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The QCD spectrum
◮ the lowest-lying particles in the spectra are well

understood: they would become exactly massless in the
chiral limit of QCD (pseudo Goldstone bosons)

◮ the dynamics of strong interactions at low energy can be
understood in terms of chiral symmetry

◮ the positions of the low-lying resonances is more difficult to
determine and to understand

◮ they set the limit of validity of the chiral expansion –
on the other hand they can be pinned down quite precisely
thanks to the chiral expansion! cf. Leutwyler’s talk
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Systems with spontaneous symmetry breaking

◮ If a symmetry is spontaneously broken the spectrum
contains massless particles – the Goldstone bosons

◮ Symmetry constrains the interactions of the Goldstone
bosons – their interactions vanishes at low energy

◮ Green functions contain poles and cuts due to the
exchange of Goldstone bosons – the vertices, on the other
hand, can be expanded in powers of momenta.
The coefficients of this expansion obey symmetry relations

◮ The effective Lagrangian is a systematic method to
construct this expansion and in a way that respects
these symmetry relations and all the general principles of
quantum field theory

◮ The method leads to predictions
– in some cases to very sharp ones
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Quantum Chromodynamics in the chiral limit

L
(0)
QCD = q̄Li /DqL + q̄R i /DqR −

1
4

Ga
µνGaµν q =





u
d
s





Large global symmetry group:

SU(3)L × SU(3)R × U(1)V × U(1)A

1. U(1)V ⇒ baryonic number

2. U(1)A is anomalous

3.
SU(3)L × SU(3)R ⇒ SU(3)V

⇒ Goldstone bosons with the quantum numbers of
pseudoscalar mesons will be generated
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Quark masses, chiral expansion
In the real world quarks are not massless:

LQCD = L
(0)
QCD + Lm, Lm := −q̄Mq

M =


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the mass term Lm can be considered as a small perturbation ⇒

Expand around L
(0)
QCD ≡ Expand in powers of mq
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Quark masses, chiral expansion
In the real world quarks are not massless:

LQCD = L
(0)
QCD + Lm, Lm := −q̄Mq

M =





mu

md

ms





the mass term Lm can be considered as a small perturbation ⇒

Expand around L
(0)
QCD ≡ Expand in powers of mq

Chiral perturbation theory, the low-energy effective theory of
QCD, is a simultaneous expansion in powers of momenta and
quark masses
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Quark mass expansion of meson masses
General quark mass expansion for the P particle:

M2
P = M2

0 + 〈P|q̄Mq|P〉 + O(m2
q)

For the pion M2
0 = 0:

M2
π = −(mu + md)

1
F 2

π

〈0|q̄q|0〉 + O(m2
q)

where we have used a Ward identity:

〈π|q̄q|π〉 = −
1

F 2
π

〈0|q̄q|0〉 =: B0

〈0|q̄q|0〉 is an order parameter for the chiral spontaneous
symmetry breaking Gell-Mann, Oakes and Renner (68)
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η =
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Quark mass expansion of meson masses
Consider the whole pseudoscalar octet:

M2
π = (mu + md)B0 + O(m2

q)

M2
K + = (mu + ms)B0 + O(m2

q)

M2
K 0 = (md + ms)B0 + O(m2

q)

M2
η =

1
3
(mu + md + 4ms)B0 + O(m2

q)

Consequences: (m̂ = (mu + md)/2)

M2
K /M2

π = (ms + m̂)/2m̂ ⇒ ms/m̂ = 25.9

M2
η/M2

π = (2ms + m̂)/3m̂ ⇒ ms/m̂ = 24.3

3M2
η = 4M2

K − M2
π Gell-Mann–Okubo (62)

(0.899 = 0.960) GeV2
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Goldstone theorem
Be H a Hamiltonian symmetric under the group of transforma-
tions G: [Qi are the generators of G]

[Qi ,H] = 0 i = 1, . . . nG

Be the ground state not invariant under G, i.e. for some genera-
tors Xi

Xi |0〉 6= 0

{Q1, . . . , QnG} = {H1, . . . , HnH , X1, . . . , XnG−nH}
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Goldstone theorem

[Qi ,H] = 0 i = 1, . . . nG , Xi |0〉 6= 0 , Hi |0〉 = 0

1. The subset of generators Hi which annihilate the vacuum
forms a subalgebra

[Hi , Hk ]|0〉 = 0 i , k = 1, . . . nH

2. The spectrum of the theory contains nG − nH massless exci-
tations

Xi |0〉 i = 1, . . . nG − nH

from [Xi ,H] = 0 follows that Xi |0〉 is an eigenstate of the Hamil-
tonian with the same eigenvalue as the vacuum
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Goldstone theorem

[Qi ,H] = 0 i = 1, . . . nG , Xi |0〉 6= 0 , Hi |0〉 = 0

◮ Xi |0〉 are the Goldstone boson states
◮ the Xi are generators of the quotient space G/H
◮ the Goldstone fields are elements of the space G/H
◮ their transformation properties under G are fully dictated
◮ the dynamics of the Goldstone bosons at low energy is

strongly constrained by symmetry
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Matrix elements of conserved currents
Goldstone’s theorem also asserts the following:

Take the transition matrix elements between the conserved cur-
rents associated with the generators Qi and the Goldstone
bosons

〈0|Jµ
i |π

a(p)〉 = iF a
i pµ

The nG × (nG − nH) matrix F a
i has rank NGB = nG − nH
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Matrix elements of conserved currents
Goldstone’s theorem also asserts the following:

Take the transition matrix elements between the conserved cur-
rents associated with the generators Qi and the Goldstone
bosons

〈0|Jµ
i |π

a(p)〉 = iF a
i pµ

The nG × (nG − nH) matrix F a
i has rank NGB = nG − nH

We have introduced the symbol π for the Goldstone boson
fields, and will call them “pions”, as in strong interactions. Our
arguments, however, will remain completely general
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Pions do not interact at low energy
Current conservation implies

pµ〈π
a1(p1)π

a2(p2) . . . out|Jµ
i |0〉 = 0 pµ = pµ

1 + pµ
2 + . . .
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Pions do not interact at low energy
Current conservation implies

pµ〈π
a1(p1)π

a2(p2) . . . out|Jµ
i |0〉 = 0 pµ = pµ

1 + pµ
2 + . . .

Consider the amplitude for pair creation

〈πa1(p1)π
a2(p2)out|Jµ

i |0〉 =
pµ

3

p2
3

∑

a3

F a3
i va1a2a3(pi) + . . .

Current conserv. ⇒
∑

a3

F a3
i va1a2a3(0) = 0 ⇒ va1a2a3(0) = 0

Because of Lorentz invariance, the function va1a2a3(p1, p2, p3)
can only depend on p2

1, p2
2, p2

3: on the mass shell it is always
zero



Introduction CHPT Summary Goldstone th. Eff. Lagrangian ESB

Pions do not interact at low energy
Now consider the amplitude for three–pion creation from a con-
served current

〈πa1πa2πa3out|Jµ
i |0〉 =

pµ
4
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4

∑

a4
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i va1a2a3a4(pi) + . . .
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Pions do not interact at low energy
Now consider the amplitude for three–pion creation from a con-
served current

〈πa1πa2πa3out|Jµ
i |0〉 =

pµ
4

p2
4

∑

a4

F a4
i va1a2a3a4(pi) + . . .

Current conservation again implies
∑

a4

F a4
i va1a2a3a4(0) = 0 ⇒ va1a2a3a4(0) = 0

In this case the vertex function can depend on two Lorentz
scalars, s, and t , and we can do a Taylor expansion:

va1a2a3a4(p1, p2, p3, p4) = c1
a1a2a3a4

s + c2
a1a2a3a4

t + . . .
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Low energy expansion
◮ Symmetry implies that Goldstone bosons do not interact at

low energy
◮ If we take explicitly into account the poles in the Green

functions which are due to exchanges of Goldstone bosons
we can expand the vertices in powers of momenta

◮ The symmetry of the system implies also relations among
the coefficients in the Taylor expansion in the momenta

◮ The effective Lagrangian is a systematic method to
construct this expansion in a way that automatically
respects the symmetry of the system

◮ Effective Lagrangian for Goldstone Bosons = CHPT
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Transformation properties of the pions
The pion fields transform according to a representation of G

g ∈ G : ~π → ~π′ = ~f (g, ~π)

where f has to obey the composition law

~f (g1,~f (g2, ~π)) = ~f (g1g2, ~π)

Consider the image of the origin ~f (g, 0): the elements which
leave the origin invariant form a subgroup – the conserved sub-
group H
~f (gh, 0) coincides with ~f (g, 0) for each g ∈ G and h ∈ H ⇒ the
function ~f maps elements of G/H onto the space of pion fields
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Transformation properties of the pions
The pion fields transform according to a representation of G

g ∈ G : ~π → ~π′ = ~f (g, ~π)

where f has to obey the composition law

~f (g1,~f (g2, ~π)) = ~f (g1g2, ~π)

The mapping is invertible: ~f (g1, 0) = ~f (g2, 0) implies g1g−1
2 ∈ H

⇒ pions can be identified with elements of G/H
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G/H if
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Let us call qi the elements of G/H
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Action of G on G/H
Two elements of G, g1,2 are identified with the same element of
G/H if

g1g−1
2 ∈ H

Let us call qi the elements of G/H

The action of G on G/H is given by

gq1 = q2h where h(g, q1) ∈ H

The transformation properties of the coordinates of G/H under
the action of G are nonlinear (h is in general a nonlinear function
of q1 and g)
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The space G/H for QCD
The choice of a representative element inside each equivalence
class is arbitrary. For example

g = (gL, gR) = (1, gRg−1
L ) · (gL, gL) =: q · h

but also g = (gL, gR) = (gLg−1
R , 1) · (gR, gR) =: q′ · h′

where q, q′ ∈ G/H and h, h′ ∈ H
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The space G/H for QCD
The choice of a representative element inside each equivalence
class is arbitrary. For example

g = (gL, gR) = (1, gRg−1
L ) · (gL, gL) =: q · h

but also g = (gL, gR) = (gLg−1
R , 1) · (gR, gR) =: q′ · h′

where q, q′ ∈ G/H and h, h′ ∈ H

Action of G on G/H

(VL, VR) · (1, gRg−1
L ) = (VL, VRgRg−1

L )

= (1, VRgRg−1
L V−1

L ) · (VL, VL)
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The space G/H for QCD
In the literature the pion fields are usually collected in a matrix–
valued field U, which transforms like

U G
−→ U ′ = VRUV−1

L

U is nothing but a shorthand notation for (1, gRg−1
L ), or its non-

trivial part gRg−1
L
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The space G/H for QCD
In the literature the pion fields are usually collected in a matrix–
valued field U, which transforms like

U G
−→ U ′ = VRUV−1

L

U is nothing but a shorthand notation for (1, gRg−1
L ), or its non-

trivial part gRg−1
L

As a matrix U is a member of SU(3), and therefore it can be
written as

U = eiφaλa

where φa are the eight pion fields
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struct an effective Lagrangian which:

◮ contains the pion fields as the only degrees of freedom
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Construction of the effective Lagrangian
In order to reproduce the low–energy structure of QCD we con-
struct an effective Lagrangian which:

◮ contains the pion fields as the only degrees of freedom
◮ is invariant under G
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Construction of the effective Lagrangian
In order to reproduce the low–energy structure of QCD we con-
struct an effective Lagrangian which:

◮ contains the pion fields as the only degrees of freedom
◮ is invariant under G
◮ and expand it in powers of momenta

Leff = f1(U) + f2(U)〈U+
¤U〉

+ f3(U)〈∂µU+∂µU〉 + O(p4)

The invariance under transformations U G
−→ U ′ = VRUV−1

L
implies that f1,2,3(U) do not depend on U ⇒ f1 can simply be
dropped, as it is an irrelevant constant
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Construction of the effective Lagrangian
Using partial integration we end up with

Leff = L2 + L4 + L6 + . . . L2 =
F 2

4
〈∂µU+∂µU〉

where we have fixed the constant in front of the trace by looking
at the Noether currents of the G symmetry:

V µ
i = i

F 2

4
〈λi [∂

µU, U+]〉 Aµ
i = i

F 2

4
〈λi{∂

µU, U+}〉

and comparing the result of the matrix element with the definition

〈0|Aµ
i |π

k (p)〉 = ipµδikF
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Some more details

The matrix field U is an exponential of the pion fields π. If we
want fields π of canonical dimension, we have to introduce a
dimensional constant in the definition of U:

U = exp
{

i
F ′

πkλk

}

The requirement that the kinetic term of the pion fields is
standard:

Lkin =
1
2
∂µπi∂µπi implies: F = F ′

The Lagrangian contains only one coupling constant which is
the pion decay constant
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The first prediction: ππ scattering

Isospin invariant amplitude:

M(πaπb→πcπd) = δabδcdA(s,t ,u) + δacδbdA(t ,u,s)

+ δadδbcA(u,s,t)

Using the effective Lagrangian above

A(s, t , u) =
s

F 2

Exercise: calculate it!
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CHPT and explicit symmetry breaking?

◮ The effective Lagrangian was constructed in order to
systematically account for symmetry relations.
If the symmetry is explicitly broken can we still use it?
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◮ If the symmetry breaking is weak we can make a
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breaking Lagrangian (or of powers thereof) will appear



Introduction CHPT Summary Goldstone th. Eff. Lagrangian ESB
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◮ The effective Lagrangian was constructed in order to
systematically account for symmetry relations.
If the symmetry is explicitly broken can we still use it?

◮ If the symmetry breaking is weak we can make a
perturbative expansion: matrix elements of the symmetry
breaking Lagrangian (or of powers thereof) will appear

◮ Once we know the transformation properties of the
symmetry breaking term, we can use symmetry to
constrain its matrix elements
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CHPT and explicit symmetry breaking?

◮ The effective Lagrangian was constructed in order to
systematically account for symmetry relations.
If the symmetry is explicitly broken can we still use it?

◮ If the symmetry breaking is weak we can make a
perturbative expansion: matrix elements of the symmetry
breaking Lagrangian (or of powers thereof) will appear

◮ Once we know the transformation properties of the
symmetry breaking term, we can use symmetry to
constrain its matrix elements

◮ The effective Lagrangian is still the appropriate tool to be
used if we want to derive systematically all symmetry
relations
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Effective Lagrangian with ESB

LQCD = LQCD
0 − q̄Mq

The symmetry breaking term

q̄Mq = q̄RMqL + h.c.

becomes also chiral invariant if we impose that the quark mass
matrix M transforms according to

M → M′ = VRMV+
L
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Effective Lagrangian with ESB

LQCD = LQCD
0 − q̄Mq

The symmetry breaking term

q̄Mq = q̄RMqL + h.c.

becomes also chiral invariant if we impose that the quark mass
matrix M transforms according to

M → M′ = VRMV+
L

We can now proceed to construct a chiral invariant effective La-
grangian that includes explicitly the matrix M:

Leff = Leff(U, ∂U, ∂2U, . . . ,M)
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Effective Lagrangian with ESB
To first order in M there is only one chiral invariant term which
one can construct:

L
(1)
M =

F 2

2

[

B〈MU+〉 + B∗〈M+U〉
]

Strong interactions respect parity ⇒ B must be real:

L
(1)
M =

F 2B
2

〈M
(

U + U+
)

〉
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Effective Lagrangian with ESB
To first order in M there is only one chiral invariant term which
one can construct:

L
(1)
M =

F 2

2

[

B〈MU+〉 + B∗〈M+U〉
]

Strong interactions respect parity ⇒ B must be real:

L
(1)
M =

F 2B
2

〈M
(

U + U+
)

〉

Before using this Lagrangian: pin down the constant B:

B = −
1

F 2 〈0|q̄q|0〉 M2
π = 2Bm̂
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Leading order effective Lagrangian

The complete leading order effective Lagrangian of QCD reads:

L2 =
F 2

4

[

〈∂µU+∂µU〉 + 〈2BM
(

U + U+
)

〉
]

F is the pion decay constant in the chiral limit

B is related to the q̄q–condensate and to the pion mass

M2
π = 2Bm̂ + O(m̂2)
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ππ scattering to leading order

In the presence of quark masses the ππ scattering amplitude
becomes

A(s, t , u) =
s − M2

π

F 2
π

Weinberg (66)

The two S–wave scattering lengths read

a0
0 =

7M2
π

32πF 2
π

= 0.16 a2
0 = −

M2
π

16πF 2
π

= −0.045
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The chiral Lagrangian to higher orders

Leff = L2 + L4 + L6 + . . .

L2 contains (2, 2) constants

L4 contains (7, 10) constants Gasser, Leutwyler (84)

L6 contains (53, 90) constants Bijnens, GC, Ecker (99)

The number in parentheses are for an SU(N) theory with
N = (2, 3)
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The L4 Lagrangian

L4 = L1〈DµU†DµU〉2 + L2〈DµU†DνU〉〈DµU†DνU〉

+L3〈DµU†DµUDνU†DνU〉 + L4〈DµU†DµU〉〈χ†U + χU†〉

+L5〈DµU†DµU(χ†U + U†χ)〉 + L6〈χ
†U + χU†〉2

+L7〈χ
†U − χU†〉2 + L8〈χ

†Uχ†U + χU†χU†〉

−iL9〈F
µν
R DµUDνU† + Fµν

L DµU†DνU〉

+L10〈U
†Fµν

R UFLµν〉

DµU = ∂µU − irµU + iUlµ χ = 2B(s + ip)

Fµν
R = ∂µrν − ∂νrµ − i[rµ, rν ]

rµ = vµ + aµ lµ = vµ − aµ
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physical implications at low energy
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Summary

◮ I have discussed Goldstone’s theorem and some of its
physical implications at low energy

◮ The effective Lagrangian for Goldstone bosons is a tool to
derive systematically the consequences of the symmetry
on their interactions – I have discussed the principles that
allow one to construct it

◮ The effective Lagrangian is useful also in the presence of a
(small) explicit symmetry breaking – I have shown how to
construct it even in this case
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