# Introduction to chiral perturbation theory I Foundations

Gilberto Colangelo



Zuoz 17. July 06

#### **Outline**

#### Introduction

The QCD spectrum
Chiral perturbation theory

#### Chiral perturbation theory

Goldstone theorem
Effective Lagrangian
Explicit symmetry breaking

#### Summary





#### The QCD spectrum

- the lowest-lying particles in the spectra are well understood: they would become exactly massless in the chiral limit of QCD (pseudo Goldstone bosons)
- the dynamics of strong interactions at low energy can be understood in terms of chiral symmetry
- the positions of the low-lying resonances is more difficult to determine and to understand
- they set the limit of validity of the chiral expansion on the other hand they can be pinned down quite precisely thanks to the chiral expansion!
  cf. Leutwyler's talk

# Systems with spontaneous symmetry breaking

- ► If a symmetry is spontaneously broken the spectrum contains massless particles – the Goldstone bosons
- Symmetry constrains the interactions of the Goldstone bosons – their interactions vanishes at low energy
- Green functions contain poles and cuts due to the exchange of Goldstone bosons – the vertices, on the other hand, can be expanded in powers of momenta.
   The coefficients of this expansion obey symmetry relations
- ► The effective Lagrangian is a systematic method to construct this expansion and in a way that respects these symmetry relations and all the general principles of quantum field theory
- ► The method leads to predictions
  - in some cases to very sharp ones

### Quantum Chromodynamics in the chiral limit

$$\mathcal{L}_{QCD}^{(0)} = ar{q}_{\mathsf{L}} i \, ar{\mathcal{D}} q_{\mathsf{L}} + ar{q}_{\mathsf{R}} i \, ar{\mathcal{D}} q_{\mathsf{R}} - rac{1}{4} G^a_{\mu
u} G^{a\mu
u} \qquad \qquad q = \left(egin{array}{c} u \ d \ s \end{array}
ight)$$

Large global symmetry group:

$$SU(3)_L \times SU(3)_R \times U(1)_V \times U(1)_A$$

- 1.  $U(1)_V \Rightarrow$  baryonic number
- 2.  $U(1)_A$  is anomalous
- 3.

$$SU(3)_L \times SU(3)_R \Rightarrow SU(3)_V$$

⇒ Goldstone bosons with the quantum numbers of pseudoscalar mesons will be generated

#### Quark masses, chiral expansion

In the real world quarks are not massless:

the mass term  $\mathcal{L}_m$  can be considered as a small perturbation  $\Rightarrow$  Expand around  $\mathcal{L}_{QCD}^{(0)} \equiv$  Expand in powers of  $m_q$ 

Chiral perturbation theory, the low-energy effective theory of QCD, is a simultaneous expansion in powers of momenta and quark masses

# Quark mass expansion of meson masses

General quark mass expansion for the P particle:

$$M_P^2 = M_0^2 + \langle P | \overline{q} \mathcal{M} q | P \rangle + O(m_q^2)$$

For the pion  $M_0^2 = 0$ :

$$M_{\pi}^{2} = -(m_{u} + m_{d}) \frac{1}{F_{\pi}^{2}} \langle 0|\bar{q}q|0 \rangle + O(m_{q}^{2})$$

where we have used a Ward identity:

$$\langle \pi | \bar{q}q | \pi \rangle = -\frac{1}{F_{\pi}^2} \langle 0 | \bar{q}q | 0 \rangle =: B_0$$

 $\langle 0|\bar{q}q|0\rangle$  is an order parameter for the chiral spontaneous symmetry breaking Gell-Mann, Oakes and Renner (88)

Quark mass expansion of meson masses



#### Goldstone theorem

Be  $\mathcal{H}$  a Hamiltonian symmetric under the group of transformations G:  $[Q_i]$  are the generators of G

$$[Q_i, \mathcal{H}] = 0 \qquad \qquad i = 1, \dots n_G$$

Be the ground state not invariant under G, i.e. for some generators Xi

$$X_i|0\rangle \neq 0$$
  $\{Q_1,\ldots,Q_{n_G}\}=\{H_1,\ldots,H_{n_H},X_1,\ldots,X_{n_G-n_H}\}$ 

#### Goldstone theorem

$$[Q_i,\mathcal{H}]=0 \qquad i=1,\ldots n_G \ , \qquad X_i|0\rangle \neq 0 \ , \qquad H_i|0\rangle = 0$$

1. The subset of generators  $H_i$  which annihilate the vacuum forms a subalgebra

$$[H_i, H_k]|0\rangle = 0$$
  $i, k = 1, \dots n_H$ 

2. The spectrum of the theory contains  $n_G - n_H$  massless excitations

$$X_i|0\rangle$$
  $i=1,\ldots n_G-n_H$ 

from  $[X_i, \mathcal{H}] = 0$  follows that  $X_i|0\rangle$  is an eigenstate of the Hamiltonian with the same eigenvalue as the vacuum

#### Goldstone theorem

$$[Q_i,\mathcal{H}]=0 \qquad i=1,\dots n_G \ , \qquad X_i|0
angle 
eq 0 \ , \qquad H_i|0
angle =0$$

- $ightharpoonup X_i|0\rangle$  are the Goldstone boson states
- ▶ the  $X_i$  are generators of the quotient space G/H
- ▶ the Goldstone fields are elements of the space G/H
- ▶ their transformation properties under *G* are fully dictated
- the dynamics of the Goldstone bosons at low energy is strongly constrained by symmetry

Take the transition matrix elements between the conserved currents associated with the generators Q<sub>i</sub> and the Goldstone bosons

$$\langle 0|J_i^{\mu}|\pi^a(p)\rangle=iF_i^ap^{\mu}$$

The  $n_G \times (n_G - n_H)$  matrix  $F_i^a$  has rank  $N_{GB} = n_G - n_H$ 

We have introduced the symbol  $\pi$  for the Goldstone boson fields, and will call them "pions", as in strong interactions. Our arguments, however, will remain completely general

# Pions do not interact at low energy

Current conservation implies

$$p_\mu \langle \pi^{a_1}(p_1)\pi^{a_2}(p_2)\dots ext{out}|J_i^\mu|0
angle = 0 \qquad \qquad p^\mu = p_1^\mu + p_2^\mu + \dots$$

Consider the amplitude for pair creation

$$\langle \pi^{a_1}(p_1)\pi^{a_2}(p_2) \text{out} | J_i^{\mu} | 0 \rangle = \frac{p_3^{\mu}}{p_3^2} \sum_{a_3} F_i^{a_3} v_{a_1 a_2 a_3}(p_i) + \dots$$

Current conserv. 
$$\Rightarrow \sum_{a_3} F_i^{a_3} v_{a_1 a_2 a_3}(0) = 0 \Rightarrow v_{a_1 a_2 a_3}(0) = 0$$

Because of Lorentz invariance, the function  $v_{a_1a_2a_3}(p_1, p_2, p_3)$ can only depend on  $p_1^2$ ,  $p_2^2$ ,  $p_3^2$ : on the mass shell it is always zero

### Low energy expansion

 Symmetry implies that Goldstone bosons do not interact at low energy

# Low energy expansion

- Symmetry implies that Goldstone bosons do not interact at low energy
- If we take explicitly into account the poles in the Green functions which are due to exchanges of Goldstone bosons we can expand the vertices in powers of momenta
- The symmetry of the system implies also relations among the coefficients in the Taylor expansion in the momenta
- ► The effective Lagrangian is a systematic method to construct this expansion in a way that automatically respects the symmetry of the system
- Effective Lagrangian for Goldstone Bosons = CHPT

#### Transformation properties of the pions

The pion fields transform according to a representation of G

$$g\in G: ec{\pi}
ightarrow ec{\pi}'=ec{f}(g,ec{\pi})$$

where f has to obey the composition law

$$\vec{f}(g_1, \vec{f}(g_2, \vec{\pi})) = \vec{f}(g_1g_2, \vec{\pi})$$

Consider the image of the origin  $\vec{f}(g,0)$ : the elements which leave the origin invariant form a subgroup - the conserved subgroup H

 $\vec{f}(gh,0)$  coincides with  $\vec{f}(g,0)$  for each  $g\in G$  and  $h\in H\Rightarrow$  the function  $\vec{f}$  maps elements of G/H onto the space of pion fields

The pion fields transform according to a representation of G

$$g\in G: ec{\pi}
ightarrow ec{\pi}'=ec{f}(g,ec{\pi})$$

where f has to obey the composition law

$$\vec{f}(g_1, \vec{f}(g_2, \vec{\pi})) = \vec{f}(g_1g_2, \vec{\pi})$$

The mapping is invertible:  $\vec{f}(g_1,0) = \vec{f}(g_2,0)$  implies  $g_1g_2^{-1} \in H$  $\Rightarrow$  pions can be identified with elements of G/H

#### Action of G on G/H

Two elements of G,  $g_{1,2}$  are identified with the same element of G/H if

$$g_1g_2^{-1}\in H$$

Let us call  $q_i$  the elements of G/H

The action of G on G/H is given by

$$gq_1 = q_2h$$
 where  $h(g, q_1) \in H$ 

The transformation properties of the coordinates of G/H under the action of G are nonlinear (h is in general a nonlinear function of  $q_1$  and q)

#### The space G/H for QCD

The choice of a representative element inside each equivalence class is arbitrary. For example

$$g=(g_L,g_R)=(1,g_Rg_L^{-1})\cdot(g_L,g_L)=:q\cdot h$$
 but also 
$$g=(g_L,g_R)=(g_Lg_R^{-1},1)\cdot(g_R,g_R)=:q'\cdot h'$$
 where 
$$q,q'\in G/H \text{ and } h,h'\in H$$

Action of G on G/H

$$(V_L, V_R) \cdot (1, g_R g_L^{-1}) = (V_L, V_R g_R g_L^{-1})$$
  
=  $(1, V_R g_R g_L^{-1} V_L^{-1}) \cdot (V_L, V_L)$ 

The space G/H for QCD In the literature the pion fields are usually collected in a matrix valued field U, which transforms like

$$U \xrightarrow{G} U' = V_R U V_L^{-1}$$

U is nothing but a shorthand notation for  $(1, g_B g_I^{-1})$ , or its nontrivial part  $g_R g_I^{-1}$ 

As a matrix U is a member of SU(3), and therefore it can be written as

$$U = e^{i\phi^a\lambda_a}$$

where  $\phi^a$  are the eight pion fields

In order to reproduce the low-energy structure of QCD we construct an effective Lagrangian which:

- contains the pion fields as the only degrees of freedom
- is invariant under G
- and expand it in powers of momenta

$$\mathcal{L}_{eff} = f_1(U) + f_2(U)\langle U^+ \Box U \rangle + f_3(U)\langle \partial_\mu U^+ \partial^\mu U \rangle + O(\rho^4)$$

The invariance under transformations  $U \stackrel{G}{\longrightarrow} U' = V_R U V_i^{-1}$ implies that  $f_{1,2,3}(U)$  do not depend on  $U \Rightarrow f_1$  can simply be dropped, as it is an irrelevant constant

# Using partial integration we end up with

$$\mathcal{L}_{\text{eff}} = \frac{\mathcal{L}_2}{4} + \mathcal{L}_4 + \mathcal{L}_6 + \dots$$
  $\frac{\mathcal{L}_2}{4} = \frac{F^2}{4} \langle \partial_{\mu} U^+ \partial^{\mu} U \rangle$ 

where we have fixed the constant in front of the trace by looking at the Noether currents of the *G* symmetry:

$$V_i^{\mu} = i \frac{F^2}{4} \langle \lambda_i [\partial^{\mu} U, U^+] \rangle \qquad A_i^{\mu} = i \frac{F^2}{4} \langle \lambda_i \{\partial^{\mu} U, U^+\} \rangle$$

and comparing the result of the matrix element with the definition

$$\langle 0|A_{i}^{\mu}|\pi^{k}(p)\rangle=ip^{\mu}\delta_{ik}F$$

#### Some more details

The matrix field U is an exponential of the pion fields  $\pi$ . If we want fields  $\pi$  of canonical dimension, we have to introduce a dimensional constant in the definition of U:

$$U = \exp\left\{\frac{i}{F'}\pi^k\lambda_k\right\}$$

The requirement that the kinetic term of the pion fields is standard:

$$\mathcal{L}_{\mathsf{kin}} = rac{1}{2} \partial_{\mu} \pi^{i} \partial^{\mu} \pi^{i}$$
 implies:  $F = F'$ 

The Lagrangian contains only one coupling constant which is the pion decay constant

# The first prediction: $\pi\pi$ scattering

Isospin invariant amplitude:

$$M(\pi^{a}\pi^{b} \rightarrow \pi^{c}\pi^{d}) = \delta_{ab}\delta_{cd}A(s,t,u) + \delta_{ac}\delta_{bd}A(t,u,s) + \delta_{ad}\delta_{bc}A(u,s,t)$$

Using the effective Lagrangian above

$$A(s,t,u)=\frac{s}{F^2}$$

Exercise: calculate it!

### CHPT and explicit symmetry breaking?

- ► The effective Lagrangian was constructed in order to systematically account for symmetry relations. If the symmetry is explicitly broken can we still use it?
- ▶ If the symmetry breaking is weak we can make a perturbative expansion: matrix elements of the symmetry breaking Lagrangian (or of powers thereof) will appear
- Once we know the transformation properties of the symmetry breaking term, we can use symmetry to constrain its matrix elements
- ▶ The effective Lagrangian is still the appropriate tool to be used if we want to derive systematically all symmetry relations

#### Effective Lagrangian with ESB

$$\mathcal{L}^{\text{QCD}} = \mathcal{L}_0^{\text{QCD}} - \bar{q}\mathcal{M}q$$

The symmetry breaking term

$$ar{q}\mathcal{M}q=ar{q}_R\mathcal{M}q_L+\mathsf{h.c.}$$

becomes also chiral invariant if we impose that the quark mass matrix  $\mathcal{M}$  transforms according to

$$\mathcal{M} \rightarrow \mathcal{M}' = V_R \mathcal{M} V_I^+$$

We can now proceed to construct a chiral invariant effective Lagrangian that includes explicitly the matrix  $\mathcal{M}$ :

$$\mathcal{L}_{\mathsf{eff}} = \mathcal{L}_{\mathsf{eff}}(U, \partial U, \partial^2 U, \dots, \mathcal{M})$$

### Leading order effective Lagrangian

The complete leading order effective Lagrangian of QCD reads:

$$\mathcal{L}_{2} = \frac{F^{2}}{4} \left[ \left\langle \partial_{\mu} U^{+} \partial^{\mu} U \right\rangle + \left\langle 2B \mathcal{M} \left( U + U^{+} \right) \right\rangle \right]$$

F is the pion decay constant in the chiral limit

B is related to the  $\bar{q}q$ —condensate and to the pion mass

$$M_{\pi}^2 = 2B\hat{m} + O(\hat{m}^2)$$

# $\pi\pi$ scattering to leading order

In the presence of quark masses the  $\pi\pi$  scattering amplitude becomes

$$A(s,t,u) = \frac{s - M_{\pi}^2}{F_{\pi}^2}$$
 Weinberg (66)

The two S-wave scattering lengths read

$$a_0^0 = \frac{7M_\pi^2}{32\pi F_\pi^2} = 0.16$$
  $a_0^2 = -\frac{M_\pi^2}{16\pi F_\pi^2} = -0.045$ 

### The chiral Lagrangian to higher orders

$$\mathcal{L}_{eff} = \mathcal{L}_2 + \mathcal{L}_4 + \mathcal{L}_6 + \dots$$

$$\mathcal{L}_2$$
 contains  $(2,2)$  constants  $\mathcal{L}_4$  contains  $(7,10)$  constants Gasser, Leutwyler (84)  $\mathcal{L}_6$  contains  $(53,90)$  constants Bijnens, GC, Ecker (99)

The number in parentheses are for an SU(N) theory with N = (2,3)

# The $\mathcal{L}_4$ Lagrangian

$$\mathcal{L}_{4} = L_{1}\langle D_{\mu}U^{\dagger}D^{\mu}U\rangle^{2} + L_{2}\langle D_{\mu}U^{\dagger}D_{\nu}U\rangle\langle D^{\mu}U^{\dagger}D^{\nu}U\rangle$$

$$+ L_{3}\langle D_{\mu}U^{\dagger}D^{\mu}UD_{\nu}U^{\dagger}D^{\nu}U\rangle + L_{4}\langle D_{\mu}U^{\dagger}D^{\mu}U\rangle\langle \chi^{\dagger}U + \chi U^{\dagger}\rangle$$

$$+ L_{5}\langle D_{\mu}U^{\dagger}D^{\mu}U(\chi^{\dagger}U + U^{\dagger}\chi)\rangle + L_{6}\langle \chi^{\dagger}U + \chi U^{\dagger}\rangle^{2}$$

$$+ L_{7}\langle \chi^{\dagger}U - \chi U^{\dagger}\rangle^{2} + L_{8}\langle \chi^{\dagger}U\chi^{\dagger}U + \chi U^{\dagger}\chi U^{\dagger}\rangle$$

$$- iL_{9}\langle F_{R}^{\mu\nu}D_{\mu}UD_{\nu}U^{\dagger} + F_{L}^{\mu\nu}D_{\mu}U^{\dagger}D_{\nu}U\rangle$$

$$+ L_{10}\langle U^{\dagger}F_{R}^{\mu\nu}UF_{L\mu\nu}\rangle$$

$$D_{\mu}U = \partial_{\mu}U - ir_{\mu}U + iUl_{\mu} \qquad \chi = 2B(s+ip)$$

$$F_{R}^{\mu\nu} = \partial^{\mu}r^{\nu} - \partial^{\nu}r^{\mu} - i[r^{\mu}, r^{\nu}]$$

$$r_{\mu} = v_{\mu} + a_{\mu} \qquad l_{\mu} = v_{\mu} - a_{\mu}$$

#### Summary

- ► I have discussed Goldstone's theorem and some of its physical implications at low energy
- ➤ The effective Lagrangian for Goldstone bosons is a tool to derive systematically the consequences of the symmetry on their interactions — I have discussed the principles that allow one to construct it
- The effective Lagrangian is useful also in the presence of a (small) explicit symmetry breaking – I have shown how to construct it even in this case