B Physics and Quarkonia

- Introduction
- ▶ *B*-factories: *CP* violation
- \triangleright Tevatron: B_s mixing
- Part II
 - Semileptonic Decays
 - Radiative and Some Rare Decays
 - Heavy Quarkonia

Executive Summary I

- B physics
 - \triangleright Quantitative tests of SM \rightarrow overconstraining 'the' unitarity triangle
 - \triangleright Search for new physics \rightarrow 'delayed gratification'
 - \triangleright Flood of data and new ideas \rightarrow spin-offs
- Time-dependent and *CP*-violating physics
 - ▷ *CP*-violation by *B*-factories

$$\begin{array}{lll} \beta &=& 21.7 \,{}^{+1.3}_{-1.2} \,^{\circ} & \alpha = 100.2 \,{}^{+15.0}_{-8.0} \,^{\circ} & \gamma = 62 \,{}^{+35}_{-25} \,^{\circ} \\ \beta &=& \beta \mbox{ in } {\bf b} \to {\bf s} \mbox{ penguins}(?), & \alpha + \beta + \gamma = 186 \,{}^{+38}_{-27} \,^{\circ} \\ \mbox{direct} \ CP-\mbox{violation} \mbox{ in } B^0 \to K^+ \pi^- \end{array}$$

 \triangleright B_s mixing measured by CDF

$$\Delta m_s = 17.31^{+0.33}_{-0.18} (\text{stat}) \pm 0.07 (\text{syst}) \,\text{ps}^{-1}$$
$$\frac{|V_{td}|}{|V_{ts}|} = 0.208^{+0.001}_{-0.002} (\exp)^{+0.008}_{-0.006} (\text{theo})$$

Cabibbo-Kobayashi-Maskawa Matrix

- Weak interactions of quarks
 - \triangleright mass eigenstates \neq weak eigenstates
 - flavor-changing quark decays

• Mixing described by complex unitary CKM matrix:

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

• Wolfenstein parametrization (to $\mathcal{O}(\lambda^4)$, $\lambda = \sin \theta_C \sim 0.22$)

- illustrates hierarchical structure
- describes all flavor changing quark transitions in SM
- $\triangleright \eta$ is the only source for *CP* violation in SM (in quark sector)

'The' Unitarity Triangle

Unitarity of CKM matrix implies

 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

$$\beta \equiv \arg(-\frac{V_{cd}V_{cb}^{*}}{V_{td}V_{tb}^{*}})$$

$$\gamma \equiv \arg(-\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}})$$

$$\alpha \equiv \arg(-\frac{V_{td}V_{tb}^{*}}{V_{ud}V_{ub}^{*}})$$

$$= \pi - \beta - \gamma$$

Access to Unitarity Triangle
 CP violating asymmetries
 tree-level weak decays
 *B*_{d,s} oscillations and loop-induced FCNC
 + theory (models) and lattice QCD!

 \rightarrow angles \rightarrow sides

 \rightarrow sides

Urs Langenegger

The Dream

Flavor physics is about overconstraining the Unitarity Triangle \triangleright Comparison of experiment to clean theoretical expectations \triangleright Same angle in different decays? $B^0 \rightarrow J/\psi K_S^0 \iff B^0 \rightarrow \phi K_S^0$ $\triangleright \alpha + \beta + \gamma = 180^\circ$? \triangleright Sides vs. angles \triangleright Same sides in different processes? $B^0 \rightarrow K^{(*)}/\rho\gamma \iff B_{d,s}$ oscillations \rightarrow 'See' New Physics before the LHC!

Characteristics of *b*-Mesons

• *b*-hadron contents/naming convention:

$$\begin{aligned} |B^{0}\rangle &= |\overline{b}d\rangle & |\overline{B}^{0}\rangle &= |b\overline{d}\rangle \\ |B^{+}\rangle &= |\overline{b}u\rangle & |B^{-}\rangle &= |b\overline{u}\rangle \\ |B_{s}\rangle &= |\overline{b}s\rangle & |\overline{B}_{s}\rangle &= |b\overline{s}\rangle \end{aligned}$$

• Key numbers

Characteristics	Units	B^+	B^0	B_s	Remarks
Mass	MeV	5279.0 ± 0.5	5279.4 ± 0.5	5367.5 ± 1.8	hard scale: theory, p_{\perp}
Lifetime	ps	1.638 ± 0.011	1.530 ± 0.009	1.466 ± 0.059	secondary vertices
c au	μ m	491	459	439	measureable if $eta\gamma$ big
Hadronization	%	39.8 ± 1.1	39.8 ± 1.1	10.4 ± 1.3	b-baryons: 9.9 ± 2.0

Decay features

- Enormous number of decay channels
- Decays: hadronic, leptonic, semileptonic
- ▶ Decay products allow (often) distinction between b or \overline{b} : 'flavor tagging'

Nomenclature

Decays

- Hadronic
- Semileptonic Penguin Leptonic

Decay reconstruction

• Exclusive

Inclusive

• Partial

Penguins??

• The aftermath of bad habits

- betting
- substance abuse
- working late at night

and the combination is

QUID LICET IOVIS, NON LICET BOVIS

Experimental Remarks

• Reconstruction of particle momentum and energy

- \triangleright charged \rightarrow tracking detectors
- \triangleright neutrals \rightarrow calorimeters
- \triangleright decay vertices \rightarrow silicon vertex detectors
- \triangleright neutrinos $\rightarrow 4\pi$ detectors
- Particle identification
 - ▶ All do leptons: $\mathcal{B}(\bar{B} \to X \ell \bar{\nu}) \sim 10\%$ (note: $\ell \in \{e, \mu\}$; average, not sum!)
 - ECAL + tracker: Electrons
 - Flux return: Muons
 - \triangleright Cherenkov detectors: K/π separation
 - ▷ Time-of-flight detectors: K/π separation
- Quantitative understanding of performance
 - maximal purity and resolution
 - optimal efficiency vs. misidentification

Production of *b*-Hadrons

Hadron colliders
 ▶ hadronization → all types

The colliders

b Production Cross-sections

• Colliders: Approximate production cross-sections for $b\overline{b}$ quarks

Collider		\sqrt{s} [GeV]	$\sigma(b\overline{b}) \ [ext{nb}]$	$\mathcal{L}_{[fb^{-1}]}$	S/B	b-types	Notes
HERA Tevatron LHC	$\gamma p \ p \overline{p} \ p p$	$200 \\ 2000 \\ 14000$	$20 \\ 50 imes 10^3 \\ 500 imes 10^3$	$\begin{array}{c} 0.1 \\ 1-10 \\ 2-100 \end{array}$	$10^{-3} \\ 10^{-3} \\ 10^{-2}$	all all all	QCD only Trigger: ℓ, m, V Trigger: ℓ . LHCb
SLC/LEP B factories	$e^+e^- e^+e^-$	$\begin{array}{c} 91.2 \\ 10.58 \end{array}$	$\begin{array}{c} 6 \\ 1 \end{array}$	$\begin{array}{c} 0.1 \\ \geq 500 \end{array}$	$\begin{array}{c} 0.20\\ 0.25\end{array}$	$\frac{all}{B^+,B^0}$	45 GeV: boost! entangled

Advantages and Constraints

- Hadron machines
 - + production cross section
 - \pm hadronization: all flavors, but not mono-energetic
 - trigger (hadronic decays channels)
 - competition for bandwidth . . .
 - Particle ID
- Electron machines at $\Upsilon(4S)$
 - + well-defined initial state
 - + entangled state
 - + neutrals!
 - + S/B
 - cross section
 - only B^0 and B^+
- KEK-B is outstanding
 - ▷ $\Upsilon(5S)$: 1.9 fb⁻¹ in 2.5 days!
 - $\triangleright \Upsilon(3S)$: 3 fb⁻¹ recently!

Reminder on Neutral Meson Mixing

• Multiple Bases

- Strong interaction creates quarks in flavor eigenstates
- ▶ Time evolution given by mass eigenstates

▷ Box diagrams induce mixing of $M^0 \leftrightarrow \overline{M}^0, M^0 \in \{K^0, D^0, B^0, B_s\}$

• Consider initial superposition of M^0 and $ar{M}^0$

 $|\psi(t=0)\rangle = a(0)|M^0\rangle + b(0)|\bar{M}^0\rangle$

will evolve into

$$|\psi(t)\rangle = a(t)|M^0\rangle + b(t)|\bar{M}^0\rangle + c_1(t)\underbrace{|f_1\rangle}_{decay} + c_2(t)\underbrace{|f_2\rangle}_{decay} + \dots$$

 Weisskopf-Wigner approximation (time scales >> strong interaction times)

Effective Hamiltonian

Time evolution

$$i\frac{d}{dt}\begin{pmatrix}a\\b\end{pmatrix} = \mathbf{H}\begin{pmatrix}a\\b\end{pmatrix} = \left(\mathbf{M} - \frac{i}{2}\mathbf{\Gamma}\right)\begin{pmatrix}a\\b\end{pmatrix}$$

 \triangleright Hamiltonian H is not hermitian (decays), but $M=M^{\dagger}$ and $\Gamma=\Gamma^{\dagger}$

- ▶ M off-shell (dispersive) intermediate states
- \triangleright Γ on-shell (absorptive) intermediate states

$$\mathbf{H} = \begin{pmatrix} \langle M^{0} | H | M^{0} \rangle & \langle M^{0} | H | \bar{M}^{0} \rangle \\ \langle \bar{M}^{0} | H | M^{0} \rangle & \langle \bar{M}^{0} | H | \bar{M}^{0} \rangle \end{pmatrix} = \begin{pmatrix} M - \frac{i}{2} \Gamma & M_{12} - \frac{i}{2} \Gamma_{12} \\ M_{12}^{*} - \frac{i}{2} \Gamma_{12}^{*} & M - \frac{i}{2} \Gamma \end{pmatrix}$$

• Eigenvectors of H have well defined masses and decays widths

Time-dependence

• Time evolution is trivial in mass basis

$$|M_H(t)\rangle = e^{-\gamma_H t} |M_H(0)\rangle = e^{-im_H t - \frac{1}{2}\Gamma_H t} |M_H(0)\rangle$$
$$|M_L(t)\rangle = e^{-\gamma_L t} |M_L(0)\rangle = e^{-im_L t - \frac{1}{2}\Gamma_L t} |M_L(0)\rangle$$

• Time evolution for flavor eigenstates more complicated

▷ Initially pure flavor eigenstates evolve as $|M^0_{phys}(t)\rangle$ and $|\overline{M}^0_{phys}(t)\rangle$:

$$\begin{split} \psi_{M^{0}_{phys}}(t) &= \frac{1}{2} \left\{ |M^{0}\rangle \left(e^{-\gamma_{h}t} + e^{-\gamma_{l}t} \right) - \frac{q}{p} |\bar{M}^{0}\rangle \left(e^{-\gamma_{h}t} - e^{-\gamma_{l}t} \right) \right\} \\ \psi_{\bar{M}^{0}_{phys}}(t) &= \frac{1}{2} \left\{ |\bar{M}^{0}\rangle \left(e^{-\gamma_{h}t} + e^{-\gamma_{l}t} \right) - \frac{p}{q} |M^{0}\rangle \left(e^{-\gamma_{h}t} - e^{-\gamma_{l}t} \right) \right\} \end{split}$$

 $\begin{array}{l} \triangleright \mbox{ Time-dependent probability to observe } \bar{M}^0 \mbox{ after } M^0(t=0) \\ P(M^0 \to \bar{M}^0;t) &= |\langle \bar{M}^0 | \psi_{M^0_{phys}}(t) \rangle|^2 &= \frac{1}{4} \left| \frac{q}{p} \right|^2 \left\{ e^{-\Gamma_h t} + e^{-\Gamma_l t} - 2e^{-\Gamma t} \cos(\Delta m t) \right\} \\ P(M^0 \to M^0;t) &= |\langle M^0 | \psi_{M^0_{phys}}(t) \rangle|^2 &= \frac{1}{4} \left| \frac{p}{q} \right|^2 \left\{ e^{-\Gamma_h t} + e^{-\Gamma_l t} + 2e^{-\Gamma t} \cos(\Delta m t) \right\} \end{array}$

Time-dependent Asymmetries

• Time-dependent flavor asymmetry:

$$A(t) = \frac{P(M^0 \to M^0; t) - P(M^0 \to \bar{M}^0; t)}{P(M^0 \to M^0; t) + P(M^0 \to \bar{M}^0; t)}$$

= $\frac{\cos(\Delta m t) + (|p|^2 - |q|^2) \cosh(\frac{\Delta \Gamma t}{2})}{\cosh(\frac{\Delta \Gamma t}{2}) + (|p|^2 - |q|^2) \cos(\Delta m t)}$

• Simplifications in the B systems

- ▷ B^0 and B_s : CP violation in mixing small $\rightarrow |q/p| = 1$ (HFAG: $|q/p| = 1.0013 \pm 0.0034$)
- $B^{0}: \qquad \Gamma \equiv \Gamma_{H} = \Gamma_{L}$ $(D0: \ \Delta\Gamma_{s} = 0.15 \pm 0.10^{+0.03}_{-0.04} \, \text{ps}^{-1}, \ \text{CDF}: \ \Delta\Gamma_{s} = 0.47^{+0.19}_{-0.24} \pm 0.01 \, \text{ps}^{-1})$

 \rightarrow Asymmetry

$$A(t) = \frac{P(B^0 B^0) - P(B^0 \bar{B}^0)}{P(B^0 B^0) + P(B^0 \bar{B}^0)} = \cos(\Delta m t)$$

Illustration

Illustration II

Time-dependent Decay Rates

Decay amplitudes

 $A_f = \langle f | H | M \rangle, \ A_{\bar{f}} = \langle f | H | M \rangle, \ \bar{A}_f = \langle f | H | M \rangle, \ \bar{A}_f = \langle f | H | \bar{M} \rangle, \ \bar{A}_{\bar{f}} = \langle f | H | \bar{M} \rangle, \ \lambda_f \equiv \frac{q}{p} \frac{\bar{A}_f}{A_f} \rightarrow \text{ interference in decays w/ and w/o mixing}$

• Back to general case (no requirements |q/p| = 1, $\Gamma_L = \Gamma_H$)

$$\frac{d\Gamma(M^0 \to f; t)\Delta t}{e^{-\Gamma t}N_f} = \left(|A_f|^2 + |\frac{q}{p}\overline{A}_f|^2 \right) \cosh(y\Gamma t) + \left(|A_f|^2 - |\frac{q}{p}\overline{A}_f|^2 \right) \cos(x\Gamma t) \\ + 2\Re \left\{ \frac{q}{p}A_f^*\overline{A}_f \right\} \sinh(y\Gamma t) - 2\Im \left\{ \frac{q}{p}A_f^*\overline{A}_f \right\} \sin(x\Gamma t)$$

and similar for $d\Gamma(\bar{M}^0 \to f; t)/dt$ and $d\Gamma(M^0, \bar{M}^0 \to \bar{f}; t)/dt$

► Ierms
►
$$\propto |A_f|^2$$
 and $\propto |\overline{A}_f|^2$
► $\propto |\frac{q}{p}\overline{A}_f|^2$ and $\propto |\frac{p}{q}A_f|^2$
► $\propto \sinh(y\Gamma t)$ and $\propto \sin(x\Gamma t)$

decays without net oscillation decays after net oscillation interference between the two

Time-dependent CP-asymmetry

- Decay amplitudes are functions of phase space variables
 Dalitz plot interference
- The asymmetry in decay to common final state

$$A_{f_{CP}}(t) = \frac{\Gamma(\bar{M}_{phys}^{0} \to f_{CP}; t) - \Gamma(M_{phys}^{0} \to f_{CP}; t)}{\Gamma(\bar{M}_{phys}^{0} \to f_{CP}; t) + \Gamma(M_{phys}^{0} \to f_{CP}; t)}$$
$$= S_{f} \sin(\Delta m t) - C_{f} \cos(\Delta m t)$$

where (assuming $\Delta\Gamma=0$ and |q/p|=1)

$$S_f \equiv \frac{2\Im(\lambda_f)}{1+|\lambda_f|^2}$$
 and $C_f \equiv \frac{1-|\lambda_f|^2}{1+|\lambda_f|^2}$ and $\lambda_f \equiv \frac{q}{p} \frac{\bar{A}_f}{A_f}$

For f_{CP} a CP-eigenstate and with one weak phase dominating
 ▷ Asymmetry A_{fCP} measures weak phase cleanly

▷ Asymmetry
$$A_{f_{CP}} = \eta_{CP} A_{\overline{f}_{CP}}$$
 where η_{CP} is CP -eigenvalue of f

$$\rightarrow C_{f_{CP}} = 0, \quad S_{f_{CP}} = \Im\{\lambda_{f_{CP}}\} = \sin(\arg \lambda_{f_{CP}})$$

$3 \times CP$ Violation

• Decay, aka 'direct'

- $\begin{tabular}{ll} $$ $|\bar{A}_{\bar{f}}/A_f| \neq 1$ \\ where A_f amplitude for $B^0 \rightarrow f$ \\ \end{tabular}$
- \triangleright Example: $B^0 \rightarrow K^+ \pi^-$

• Mixing

- ▷ $|q/p| \neq 1$ where $|B_{\pm} >= q|B^0 > \pm p|\bar{B}^0 >$)
- \triangleright Example: $K_L^0 \rightarrow \pi^+ \pi^-$
- Interference of decay and mixing A/

$$\triangleright \ \Im(\lambda_f) \neq 0, \lambda_f \equiv \left(\frac{q}{p}\right) \times \left(\frac{\bar{A}_f}{\bar{A}_f}\right)$$

 \triangleright Example: Time-dependent CP asymmetries at B factories

 $B \rightarrow f$

 $B \rightarrow f$

\bullet Beauty beats strangeness for the study of CP violation

- Many more decay modes
- Smaller theoretical uncertainties
- ▶ CP violation larger

Weak phase difference:

 $B \rightarrow f$

 $B \rightarrow f$

Strong phase difference:

δ

The Golden Channel

- $C\!P$ asymmetries in $B^0 \to J/\psi K^0$ and $ar{B}^0 \to J/\psi ar{K}^0$
 - Decay dominated by one weak phase
 - Subleading decay with same weak phase
 - \triangleright common final state only with $K^0 \bar{K}^0$ mixing

$$\lambda_{J/\psi K_S,L} = \mp \left(\frac{q}{p}\right)_B \left(\frac{V_{cb}V_{cs}^*}{V_{cb}^*V_{cs}}\right) \left(\frac{q}{p}\right)_K$$
$$= \mp \left(\frac{V_{tb}^*V_{td}}{V_{tb}V_{td}^*}\right) \left(\frac{V_{cb}V_{cs}^*}{V_{cb}^*V_{cs}}\right) \left(\frac{V_{cs}V_{cd}^*}{V_{cs}^*V_{cd}}\right)$$
$$= \mp e^{-2i\beta}$$

'Pure Gold'

- Produce many $\Upsilon(4S) \to B^0 ar{B}^0$ decays in entangled state
- Determine, at time t_0 , B^0 or $ar{B}^0$ in event as 'tag'
- Measure time difference to decay of other B^0 (or \bar{B}^0) into CP eigenstate, e.g. $B^0 \rightarrow J/\psi K_S^0$
- Compare B^0 and $\bar{B}^0 \rightarrow$ time-dependent CP asymmetry

Experimental Heaven (close enough)

The $\Upsilon(4S)$

• Experimentally $\Upsilon(4S) \rightarrow B^0 \overline{B}{}^0$ excellent source of B^0 mesons

• Hadronic cross sections at $\sqrt{s} = 10.58 \,\text{GeV}$:

- Threshold production
 - $\triangleright m(\Upsilon(4S)) = 10.58 \,\mathrm{GeV}$
 - ▷ final state

$$2 \times m_B = 2 \times 5.279 \,\mathrm{GeV}$$

- $= 10.558 \,\mathrm{GeV}$
- Fixed B momentum ($\Upsilon(4S)$ cms) $p_B = 0.34 \,\text{GeV}$

Time at $\Upsilon(4S)$

•
$$e^+e^- \rightarrow \Upsilon(4S) \rightarrow B^0 \overline{B}^0 \ (J^{PC} = 1^{--})$$

- \triangleright C-odd (two pseudoscalars in P-wave)
- ▶ anti-symmetric wavefunction for $B\bar{B}$ state:

Coupled time-evolution of entangled state

 $|\Upsilon(4S) \to B^0 \bar{B}^0 \rangle \sim |B^0, \vec{p^*}\rangle |\bar{B}^0, -\vec{p^*}\rangle - |\bar{B}^0, \vec{p^*}\rangle |B^0, -\vec{p^*}\rangle$

- Einstein-Podolski-Rosen
- Mixing/oscillation in (anti-)phase
 ▷ no B⁰ B⁰ or B
 ⁰ B⁰
- Once B_1 decays, e.g. $\bar{B}_1 \rightarrow D^{*+} \ell^- \bar{\nu}$
 - specific flavor-tagging state
 - \triangleright flavor of B_2 is fixed to B at that moment
 - \triangleright time evolution of B_2 starts as described
 - \triangleright decay time difference Δt is relevant
- Signed quantity Δt

Mixing at $\Upsilon(4S)$

• At time $t=t_1$: First B^0 decay, e.g., $B^0 \to D^{*-} \ell^+ \nu$

$$\Rightarrow \text{Second } B \text{ meson is } \bar{B}^{0}$$

$$\psi_{2}(t_{2}) = |\bar{B}^{0}\rangle \left\{ e^{-\gamma_{h}(t_{2}-t_{1})} + e^{-\gamma_{l}(t_{2}-t_{1})} \right\} - \frac{p}{q} |B^{0}\rangle \left\{ e^{-\gamma_{h}(t_{2}-t_{1})} - e^{-\gamma_{l}(t_{2}-t_{1})} \right\}$$

• Function of Δt only \rightarrow also in asymmetry

Time-independent Measurements

• Δt is algebraic quantity \rightarrow for time-integrated measurements: \triangleright Δt -even quantities are non-zero \triangleright Δt -odd quantities are zero (for finite integration range) unmixed 0.5 mixed • Flavor-mixing is Δt -even $a_{mix}(\Delta t) \sim \cos(\Delta m \Delta t)$ 0.6--0.5 0.4-0.2 • CP-asymmetries are Δt -odd B^0 0.6 $a_{CP}(\Delta t) \sim \sin(\Delta m \Delta t)$ 0.4 0.2-0.4 -0.2-(for golden channels, at least) -0.4 0.2--0.6- \Rightarrow Time-dependent measurements -5 Ò -10 5

Time-dependent $\Upsilon(4S)$ decays

- Essential ingredients for time-dependent measurements
 - \triangleright Tracking $\rightarrow B$ reconstruction
 - $\triangleright \text{ Vertexing } \rightarrow \Delta z \approx \Delta t \beta \gamma$
 - \triangleright Particle identification \rightarrow tagging

SLAC: BABAR and PEP-II

- Head-on collisions (no crossing angle)
 - $\begin{array}{l} e^{-}(9\,\text{GeV})\\ e^{+}(3.1\,\text{GeV})\\ \rightarrow\beta\gamma=0.55 \end{array}$
- 2 rings
- Data-taking efficiency > 99%!
- $\sim 10 B \bar{B}/\,{\rm s}$

BABAR Detector

Low Energy Ring

Electrons

High Energy Ring

PEP-II Rings

Positrons

B Physics and Quarkonia (2006/07/20, Zuoz PSI Summerschool)

Stanford Linear Accelerator Center

KEKB and **Belle**

• KEK-B vastly outperforms PEP-II

Belle is only slowly starting to exploit this

raninfo ver.1.56 Ext3 Ran1 - Ext53 Ran272 BELLE LEVEL latest: day is not 24 hours

The BABAR Detector

B reconstruction

- Make use of
 - precisely known beam energies
 - ▷ no hadronization: $E_B = E_{\Upsilon(4S)}/2$ (in $\Upsilon(4S)$ restframe)
- Reconstruction of B mesons
 - ▷ lab: $p_B = (E, \vec{p})$
 - ▷ cms: $p_B^* = (E^*, \vec{p^*})$ (boost into restframe)
- Two analysis variables

$$m_{ES} = \sqrt{E_{beam}^{*}^{2} - p_{B}^{*}^{2}}$$
$$\Delta E = E_{B}^{*} - E_{beam}^{*}$$

Error propagation

$$\begin{split} \sigma_{MES}^2 &= \frac{1}{4}\sigma_{\sqrt{s}}^2 + \left(\frac{p_B^*}{m_B}\right)^2 \sigma_{p^*}^2 \approx \frac{1}{4}\sigma_{\sqrt{s}}^2 \\ \sigma_{\Delta E}^2 &= \frac{1}{4}\sigma_{\sqrt{s}}^2 + \sigma_{E^*}^2 \approx \sigma_{E^*}^2 \end{split}$$

• Limitations

- ▷ m_{ES} : beam energy spread $(E_{beam}^* = \sqrt{s}/2)$
- \triangleright ΔE : energy measurement (tracking)

m_{ES} and ΔE

Resolutions

- ▷ m_{ES} : 2.5 3 MeV
- $\triangleright \Delta E$: $\sim 10 40 \, {\rm MeV}$ depending on n_{π^0} in final state
- m_{ES} background: phenomenological parametrization ('ARGUS') $dN/dm \propto m\sqrt{1 - (m^2/E_{beam}^2)} \times \exp[\alpha(1 - (m^2/E_{beam}^2))]$

m_{ES} and ΔE II

Time Measurement: Vertexing

- Reconstruct B_{reco} and its decay vertex from
 ▶ daughters
- Reconstruct B_{tag} direction from
 - \triangleright B_{reco} vertex and momentum
 - beam spot
 - $\triangleright \Upsilon(4S)$ momentum (pseudotrack)
- Reconstruct B_{tag} vertex from
 - Pseudotrack
 - Other consistent tracks
- Convert $\Delta z \rightarrow \Delta t \approx \Delta z / \beta \gamma c$

- Performance
 - ▷ Tracks: $\sigma_{IP} \sim 30 \, \mu \text{m}$
 - ▶ Beamspot: $\sigma_{BS} \sim (150, 5, 10^4) \, \mu \text{m}$
 - \triangleright B_{reco} : $\sigma_z \sim 65 \,\mu{\rm m}$
 - $\triangleright B_{\text{tag}}: \sigma_z \sim 110 \,\mu\text{m}$
 - $\triangleright \Delta z: \sigma_z \sim 180 \,\mu{\rm m}$

Tagging

- Tagging: flavor of 'other' B
 and by coherence: 'this' B too (strictly!)
- Exploit charge correlations
 - Primary leptons
 - Kaons from charm decays
 - soft/fast pions

- Combine with neural networks, categories in terms of
 - physics (BABAR) and NN output (Belle)
- Performance
 - $\triangleright Q = 30.5\%$
 - phenomenal compared to hadron machines:
 - \triangleright CDF and LHCb: $1\sim 4\%$
- Tagging at Hadron colliders
 - same-side vs. opposite-side
 - ▶ jet charge, kaons, ...

Tagging Performance

-				
 The figure of merit 	Category	ε(%)	ω(%)	Q(%)
$Q = \varepsilon (1 - 2\omega)^2 = \varepsilon D^2$	Lepton	8.6±0.1	3.2±0.4	7.5±0.2
Mistag probability w	Kaon I	10.9±0.1	4.6±0.5	9.0±0.2
Dilution $D = \frac{R-W}{R-W} = 1 - 2w$	Kaon II	17.1±0.1	15.6±0.5	8.1±0.2
	Κ- π	13.7±0.1	23.7±0.6	3.8±0.2
• $A_{meas} = D \times A_{true}$	Pion	14.5±0.1	33.9±0.6	1.7±0.1
by definition of the dilution	Other	10.0±0.1	41.1±0.8	0.3±0.1
 Statistical error on asymmetry 	Total	74.9±0.2		30.5±0.4

$$\sigma(A_{true}) = \sqrt{\frac{1 - D^2 A_{true}^2}{\varepsilon D^2 N}}$$

N is the total number of events
▶ numerator is effective statistics of sample
▶ equivalent to perfectly tagged

Experimental Imperfections

• *B*-factories

• LEP/Tevatron

- Mistagging will reduce amplitude
- Time resolution less a problem for B_d

The principle

- \bullet Time-dependent mixing and $C\!P$ analyses similar
 - mixed vs. unmixed
 - $\triangleright~B^0~{
 m VS.}~ar{B}^0$

The latest BABAR Measurement

• Luminosity: ca. $210 \, {\rm fb}^{-1}$, $N_{B\bar{B}} = 227 \times 10^6$

Results

Calibration measurement

 $0.722 \pm 0.040 \pm 0.023$ $\sin 2\beta$ $23.1 \pm 1.6 \pm 0.9$ ° В $24.4^{\,+2.6\,\circ}_{\,-1.5}$ β_{CKM} Events / (0.4 ps) Events / (0.8 ps) 00 BABAR ·B⁰ tags ${}^{\circ}\overline{\mathrm{B}}{}^{0}$ tags Raw asymmetry 0 5.0 2.0 Raw asymmetry 0.5 0.5 0 -0.5

0

Channel	N(Tag)	Purity	η_{CP}	sin(2β)
J/ΨK _s (π+π-)	2751	96%	-1	0.79±0.05
J/ΨK _s (π ⁰ π ⁰)	653	88%	-1	0.65±0.13
Ψ(2S) $K_s(\pi+\pi-)$	485	87%	-1	0.87±0.14
χ _{c1} K _s (π+π-)	194	85%	-1	0.69±0.23
η _c K _s (π+π-)	287	74%	-1	0.17±0.25
Total (CP=-1)	4370			
J/ΨК*0	572	77%	+0.5	0.96±0.32
J/ΨK _L	2788	56%	+1	0.57±0.09
Total	7730	78%		

-5

β : Penguins and New Physics

- 'New Physics' in *CP* violation
 - Loop diagrams: SM suppressed
 - Sensitive to heavy particles
 - \triangleright Loop diagrams leading order: $b \rightarrow s$ penguins
- Golden vs. penguin modes
 - \triangleright $b \rightarrow c\overline{c}s$: T (suppressed P, with equal weak phase)
 - ▷ $b \rightarrow s$: P (suppressed T, not same weak phase, not all P with same weak phase)
- Uncertain 'tree pollution' major problem
 - $\triangleright \mathcal{O}(5\%)$: $B^0 \to \phi K_S$, $B^0 \to K^+ K^- K_S$
 - $\triangleright \mathcal{O}(10\%): B^0 \to \eta', f_0 K_S$
 - $\triangleright \mathcal{O}(20\%): B^0 \to \pi^0, \rho^0, \omega K_S$
- Analysis proceeds as for golden modes
 - > More $q\overline{q}$ continuum background (no leptons)
 - \triangleright PID more challenging (high-momentum K ID)
 - > Smaller statistics (\mathcal{B} 20 \times smaller)

Background Reduction

- BB events 'more' spherical than continuum
 - \triangleright B decays at rest
 - ▷ Continuum events: $e^+e^- \rightarrow q\overline{q}(q=u,d,s,c)$
 - Severe background for final states without leptons
- Analysis possibilities ''event shape''
 - ▷ Fox-Wolfram moment $R_2 = H_2/H_0$ with $H_l = \sum_{i,j} |\vec{p_i}| |\vec{p_j}| P_l(\cos \alpha_{ij}) / \sqrt{s}$
 - ▷ Thrust (-axis), $|\vec{T}| = \max \sum_i \vec{p_i} \cdot \vec{T} / |\vec{p_i}|$ $|\cos \angle (\vec{T}_B, \vec{T}_{ROE})| < 0.8$

 \triangleright Sphericity, 'energy flow' in cones around B, \ldots Signal MC Signal MC (a) 2000

Urs Langenegger

$b \rightarrow s$ Penguin: $B^0 \rightarrow \phi K_S$

- Reconstruction more difficult
 - Kaons instead of leptons
 - $\triangleright \ \phi$ lighter than J/ψ
 - $\rightarrow \phi$ faster \rightarrow vertexing less precise
- Belle 386MB

 $S_{\phi K^0} = +0.44 \pm 0.27 \pm 0.05$ $C_{\phi K^0} = -0.14 \pm 0.17 \pm 0.07$

- Difference to golden modes? ΔS = sin 2β_{ψKs} − sin 2β_{φKs} Naive loop/tree suppression: ΔS ~ 0.06 ± 0.??
 - $\triangleright \text{ Flavor SU(3):} \\ \Delta S < 0.22$
 - ▶ QCD factorization: $\Delta S \sim 0.025 \pm 0.014$ (?)

100 **c**

90 E

(a)

$c\overline{c}s$ vs. $b \rightarrow s$ Penguins

\bullet Naive $b \to s$ penguin average of modes with smallest $\sigma_{\rm theo}$

- $\triangleright \ \phi K^0, \eta' K^0, K^0 \bar{K}^0 K^0$
- $\rightarrow \sin 2\beta_{\rm eff} = 0.50 \pm 0.06$
- 2.2σ from charmonium
 - Had been much more exciting last year, the year before,
 - • •

Errors

- theoretical
- correlated experimental

New Physics?

• Time-dependent *CP*-violation

▶ in more than one sense?

Some more examples

Determinations of α

• $b \to u$ decay into (*CP* eigenstate) $B^0 \to \pi^+\pi^-, \rho^{\pm}\pi^{\mp}, \rho^{\pm}\rho^{\mp}$ • Mixing and $b \to u$ decay (for one decay amplitude!)

$$\lambda = e^{-i2\beta}e^{-i2\gamma} = e^{i2\alpha}$$
$$S = \sin 2\alpha, \quad C = 0$$

▷ But: In addition to tree amplitudes, there are penguin processes \rightarrow access to α complicated!

$$\lambda = e^{i2\alpha} \frac{T + P e^{+i\gamma} e^{i\delta}}{T + P e^{-i\gamma} e^{i\delta}}$$
$$C \propto \sin \delta \neq 0$$
$$S = \sqrt{1 - C^2} \sin 2\alpha_{\text{eff}}$$

How large is P/T?
 Models, e.g, QCD factorization
 Isospin analysis

Penguin vs. Tree

- Isospin relations allow estimation of penguin contribution
 - \triangleright Two isospin relations (for B and \overline{B} decays)

$$A(B^{+} \to h^{+}h^{0}) = \frac{1}{\sqrt{2}}A(B^{0} \to h^{+}h^{-}) + A(B^{0} \to h^{0}h^{0})$$

- ▷ Neglecting ew penguins, $A(B^+ \rightarrow h^+ h^0)$ is pure tree
- Triangles with common base side
- ▷ Determination of shift $\rightarrow \kappa^{+-} = 2(\alpha_{\text{eff}} \alpha)$
- \triangleright A^{00} and \bar{A}^{00} small $\rightarrow \kappa^{+-}$ small

CP Asymmetries in $B^0 \rightarrow \pi^+\pi^-$

Entries / 2.5 MeV/c² 00 00 00 00 00 00 Same analysis methodology as always BABAR Preliminary $\triangleright \ \mathcal{B}(B^0 \to \pi^+\pi^-) = 5.0 \times 10^{-6}$ N_{sig} 467 ± 33 $S_{\pi\pi}$ $-0.30 \pm 0.17 \pm 0.03$ 50 Kπ crossfeed $C_{\pi\pi}$ $-0.09 \pm 0.15 \pm 0.04$ 5.2 5.22 5.28 5.3 m_{ES} (GeV/c²) 5.24 5.26 From this extract B^0 tags Events / ps BABAR Preliminary $99^{\,+5\,\circ}_{\,-2}$ 50 = $lpha_{ ext{eff}}$ • How large is 'penguin contribution'? > $P/T \sim 30\%$ $ar{B}^0$ tags 50 Asymmetry / 2 ps 0.5 -0.5-2 2 4 0 -6 6 227 million $B\overline{B}$ $\Delta t (ps)$

$B^0 \to \pi^0 \pi^0$: Penguins in $B^0 \to \pi^+ \pi^-$

• Observation of 'large' signal (5.0 σ)

 $N_{sig} = 61 \pm 17$

 $\mathcal{B}(B^0 \to \pi^0 \pi^0) = (1.17 \pm 0.32 \pm 0.10) \times 10^{-6}$

- This is unfortunate
 - ▹ too large for useful bound
 - ▶ too small for isospin analysis
- \Rightarrow Penguins substantial
 - \blacktriangleright See also later in $B^0 \rightarrow K^+ \pi^-$
- \Rightarrow Experimental problems
 - \triangleright Merged π^0
 - Radiative Bhabhas 'afterglow'

α from $B \rightarrow \rho^+ \rho^-$?

- At quark level, same diagrams like $B \to \pi^+ \pi^-$
 - $\triangleright \rho$ is vector particle (π pseudoscalar)

$$\triangleright$$
 Decays: $ho^0
ightarrow \pi^+\pi^-$, $ho^+
ightarrow \pi^+\pi^0$

- ▷ Larger branching fractions $\mathcal{B}(B^0 \to \rho^+ \rho^-) = 26.2 \times 10^{-6}$
- More difficult charged measurements:

$$B^0 o \pi^+\pi^-$$
 vs. $B^0 o
ho^+
ho^-$

- ▶ Easier neutral measurements: $B^0 \to \pi^0 \pi^0$ vs. $B^0 \to \rho^0 \rho^0$
- Complications:
 - Penguins large?
 - \rightarrow measure $\mathcal{B}(B^0 \rightarrow \rho^0 \rho^0)$
 - Vector-Vector final state:
 Not a CP eigenstate a priori
 (Dilution of asymmetry)
 - \rightarrow measure polarization

α from $B \rightarrow \rho^+ \rho^-!$

• Angular analysis to determine CP contents

α : Results

Penguins

 $|P/T| = 0.07^{+0.14}_{-0.07}$ $|\alpha - \alpha_{\text{eff}}| < 11^{\circ}(90\% \text{CL})$

• Result

 $\alpha = 100 \pm 13^{\circ}$

- Error dominated by 11° penguin uncertainty from $\mathcal{B}(B^0 \to \rho^0 \rho^0)$
 - \triangleright Will improve with more data and measurement of $B^0 \to \rho^0 \rho^0$
- Variations on α
 - ▷ Combined α : $\alpha = 100^{+10}_{-11} \circ$
 - \triangleright CKM fit: $\alpha = 98 \pm 16\,^{\circ}$
 - \triangleright CKM + combined: $\alpha = 99^{+6}_{-7}\,^{\circ}$

Hadronic Particle Identification

- Discrimination between K^+ and π^+ essential
- Cherenkov radiation \rightarrow DIRC
 - $\triangleright \ \cos\theta_C = 1/n\beta$
 - 'Detection of internally reflected Cherenkov' light
- Driftchamber dE/dx

Support

Gusset

Standoff

Box

Central

Support

Tube

Bucking Coil

Strong

Tube

Support

Bar

Box

The Determination of γ

- At B-factories, (at least) two avenues to γ :
 - $\triangleright B^0 \to D^+ \pi^-$: $A_{CP} \propto r \sin(2\beta + \gamma)$

Tree decays!

- $\triangleright B^- \rightarrow D^0 K^-$: $A_{CP} \propto r_B \sin \gamma \sin \delta_B$
- Time-independent: direct CP violation in B^+ decays

 \triangleright with relative amplitude r_B , weak phase γ , strong phase δ_B

- For interference, choose decays where $D^0, \bar{D}^0 \to f$
- Critical parameter $r_B = \frac{A(b \rightarrow u)}{A(b \rightarrow c)}$
 - CKM and color suppression

If r_B small ightarrow little sensitivity to γ

Gronau, London, PLB 253, 483 Gronau, Wyler, PLB 265, 172 Gronau, Wyler, PLB 265, 172

• Theoretically very clean (no penguins) • reconstruction of $D \to K^+K^-, \pi^+\pi^-$ (CP = +1) $D \to K_S\pi^0, K_S\omega, K_S\phi$ (CP = -1)

 \rightarrow small effective branching fractions $\mathcal{O}(10^{-7})$

• 4 observables: Asymmetries and ratio of branching fracions

$$R_{CP\pm} = \frac{\Gamma(B^{-} \to D_{\pm}K^{-}) + \Gamma(B^{+} \to D_{\pm}K^{+})}{(\Gamma(B^{-} \to D^{0}K^{-}) + \Gamma(B^{+} \to \bar{D}^{0}K^{+}))/2} = 1 + r_{B}^{2} \pm 2r_{B}\cos\delta_{B}\cos\gamma$$

$$A_{CP\pm} = \frac{\Gamma(B^{-} \to D_{\pm}K^{-}) - \Gamma(B^{+} \to D_{\pm}K^{+})}{\Gamma(B^{-} \to D^{0}K^{-}) + \Gamma(B^{+} \to \bar{D}^{0}K^{+})} = \frac{\pm 2r_{B}\sin\delta_{B}\sin\gamma}{R_{CP\pm}}$$

▷ Three are independent $(A_{CP+}R_{CP+} = -A_{CP-}R_{CP-})$

• Not enough statistics yet

$$N_{CP+} = 37.6 \pm 7.4$$

 $N_{CP-} = 14.8 \pm 5.9$

Time-dependent D^0K_S Dalitz Analysis

- In $B^+ \rightarrow D^0 K^+$ decays: study $D^0 \rightarrow K^0_S \pi^+ \pi^-$
- The amplitudes for B decay are written as

$$A(B^{\pm}) = \underbrace{f(m_{\pm}^2, m_{\mp}^2)}_{b \to c} + \underbrace{r_B e^{i(\delta \pm \gamma)} f(m_{\mp}^2, m_{\pm}^2)}_{b \to u}$$

$$f(m_{\pm}^2, m_{\mp}^2) \text{ decay amplitude } A(\overline{D}^0 \to K_S \pi^+ \pi^-)$$

$$Dalitz \text{ variables } m_{\pm}^2 = m_{K_S \pi^{\pm}}^2$$

• Symbolically:

 \triangleright

γ : Results

γ : An Alternative?

• Observation (4.2 σ) of direct CP-violation in $B^0 \to K^+\pi^-$

and some theoretical input. But: Errors??

B Physics and Quarkonia (2006/07/20, Zuoz PSI Summerschool)

5.3

5.28

Direct CP violation: Another instance

Belle claimed

 $S_{\pi\pi} = -1.00 \pm 0.21 \pm 0.07$ $C_{\pi\pi} = -0.58 \pm 0.15 \pm 0.07$

and recently

 $S_{\pi\pi} = -0.67 \pm 0.16 \pm 0.06$ $C_{\pi\pi} = -0.56 \pm 0.12 \pm 0.06$

This implies

- \triangleright large $|P/T| \sim 1$
- large strong phases
- possibly new physics

• BABAR sees nothing of this

- New Belle measurement more consistent with BABAR result than with old Belle result
- Discrepancy at 3σ . . . need more data

Even more CP-Asymmetries

- No extraction of weak phase
- Probe for new physics in modes with small SM expectation
 decays dominated by one weak phase, *e.g.*, the

Penguin-dominated decays $b \to s\gamma$, $B \to K^{(*)}\ell^+\ell^-$

CP Asymmetry in Charmless B Decays

The big picture

B_s Mixing Measurement Principle

- Measure B_s decay
 - \rightarrow decay flavor from decay products
 - \rightarrow decay length $l = t_{lab}\beta c = t\beta\gamma c = t\frac{p}{m}$
- Determine B_s production flavor

CDF Detector

• Luminosity $\mathcal{L} > 1 \, \text{fb}^{-1}$ • Trigger: displaced vertices $\triangleright B_s \rightarrow D_s^+ \ell^+ \nu$ $\triangleright B_s \rightarrow D_s^+ \pi^+$ Kaon identification Time-of-Flight system \triangleright DCH dE/dx▷ $p \le 1.5 \, \mathrm{GeV}$

Mixing Measurement Significance

• The significance

$$\frac{1}{\sigma} \propto \sqrt{\frac{S}{S+B}} \sqrt{\frac{\varepsilon D^2}{2}} e^{-\sigma_t^2 \Delta m_s/2}$$

- ullet Statistical power of flavor tagging $arepsilon D^2$
 - > Tagging efficiency ε and dilution D = 1 2w (w: mistag probability)

$$\varepsilon = \frac{\text{correct tags} + \text{incorrect tags}}{\text{all events}}$$
 $D = \frac{\text{correct tags} - \text{incorrect tags}}{\text{all tags}}$

▷ Dilution *D* measures purity: $D = 0(1) \rightarrow$ random (perfect) tagging ▷ Dilution attenuates observed oscillations

$$P(B^0 \to B^0, \bar{B}^0; t) \propto e^{-\Gamma t} (1 \pm D \cos \Delta m t)$$

Detector Effects

B_s Reconstruction: Hadronic Modes

- Hadronic decays
 - \triangleright excellent resolution: $p_{\perp}{}^B$ and vertexing

small statistics

	Yield
$B_s \rightarrow D_s \pi$ ($\phi \pi$)	1600
$B_s \rightarrow D_s \pi \ (K^* \ K)$	800
$B_s \rightarrow D_s \pi$ (3 π)	600
$B_s \rightarrow D_s 3\pi \ (\phi \ \pi)$	500
$B_s \rightarrow D_s 3\pi$ (K [*] K)	200
Total	3700

Semileptonic B_s Reconstruction

Lifetime Reconstruction

- Lifetime from (proper) decay length
 - ▷ \vec{p}_B : daughter tracks 3-momentum
 - flight length from secondary vertex
 - in transverse plane
- Semileptonic decays:
 - \triangleright Correction with MC-derived k factor

$$t = l_{xy}^{D\ell} \frac{m_B}{p_{\perp}^{D\ell}} \times k_{MC} \qquad k_{MC} = \frac{l_{xy}^B}{l_{xy}^{D\ell}} \frac{p_{\perp}^{D\ell}}{p_{\perp}^B}$$

- Decay length resolution
 - not an issue for lifetime measurements
 - \triangleright critical for B_s mixing!

Lifetime Reconstruction II

• Significant distortion of proper time distributions

Unbinned maximum likelihood fit for *τ* ▶ signal pdf:

$$P(t) \sim e^{-t'/\tau} \otimes R(t', t) \times \varepsilon(t')$$

background pdf from data sidebands wrong-sign decays

Lifetime Results

• All species can be measured at Tevatron

Mode	CDF [ps]	D0 [ps]
$\begin{bmatrix} B_s \to D_s^- \ell^+ \nu \\ \Lambda_b \to J/\psi \Lambda \\ B_c \to J/\psi e^+ \nu \end{bmatrix}$	$\begin{array}{c} 1.381 \pm 0.055 \pm 0.050 \\ 1.593 \pm 0.080 \pm 0.033 \\ 0.463 \pm 0.070 \pm 0.036 \end{array}$	$\begin{array}{c} 1.398 \pm 0.044 {}^{+0.028}_{-0.025} \\ 1.22 \pm 0.20 \pm 0.04 \\ 0.448 \pm 0.115 \pm 0.121 \end{array}$

Lifetime Results in Context

Very competitive measurements
 most analyses use only subset of data

Hadron Collider Flavor Tagging

- Opposite side
 - ▷ SLT soft lepton tagger
 - JETQ jet charge tagger
- Same side
 - ▷ SS(K)T same side (kaon) tagger

• Total Performance:

	εD ² Hadronic (%)	εD ² Semileptonic (%)	
Muon	$0.48\pm0.06~\text{(stat)}$	0.62 ± 0.03 (stat)	
Electron	0.09 ± 0.03 (stat)	0.10 ± 0.01 (stat)	
JQ/Vertex	$0.30\pm0.04~(\text{stat})$	0.27 ± 0.02 (stat)	
JQ/Prob.	$0.46\pm0.05~\text{(stat)}$	0.34 ± 0.02 (stat)	
JQ/High p _T	$0.14\pm0.03~\text{(stat)}$	0.11 ± 0.01 (stat)	
Total OST	1.47 ± 0.10 (stat)	1.44 \pm 0.04 (stat)	
SSKT	$3.42\pm0.49~(\text{syst})$	$4.00\pm0.56~(\text{syst})$	

Verification of Tagging

- Measure B_d mixing (precisely known from B-factories)
 Does not work for same-side tagging
- semileptonic, ID⁻, muon tag fit separately in hadronic and CDF Run II Preliminary L ≈ 355 pb⁻¹ semileptonic sample 0.3 per sample, simultaneously Soft Lepton Taggers 0.2 measure 0.1 tagger performance asymmetry 0 • Δm_d -0.1 projection incorporates data fit projection -0.2 several classes of tags B^o contribution B⁺ contribution $B \rightarrow e/\mu D X$ -0.3 0.1 0.05 0.15 0.2 proper decay-length [cm]

 $\begin{array}{ll} \mbox{hadronic:} & \Delta m_{d} = 0.536 \pm 0.028 \mbox{ (stat)} \pm 0.006 \mbox{ (syst)} \mbox{ ps}^{-1} \\ \mbox{semileptonic:} & \Delta m_{d} = 0.509 \pm 0.010 \mbox{ (stat)} \pm 0.016 \mbox{ (syst)} \mbox{ ps}^{-1} \\ \mbox{world average:} & \Delta m_{d} = 0.507 \pm 0.005 \mbox{ ps}^{-1} \end{array}$

Proper Time Resolution

- Eminently important for B_s oscillations
 Smears out asymmetry → dilution
 - ✓ Sinears out asymmetry → undulon
 - Lifetime measurements provide no calibration
 - UML needs to correctly account for it
- Prompt D plus prompt track
 - \triangleright quasi B_s particle
 - \triangleright fit 'lifetime' \rightarrow resolution calibration

D₂⁻ vertex

"B_s" vertex

P.V.

The Procedure

Determination of oscillation in

- \triangleright time domain: fit frequency Δm_s in $\mathcal{L} \propto 1 \pm D \cos \Delta m_s t$
- \triangleright frequency domain: fit amplitude A in $\mathcal{L} \propto 1 \pm AD \cos \Delta m_s t$
- Decide beforehand whether to set UL or do measurement
 p-value: probability that observed effect is from bg fluctuation
 - ▷ p > 0.01: Determine upper limit, p < 0.01: Measure Δm_s

• 228/50000 toy experiments: $\Delta \log(\mathcal{L}) \ge 6.06 \rightarrow p = 0.5\%$

B Physics and Quarkonia (2006/07/20, Zuoz PSI Summerschool)

Determination of Δm_s

 $\Delta m_s = 17.33^{+0.33}_{-0.18} \pm 0.07\,\mathrm{ps}^{-1}$

(SM: $21.7^{+5.9}_{-4.2}$ ps⁻¹)

Impact of Measurement

• Independent measurement of

$$\frac{\Delta m_s}{\Delta m_d} = \frac{m_{B_s}}{m_{B_d}} \xi^2 \frac{|V_{ts}|^2}{|V_{td}|^2}$$

Ratio of decay constants and bag parameters $\xi = 1.21^{+0.047}_{-0.035}$ from lattice, rest from PDG

$$\frac{|V_{td}|}{|V_{ts}|} = 0.208^{+0.008}_{-0.007}$$

- Consistent with $|V_{td}|/|V_{ts}|$ in Penguins
 - ▷ cf. tomorrow!
 - ▷ (more precise)

B_s in the future: LHCb

• Δm_s is only a first step

future experimental program at LHCb

- Mixing phase β_s
 - \triangleright sin $2\beta_s$ from time-dependent asymmetries in $B_s \rightarrow J/\psi \phi$

▷ $\sin 2\beta_s = 0.0365 \pm 0.0021$ predicted in SM

• γ

Decay Channel	Method	# events/y	Estimated error
$\begin{array}{l} B_s \rightarrow D_s K \\ B_s \rightarrow D^0 K^{*0} \\ B_s \rightarrow K^+ K^- \end{array}$	time-dep. asymmetry	5400	14°
	6 BF (triangles)	500-3400	8°
	vs. $B^0 \rightarrow \pi^+\pi^-$	37k-26k	5°

• α and β

Decay Channel	Method	# events/y	Estimated error
$B^0 \to \pi^+ \pi^- \pi^0$	time-dep. Dalitz	14k	10°_{stat}
$B^0 o J\psi K^0_S$	time-dep. asymmetry	240k	$0.02(\sin 2eta)$

Executive Summary I

- B physics
 - \triangleright Quantitative tests of SM \rightarrow overconstraining 'the' unitarity triangle
 - \triangleright Search for new physics \rightarrow 'delayed gratification'
 - \triangleright Flood of data and new ideas \rightarrow spin-offs
- Time-dependent and *CP*-violating physics
 - ▷ *CP*-violation by *B*-factories

$$\begin{array}{lll} \beta &=& 21.7 \, {}^{+1.3}_{-1.2} \,^{\circ} & \alpha = 100.2 \, {}^{+15.0}_{-8.0} \,^{\circ} & \gamma = 62 \, {}^{+35}_{-25} \,^{\circ} \\ \beta &=& \beta \mbox{ in } {\bf b} \to {\bf s} \mbox{ penguins}(?), & \alpha + \beta + \gamma = 186 \, {}^{+38}_{-27} \,^{\circ} \\ \mbox{direct} \ CP-\mbox{violation} \mbox{ in } B^0 \to K^+ \pi^- \end{array}$$

 \triangleright B_s mixing measured by CDF

$$\Delta m_s = 17.31^{+0.33}_{-0.18} (\text{stat}) \pm 0.07 (\text{syst}) \,\text{ps}^{-1}$$
$$\frac{|V_{td}|}{|V_{ts}|} = 0.208^{+0.001}_{-0.002} (\exp)^{+0.008}_{-0.006} (\text{theo})$$