to massless

gluons with E ∼ p.

To have an EFT with manifest power counting, one

can introduce two gluon fields, Au and As with

E ∼ p ∼ mv2, and E ∼ p ∼ mv.

Break up the momentum into mv and mv2 parts,

q = p+ k

where p is order mv and k is order mv2, similar to the

q = mv + k

breakup in HQET.
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Since En ∼ mα2, transitions between states emit

photons of energy mα2, so emitted radiation can only

be usoft.

Soft gauge bosons contribute to the quark potential.
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So p ∼ mv becomes a label on the field, just as v is a

label in HQET.

ψp(x), χp(x) → (k0,p + k),

Aµ
s,p(x) → (p0 + k0,p + k)

Aµ
us(x) → (k0,k)

where the field has the x dependence ∼ e−ik·x.

Convenient to introduce soft quarks,

ψs,pp(x), χs,p(x) → (p0 + k0,p + k),

which are off-shell (auxiliarly fields).
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RPI

A change

p→ p− l, k → k + l

leaves q = p+ k invariant. l must be ultrasoft to

maintain the mv2 power counting for k.

In terms of fields,

ψp(x) → eil·x ψp−l(x)

Aµ
s,p(x) → eil·x Aµ

s,p−l(x)

For quarks, l0 = 0.
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RPI

The NRQCD Lagrangian should be RPI invariant. So

derivatives must enter in the form

pµ + iDµ, p + iD

The quark kinetic energy is

S =
∑

p

∫

d4x ψ†
p(x)

[

iD0 − (p + iD)2

2m

]

ψp(x)

For power counting: p ∼ mv, iD ∼ mv2, so the leading

order Lagrangian is

S =
∑

p

∫

d4x ψ†
p(x)

[

iD0 − p2

2m

]

ψp(x) + . . .
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(p, k)

The ψp propagator is:

i

k0 − p2

2m
+ i0+

iD terms should be treated as perturbations.

−ψ†
p(x)

ip · D
m

ψp(x)

The usual p · A interaction. But also comes with a

p · k interaction.
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m v

2m v

m v

p

k

a)

p
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In loop graphs, one has

∑

p

∫

dk →
∫

dp

Or you can think of p as a continuous variable, and

∫

dp dk

[RPI]
→

∫

dp
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Regions

Beneke and Smirnov using the method of regions

(threshold expansion) have shown that there are

hard, potential, soft and ultrasoft regions.

Region E p Field Scaling

Hard m m Integrated out

Potential mv2 mv ψ, χ v3/2

Soft mv mv Aµ
s v

ψs, χs, qs v3/2

Ultrasoft mv2 mv2 Aµ
us v2

qus v3
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m

mv

mv 2

soft

ultrasoft
E

p,εIR

a)

m

mv

mv2

soft

ultrasoft
E

p

b)

l.h.s. usual picture. IR divergences in the hard region

match with UV divergences in the soft, and IR in the

soft match with UV in the usoft.

But not all IR in the hard match onto the soft, some

match onto the usoft sector. Need both modes in

theory at the same time. correlated scales
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Hard Contributions

vertex corrections:

annihilation: virtual boson has E ∼ 2m

HQET-like corrections to gluon couplings, as well as

four-quark operators ∼ ψ†χ†ψχ.

Zuoz, 16-22 Jul 2005 – p.28



Compute these corrections as for HQET: Compute

the graph in the full theory, and expand in powers of

E/m and p/m
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Potential

Look at quark-antiquark scattering:

p

-p

p′

-p′

k0 ≪ k = p − p′

−i Vc

(p − p′)2
TA ⊗ T̄A, Vc = 4παs
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Potential

p

-p

p′

-p′

Vc(p,p
′) = Vc

(p−p′)2
TA ⊗ T̄A,

TA ⊗ T̄A is −CF = −4/3 in the singlet channel, and

CA/2 − CF = 1/6 in the octet channel.

L = −
∑

p,p′

V (p,p′) ψ†
p′T

Aψp χ
†
−p′T̄

Aχ−p
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Exercise: Compute

p

-p

p′

-p′

and expand in powers of 1/m to get the potential at

tree level.

[ū(p′) γµ u(p)] [ū(−p′) γµ u(−p)]

2Ep2Ep′(p − p′)2

Compute on-shell in Feynman and Coulomb gauge.
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V (−1) =
Uc

k2
,

V (0) =
Uk

|k| ,

V (1) = U2 + Us S2 +
Ur(p

2 + p′2)

2k2
− iUΛ · (p′ × p)

k2

+Ut

(

σ1 · σ2 −
3k · σ1 k · σ2

k2

)

,
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Allowed terms are functions of p,p′. Seems as though

there are lots of them.

Write them as a function of k = p′ − p and P = p′ + p.

A quantum mechanics potential V (r) becomes Ṽ (k),

and {p̂, V (r)} becomes PṼ (k), etc.

The only singularity in the Coulomb problem is from

the 1/r behavior of the potential at long distances;

there is no singularity for backscattering P = 0.

There can be at most two powers of k and no powers

of P in the denominator.

|k| does not occur at tree-level.
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S comes with 1/m.

Particles of mass m1,2 and charge −e, Ze

Uc = −4πZα

U2 =
πZα

2

(

1

m1

− 1

m2

)2

Us =
4πZα

3m1m2

+
πα

m2
e

Ur = −4πZα

m1m2

Uk =
π2Z2mrα

2

m1m2

Zuoz, 16-22 Jul 2005 – p.35



There can be terms which have the form (V∆)

kikj

k4
PiPj =

(p2 − p′ 2)2

k4

in Coulomb gauge, or (E − E ′)2 in Feynman gauge.

These vanish on-shell.

A field redefinition converts them to the 1/ |k|
potential.

Exercise: Compute the V∆ − Vc loop graph.
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Annihilation

→

Only difference between Hydrogen and Positronium is

annihilation contributions to the potentials, that first

start at order 1/m2:

→

U2 + UsS
2 =

παS2

m2
e
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Widths

[Zero in Singlet vs Triplet]

→

U2 + UsS
2 = −iπα

2

m2
e

(

2 − S2
)

→

U2 + UsS
2 = −i4πα

3 (π2 − 9)

9πm2
e

S2
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Loops

An ultrasoft gluon correction to Coulomb scattering:

0,q

p,k p,k+q p,k′+q p′,k′

p′-p,k′-k

∫

d4q

(2π)4

1

q2 + i0+

1

k0 + q0 − p2/(2m) + i0+

1

k′0 + q0 − p′2/(2m) + i0+

×V (p′,p)
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Loops

k, q have been expanded out:

V (p′,p) independent of the loop momentum.

Quark propagator:

1

k0 + q0 − (p + k + q)2/(2m) + i0+
→ 1

k0 + q0 − p2/(2m) + i0+

Integrals in dimensional regularization can be done by

residues, using the poles in the denominator.

l.h.s: q0 ∼ q ∼ m pole destroys the EFT expansion.

r.h.s does not.
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0,q

p,k p,k+q p,k′+q p′,k′

p′-p,k′-k

Label conservation at each vertex, and usoft

momentum conservation at each vertex from the
∫

d4x in L.

This is the momentum space version of the multipole

expansion:

A(x) ∼ a†ke
−ik·x → a†k(1 − ik · x + . . .)

This acts on wavefunctions with momentum p

Zuoz, 16-22 Jul 2005 – p.41



e−ik·x eip·x = ei(p−k)·x

but

(1 − ik · x + . . .) eip·x

does not change the momentum to any finite order in

the expansion.
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Go back to the diagram, and assume external

particles are on-shell, so that k0 = p2/2m. Then

1

k0 + q0 − p2/(2m) + i0+
→ 1

q0 + i0+

and the corrections look like HQET.
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Potential Loops

p,k1 p′,k1′

-p,k2 -p′,k2′

q,k1+l

-q,k2+l

I =
∑

q

∫

d4l

(2π)4
(−i)2(i)2 V (p′,q) V (q,p)

× 1

k0
1 + l0 − q2/(2m1) + i0+

1

k0
2 − l0 − q2/(2m1) + i0+
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RPI invariant integration says that

∑

q

∫

d4l →
∫

dl0 d3q

Do the l0 integral by residues:

∫

dl0

2π

1

k0
1 + l0 − q2/(2m1) + i0+

1

k0
2 − l0 − q2/(2m1) + i0+

= i
1

k0
1 + k0

2 − q2/(2mr) + i0+

= i
2mr

2mr(E1 + E2) − q2 + i0+
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I = i

∫

d3q

(2π)3
V (p′,q)

2mr

2mr(E1 + E2) − q2 + i0+
V (q,p)

Since Et = E1 + E2 is of order mv2, the denominator

structure does not violate the power counting.

Iteration of the potential with the Schrödinger

Green’s function.

Note that there can be factors of m in the numerator.

The potential loops are sensitive to the energy via√
2mrE.
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For the Coulomb potential,

V ∼ α

q2
, I ∼ mα2

q3

The one-loop graph is order α/v relative to the

tree-level graph. Since v ∼ α, have to sum all the

bubbles.

This is solving the Schrödinger equation in a

Coulomb potential.
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In dimensional regularization, introduce a scale

parameter µ. Then loop graphs give ln p/µ.

Can get

ln
p

µ
, ln

E

µ

In our case, one needs two scale parameters, µU and

µS. µU multiplies ultrasoft interactions, and µS

multiplies soft and potential interactions.
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Better to think of a subtraction velocity ν rather than

a subtraction scale µ. This makes sense, since the

power counting parameter is a velocity, rather than a

momentum scale.

µS = mν, µU = mν2

Loop graphs in the effective theory give

ln
E

µU

, ln

√
2mE

µS

, ln
q

µS

All logarithms are small if ν ∼ v. Checked to three

loop order by Hoang.
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A theory with correlated scales and correlated

running.

Start at ν = 1, where µS = µU = m. This is the

matching scale between QCD and NRQCD, and the

matching coefficient logarithms (hard graphs) are

minimized.

Run to ν = v. Logarithms of v are summed by the

velocity renormalization group (VRG) equations.

At ν = v, compute bound state matrix elements..

There are no large logarithms remaining.
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All the large logarithms are summed by the VRG.

These are

ln
m

E
, ln

m

p
, ln

m√
2mE

, ln
p

E

which are all of the form

ln v ∼ lnα
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Power Counting

To get the v counting rules, need to assign a power

counting to all the fields. Work in one time and 3 − 2ǫ

space dimensions.

∑

p

∫

dk →
∫

dp

∑

pµ

∫

dk →
∫

dp
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[

∑

p

]

[k]3−2ǫ = [p]3−2ǫ

[k] = mv2, [p] = mv

[

∑

p

]

= v−(3−2ǫ),





∑

pµ



 = v−(4−2ǫ)

δp = v(3−2ǫ), δpµ
= v(4−2ǫ)
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S =
∑

p

∫

dDx ψ†
p(x)

[

iD0 − p2

2m

]

ψp(x)

=
∑

p,p′

δp,p′

∫

dDx ψ†
p(x)

[

iD0 − p2

2m

]

ψp′(x)

One δp at each vertex, and a
∑

p for each field.

1 = v(3−2ǫ)(mv2)−(4−2ǫ)(mv2)

[

∑

p

ψp

]2

[

∑

p

ψp

]

= (mv)3/2−ǫ
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Ultrasoft gluons have E ∼ p ∼ mv2.

S = −1

4

∫

d4x GµνGµν

1 = (mv2)−(4−2ǫ)(mv2)2 [Aus]
2

[Aus] = (mv2)1−ǫ

Soft gluons have E ∼ p ∼ mv, and so





∑

pµ

As,p



 = (mv)1−ǫ
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Covariant derivative:

iD = i∂ − gUAU → i∂ − µǫ
U gUAU

[µU ] = mv2

Potential:

S =
∑

p1,p2,p3,p4

∫

dDx δp1,p2,p3,p4
ψ†

p1
ψp2

χ†
p3
χp4

V (p1,p2,p3,p4)

= (mv2)−(4−2ǫ)v3−2ǫ

[

∑

p

ψp

]4

[V ]
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= (mv)−2ǫ(m2v) [V ]

[V ] is some integer dimension quantity, so the

potential terms must be multiplied by µ2ǫ
S ,

[µS] = mv

and then a potential is of order

(m2v) [V ]

The Coulomb potential is of order

Vc = − 4πα

(p1 − p2)
2 , [Vc] = (m2v) × α

m2v2
=
α

v
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α2

|k| → (m2v) × α2

mv
= mα2

so the coefficient is of order 1/m, and the potential is

of order α2.

α× (1,S2, . . .) → (m2v) × α = m2αv

so the coefficient is of order 1/m2, and the potential

is of order αv. The V∆ potential gets converted to

the Vk potential. No m power counting.

Both two orders in v ∼ α beyond Coulomb.
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Contact interactions (e.g. the annihilation graph)

α

m2
ψ†ψχ†χ, [S] = α v

spin-orbit interactions, etc. are treated as

perturbations.
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Soft Fields

Soft gluons have E ∼ p ∼ mv. There can be no single

soft-gluon emission or absorption from the quarks,

since energy cannot be conserved.

They can enter in pairs, as in Compton Scattering

g + q → g + q

They enter in the running of αs.
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Soft Fields

The intermediate quarks are off-shell, since E ∼ mv

and p ∼ mv. It is convenient to introduce soft-quarks

as auxiliary fields, ψs,q with a four-momentum label,

and propagator
i

q0 + i0+

and scaling dimension (mv)3/2−ǫ.
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Soft Fields

The soft sector is an auxiliary sector that generates a

potential. It allows one to run the β-function terms.
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Scaling for a Diagram

What is the order?

Usoft vertices (no δ), Potential vertices (δp) and soft

vertices (δpµ
): V

(k)
U , V

(k)
P , V

(k)
S

Usoft loops (no
∑

), Potential loops (
∑

p) and soft

loops (
∑

pµ
): LU , LP , LS
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Total Diagram

LU + LP + LS = 7,
∑

k

(V
(k)
U + V

(k)
P + V

(k)
S ) = 15

∑

k

(V
(k)
U + V

(k)
P + V

(k)
S ) − (IU + IP + IS) + LU + LP + LS = 1

VU : only usoft, VS: at least one soft, VP : no soft, at

least one potential, Zuoz, 16-22 Jul 2005 – p.64



Usoft Removed

Delete all the usoft lines.

LP + LS = 4,
∑

k

(V
(k)
P + V

(k)
S ) = 13

∑

k

(V
(k)
P + V

(k)
S ) − (IP + IS) + LP + LS = 1
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Soft Removed

Delete all the potential lines

LS = 2,
∑

k

V
(k)
S = 8, NS = 2

∑

k

V
(k)
S − IS + LS = NS

LU = 3, LP = 2,
∑

k

V
(k)
U = 2,

∑

k

V
(k)
P = 5

∑
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Scaling for a Diagram

So net order in v is

δ =
∑

k

k
(

V
(k)
U + V

(k)
P + V

(k)
S

)

+
∑

k

(

8V
(k)
U + 5V

(k)
P + 4V

(k)
S

)

−(4 + 4)IU − (3 + 2)IP − (2 + 2)IS

+8LU + 5LP + 4LS

The measure is
∫

d4x, δp

∫

d4x, δpµ

∫

d4x
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Scaling for a Diagram

the internal lines remove two fields:

〈AUAU〉 ,
〈

∑

p

ψ†
p

∑

p

ψp

〉

,

〈

∑

pµ

As,p

∑

pµ

As,p

〉

and add

i

p2
,

i

k0 − p2/(2m)
,

i

p2
µ
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Scaling for a Diagram

the loops add

∫

d4k,
∑

p

∫

d4k,
∑

pµ

∫

d4k

Now get rid of IU , IP and IS using the Euler

constraints, and add back the measure for the

potential interaction:

δ =
∑

k

k
(

V
(k)
U + V

(k)
P + V

(k)
S

)

−NS
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Scaling for a Diagram

Note that the Coulomb interaction is 1/v, so it is a

V
(−1)
P vertex. But it comes with at least one power of

α. So if we count power of α and v, there are no

negative powers.

−Ns, but a soft component comes with at least α2, so

≥ 1.

Can think of the soft component as equivalent to the

VP it generates.
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Lamb Shift in QED

A.M., I. Stewart, PRL 85 (2000) 2248

order E

V (−1) α
k2

α
v

1 α2

V (0) α2

m|k| α2 α2 α4

V (1) α
m2 ,

αS2

m2 αv α2 α4

V (2) α2|k|
m3 α2v2 α4 α6

V (3) αk2

m4 αv3 α4 α6

...
...

...
...

...

1. Sum Coulomb potential to all orders

2. V (0)V (0), V (0)V (1), V (1)V (1) ∼ α4 → α6 in E
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The ultrasoft interaction

D = ψ†
p

p · Aus

m
ψp

is of order ev → αv2 at second order.

To order α5 in energy, need only

〈

V (1)
〉

+ 〈T {VcDD}〉

and the corrections are of order α6.
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1. Match the coefficients at the scale m

2. Run them to ν = 1

3. Compute Matrix elements

Concentrate here on the lnα terms from the running.

Define LO and NLO anomalous dimensions relative

to the leading term.

γLO, γNLO are order α2, α3 for V (1) which is O(α)

γLO, γNLO are order α3, α4 for V (0) which is O(α2)

Since V ’s are of different orders, LO/NLO not

related to the number of loops.
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γLO : α4
(

1 + α lnα+ α2 ln2 α + α3 ln3 α+ . . .
)

γNLO : α4α
(

1 + α lnα+ α2 ln2 α + α3 ln3 α+ . . .
)

γNNLO : α4α2
(

1 + α lnα+ α2 ln2 α + α3 ln3 α+ . . .
)

γNNLO the same order as neglected terms.

So one can compute

α5 lnα α6 ln2 α α7 ln3 α . . .

α6 lnα α7 ln2 α α8 ln3 α . . .

using γLO, γNLO for V (0,1).
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V (−1) =
Uc

k2
V (0) =

Uk

|k| ,

V (1) = U2 + Us S2 +
Ur(p

2 + p′2)

2k2
− iUΛ · (p′ × p)

k2

+Ut

(

σ1 · σ2 −
3k · σ1 k · σ2

k2

)

,

Coulomb potential does not run in QED
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At LO,

ν
dUk

dν
= 0 ∝ CA in QCD

ν
dU2

dν
=

2α

3π

(

1

m1

+
Z

m2

)2

Uc +
14Z2α2

3m1m2

= γ0Uc

ν
dU3

dν
=

2α

3π

(

1

m1

+
Z

m2

)2

Uk + γ1Uc + γ2U
2
c

Exercise: Show that the ultrasoft gluon loop gives

ν
dV

dν
=

2α

3π

(

1

m1

+
Z

m2

)2

(p − p′)2V (p,p′)
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γ0 =
2α

3π

(

1

m2
1

+
Z

4m1m2

+
Z2

m2
2

)

γ0 is a constant in QED, since α does not run

Integrate:

U2(ν) = U2(1) + γ0Uc ln ν

Only a single term, so the LO series terminates at

α5 lnα.

No terms in α4 (α lnα)n
series except for n = 1. Power

counting guarantees nothing left out at arbitrarily

high orders.
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∆E = 〈U2〉
= γ0Uc ln ν |ψ(0)|2

= −8Z4α5m3
R

3πn3

(

1

m2
1

+
Z

4m1m2

+
Z2

m2
2

)

lnZα,

(Bethe 1947 for H)

|ψ(0)|2 =
(mRZα)3

πn3
nS state
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NLO

The interesting results are at NLO:

ν
dU2+s

dν

∣

∣

∣

∣

NLO

= ρccc U
3
c + ρcc2 U

2
c (U2+s + Ur)

+ρc22 Uc

(

U2
2+s + 2U2+sUr +

3

4
U2

r − 5U2
t S

2

)

+ρck UcUk + ρk2 Uk (U2+s + Ur/2)

+ρc3 Uc

(

U3 + U3sS
2 +

1

2
Urk

)

,

where U2+s = U2 + UsS
2 and ρc22 = −m2

R/4π
2.
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NLO

Exercise: Compute the divergence in

∫

d3k

(2π)3

d3q

(2π)3

1

k2

1

(k − q)2

1

q2

ρccc = − m4
R

64π2

(

1

m3
1

+
1

m3
2

)2

, ρc22 = −m
2
R

4π2
,

ρcc2 = −m
3
R

8π2

(

1

m3
1

+
1

m3
2

)

, ρc3 =
2mR

π2
,

ρck =
m2

R

2π2

(

1

m3
1

+
1

m3
2

)

, ρk2 =
2mR

π2
.
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Integrating the NLO anomalous dimension–substitute

LO values on the RHS for Ui.

Only terms which run at LO are U2 and U3

∫

const = ln ν,

∫

ln ν =
1

2
ln2 ν,

∫

ln2 ν =
1

3
ln3 ν

NLO series terminates after 3 terms

α6 lnα, α7 ln2 α, α8 ln3 α

Get the results for the Lamb shift, hyperfine splitting

and widths for H, Ps, Muonium.
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ln
3 α

1

3
γ2

0
ρc22 U3

c
(1) ln3 ν,

Lamb shift for the nS state (no HFS, Γ)

∆E =
64m5

R
α8Z6

27π2n3

(

1

m2

1

+
Z

4m1m2

+
Z2

m2

2

)2

ln3(Zα)

=
3meα

8 ln3 α

8π2n3
(positronium)

(8 KHz for Hydrogen 2P–2S)

Karshenboim 1993 a63 = −8/27

Malampalli and Sapirstein PRL 1998 a63 = −0.652

Goidenko et al. PRL 1999 a63 = −0.296

Yerokhin hep-ph/0001327 a63 = −0.652
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ln
3 α

Odd dimensional integrals do not give anomalous

dimensions:

∫

d3q

(2π)3

q2 + p2

(q − p)2

1

(q − p′)2
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ln
2 α

γ0 ρc22 U
2
c (1)

[

U2(1) + Us(1)S2
]

ln2 ν + . . .

HFS:− 64Z6α7m5
Rµ1µ2

9m1m2πn3

[

1

m2
1

+
Z

4m1m2

+
Z2

m2
2

]

ln2(Zα),

(Karshenboim 93, Labelle 94)

Ps HFS − 7me

8πn3
α7 ln2α,

(Melnikov and Yelkhovsky 99)
√
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∆Γ

Γ0

= γ0 ρc22 Uc(1)2 ln2 ν = − 3

2π
α3 ln2α,

(Karshenboim 93)
√

Lamb Shift needs γ1, γ2
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lnα

U2+s

[

ρc22Uc (U2+s + 2Ur) + ρcc2U
2
c + ρ2kUk

]

ln ν + . . .

∆Γ

Γ0

=

(

m2
e

2π
ReU2+s − 2

)

ln ν =

(

7S2

6
− 2

)

α2 lnα,

(

∆Γ

Γ0

)

ortho

=
α2

3
lnα ,

(

∆Γ

Γ0

)

para

= −2α2 lnα ,

(Caswell and Lepage 79, Khriplovich and Yelkhovsky

90)
√

HFS and Lamb Shift depend on γ3 and ρs
Zuoz, 16-22 Jul 2005 – p.86



Velocity Renormalization Group

(Luke, Rothstein, A.M.; Stewart, A.M.)

One-stage running:

Set µS = mν, µU = mν2 and integrate from ν = 1 to

ν = v.

ln
√

mE
µS

∼ ln v
ν

ln E
µU

∼ ln v2

ν2
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(Stewart, A.M.; Soto, Stewart, A.M.)

two-stage

one-stage

(m,m)

(mv,mv)
(mv2,m)

µU

µS

Two methods give different answers, ∇× γ 6= 0.
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One-stage VRG agrees with explicit QED

calculations at α7 ln2 α and α8 ln3 α

Generic result for correlated scales: mv and mv2

not independent.

RUN IN VELOCITY, NOT MOMENTUM
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Define γS = d
d ln µS

, γU = d
d ln µU

γS + γU

γS + 2γU

γU lnµU

lnµS

Two-stage One-stage

γS + γU m→ mv
γS + 2γU 1→ v

γU mv → mv2

(γS + γU ) ln v + γU ln v (γS + 2γU ) ln v
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Single-log terms agree. BUT γ not constants, and

depend on couplings, γ(V ), and V can run.

So one gets:

γS (γU) ln2 v γS(2γU)ln2 v

γS (γU)2 ln3 v γS(2γU)2ln3 v

and the two methods differ.
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Other results

Extended the analysis to QCD where α runs. See

that computations involve both αs(mv) and αs(mv
2).

1. Running V .

2. QCD Lamb shift. The series no longer terminate

since αs runs.

3. t̄t production near threshold.
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Potentials for tt̄

(Hoang, Stewart, A.M.)

V(s)
r V(s)

2 V(s)
s V(s)

Λ V(s)
t

ν = 1 -1.81 0 0.60 0.15 2.71

ν = v -1.39 0.61 0.53 0.16 3.11

V(1)
2 (ν) =

4πC1

β0

[αs(m) − αs(mν)] ln
(mν

m

)

−16πC1

3β0

αs(m) ln
[ αs(mν)

αs(mν2)

]
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Summary

1. Systematic v expansion for bound states.

2. Can sum logarithms using the VRG.

3. Technical issues having to do with implementing

the soft sector not understood.

4. Can test various field theory ideas on a

“non-perturbative” system that can be solved

exactly. e.g. off-shell potentials and the use of

the equations of motion. V∆ → Vk converted using

perturbative graph with p2 = p′2

but also true for the matrix element in the

Coulomb wave function. Zuoz, 16-22 Jul 2005 – p.94



Experimental Situation

Expt.(MHz) Theory(MHz) Agree?

H Lamb 1057.845(9) 1057.833(6) < r2
p >

1057.814(6)

h.f.s 1420.4057517667(9) 1420.399(2) GE , GM

µ+e− h.f.s 4463.302765(53) 4463.30267(27) me/mµ

e+e− Lamb 13012.4(1) 13012.41(8) agree

h.f.s 203389.10(74) 203391.69(16) 3σ

Γpara 7990.9(1.7) µs−1 7989.620(13) µs−1 agree

Γortho 7.0398(29) µs−1 7.039968(10) µs−1 6-9σ(?)

7.0482(16) µs−1

7.0514(14) µs−1

Zuoz, 16-22 Jul 2005 – p.95
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