Introduction to chiral perturbation theory I Foundations

Gilberto Colangelo

Zuoz 17. July 06

Outline

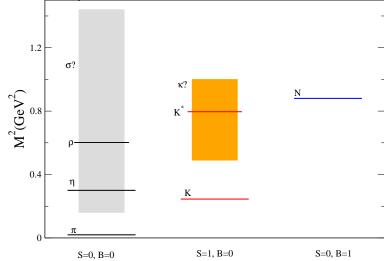
Introduction

The QCD spectrum
Chiral perturbation theory

Chiral perturbation theory

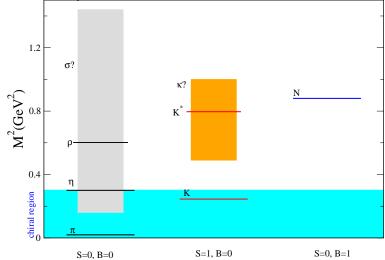
Goldstone theorem
Effective Lagrangian
Explicit symmetry breaking

Summary



 the lowest-lying particles in the spectra are well understood: they would become exactly massless in the chiral limit of QCD (pseudo Goldstone bosons)

- the lowest-lying particles in the spectra are well understood: they would become exactly massless in the chiral limit of QCD (pseudo Goldstone bosons)
- the dynamics of strong interactions at low energy can be understood in terms of chiral symmetry



- the lowest-lying particles in the spectra are well understood: they would become exactly massless in the chiral limit of QCD (pseudo Goldstone bosons)
- the dynamics of strong interactions at low energy can be understood in terms of chiral symmetry
- the positions of the low-lying resonances is more difficult to determine and to understand

- the lowest-lying particles in the spectra are well understood: they would become exactly massless in the chiral limit of QCD (pseudo Goldstone bosons)
- the dynamics of strong interactions at low energy can be understood in terms of chiral symmetry
- the positions of the low-lying resonances is more difficult to determine and to understand
- they set the limit of validity of the chiral expansion on the other hand they can be pinned down quite precisely thanks to the chiral expansion!
 cf. Leutwyler's talk

If a symmetry is spontaneously broken the spectrum contains massless particles - the Goldstone bosons

- If a symmetry is spontaneously broken the spectrum contains massless particles – the Goldstone bosons
- Symmetry constrains the interactions of the Goldstone bosons – their interactions vanishes at low energy

- If a symmetry is spontaneously broken the spectrum contains massless particles – the Goldstone bosons
- Symmetry constrains the interactions of the Goldstone bosons – their interactions vanishes at low energy
- Green functions contain poles and cuts due to the exchange of Goldstone bosons – the vertices, on the other hand, can be expanded in powers of momenta.
 The coefficients of this expansion obey symmetry relations

- If a symmetry is spontaneously broken the spectrum contains massless particles – the Goldstone bosons
- Symmetry constrains the interactions of the Goldstone bosons – their interactions vanishes at low energy
- Green functions contain poles and cuts due to the exchange of Goldstone bosons – the vertices, on the other hand, can be expanded in powers of momenta. The coefficients of this expansion obey symmetry relations
- ► The effective Lagrangian is a systematic method to construct this expansion and in a way that respects these symmetry relations and all the general principles of quantum field theory

- If a symmetry is spontaneously broken the spectrum contains massless particles – the Goldstone bosons
- Symmetry constrains the interactions of the Goldstone bosons – their interactions vanishes at low energy
- Green functions contain poles and cuts due to the exchange of Goldstone bosons – the vertices, on the other hand, can be expanded in powers of momenta. The coefficients of this expansion obey symmetry relations
- ► The effective Lagrangian is a systematic method to construct this expansion and in a way that respects these symmetry relations and all the general principles of quantum field theory
- The method leads to predictions
 - in some cases to very sharp ones

$$\mathcal{L}_{ ext{QCD}}^{(0)} = ar{q}_{ ext{L}} i
ot\!\!\!/ q_{ ext{L}} + ar{q}_{ ext{R}} i
ot\!\!\!/ q_{ ext{R}} - rac{1}{4} G_{\mu
u}^{ ext{a}} G^{ ext{a}\mu
u} \qquad \qquad q = \left(egin{array}{c} u \ d \ s \end{array}
ight)$$

Large global symmetry group:

$$SU(3)_L \times SU(3)_R \times U(1)_V \times U(1)_A$$

$$\mathcal{L}_{ ext{QCD}}^{(0)} = ar{q}_{ ext{L}} i
ot\!\!\!/ q_{ ext{L}} + ar{q}_{ ext{R}} i
ot\!\!\!/ q_{ ext{R}} - rac{1}{4} G_{\mu
u}^{ ext{a}} G^{ ext{a}\mu
u} \qquad \qquad q = \left(egin{array}{c} u \ d \ s \end{array}
ight)$$

Large global symmetry group:

$$SU(3)_L \times SU(3)_R \times U(1)_V \times U(1)_A$$

1. $U(1)_V \Rightarrow$ baryonic number

$$\mathcal{L}_{ ext{QCD}}^{(0)} = ar{q}_{ ext{L}} i
ot\!\!\!/ q_{ ext{L}} + ar{q}_{ ext{R}} i
ot\!\!\!/ q_{ ext{R}} - rac{1}{4} G_{\mu
u}^{ ext{a}} G^{ ext{a}\mu
u} \qquad \qquad q = \left(egin{array}{c} u \ d \ s \end{array}
ight)$$

Large global symmetry group:

$$SU(3)_L \times SU(3)_R \times U(1)_V \times U(1)_A$$

- 1. $U(1)_V \Rightarrow$ baryonic number
- 2. $U(1)_A$ is anomalous

Large global symmetry group:

$$SU(3)_L \times SU(3)_R \times U(1)_V \times U(1)_A$$

- 1. $U(1)_V \Rightarrow$ baryonic number
- 2. $U(1)_A$ is anomalous
- 3.

$$SU(3)_L \times SU(3)_R \Rightarrow SU(3)_V$$

⇒ Goldstone bosons with the quantum numbers of pseudoscalar mesons will be generated

Quark masses, chiral expansion

In the real world quarks are not massless:

the mass term \mathcal{L}_m can be considered as a small perturbation \Rightarrow Expand around $\mathcal{L}_{OCD}^{(0)} \equiv \text{Expand in powers of } m_q$

Quark masses, chiral expansion

In the real world quarks are not massless:

the mass term \mathcal{L}_m can be considered as a small perturbation \Rightarrow Expand around $\mathcal{L}_{QCD}^{(0)} \equiv \text{Expand in powers of } m_q$

Chiral perturbation theory, the low-energy effective theory of QCD, is a simultaneous expansion in powers of momenta and quark masses

Quark mass expansion of meson masses General quark mass expansion for the *P* particle:

$$M_P^2 = M_0^2 + \langle P|\bar{q}\mathcal{M}q|P\rangle + O(m_q^2)$$

Quark mass expansion of meson masses General quark mass expansion for the *P* particle:

$$M_P^2 = M_0^2 + \langle P|\bar{q}\mathcal{M}q|P\rangle + O(m_q^2)$$

For the pion $M_0^2 = 0$:

$$M_{\pi}^{2} = -(m_{u} + m_{d}) \frac{1}{F_{-}^{2}} \langle 0|\bar{q}q|0 \rangle + O(m_{q}^{2})$$

General quark mass expansion for the *P* particle:

$$M_P^2 = M_0^2 + \langle P|\bar{q}\mathcal{M}q|P\rangle + O(m_q^2)$$

For the pion $M_0^2 = 0$:

$$M_{\pi}^{2} = -(m_{u} + m_{d}) \frac{1}{F_{\pi}^{2}} \langle 0|\bar{q}q|0 \rangle + O(m_{q}^{2})$$

where we have used a Ward identity:

$$\langle \pi | ar{q} q | \pi
angle = -rac{1}{F_{\pi}^2} \langle 0 | ar{q} q | 0
angle =: B_0$$

 $\langle 0|\bar{q}q|0\rangle$ is an order parameter for the chiral spontaneous symmetry breaking Gell-Mann, Oakes and Renner (68)

Consider the whole pseudoscalar octet:

$$M_{\pi}^{2} = (m_{u} + m_{d})B_{0} + O(m_{q}^{2})$$

$$M_{K^{+}}^{2} = (m_{u} + m_{s})B_{0} + O(m_{q}^{2})$$

$$M_{K^{0}}^{2} = (m_{d} + m_{s})B_{0} + O(m_{q}^{2})$$

$$M_{\eta}^{2} = \frac{1}{3}(m_{u} + m_{d} + 4m_{s})B_{0} + O(m_{q}^{2})$$

Consider the whole pseudoscalar octet:

$$M_{\pi}^{2} = (m_{u} + m_{d})B_{0} + O(m_{q}^{2})$$

$$M_{K^{+}}^{2} = (m_{u} + m_{s})B_{0} + O(m_{q}^{2})$$

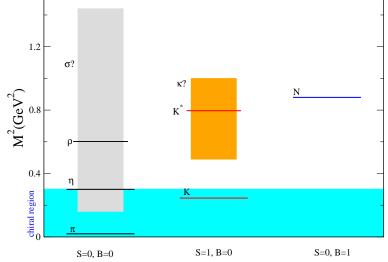
$$M_{K^{0}}^{2} = (m_{d} + m_{s})B_{0} + O(m_{q}^{2})$$

$$M_{\eta}^{2} = \frac{1}{3}(m_{u} + m_{d} + 4m_{s})B_{0} + O(m_{q}^{2})$$

Consequences:

$$(\hat{m}=(m_u+m_d)/2)$$

$$M_K^2/M_\pi^2 = (m_s + \hat{m})/2\hat{m} \Rightarrow m_s/\hat{m} = 25.9$$
 $M_\eta^2/M_\pi^2 = (2m_s + \hat{m})/3\hat{m} \Rightarrow m_s/\hat{m} = 24.3$
 $3M_\eta^2 = 4M_K^2 - M_\pi^2$ Gell-Mann–Okubo (62)
 $(0.899 = 0.960) \text{ GeV}^2$



Be \mathcal{H} a Hamiltonian symmetric under the group of transformations G: $[Q_i]$ are the generators of G

$$[Q_i, \mathcal{H}] = 0 \qquad \qquad i = 1, \dots n_G$$

Be \mathcal{H} a Hamiltonian symmetric under the group of transformations G: [Q_i are the generators of G]

$$[Q_i, \mathcal{H}] = 0 i = 1, \dots n_G$$

Be the ground state not invariant under G, i.e. for some generators X_i

$$X_i|0\rangle \neq 0$$

$$\{Q_1,\ldots,Q_{n_G}\}=\{H_1,\ldots,H_{n_H},X_1,\ldots,X_{n_G-n_H}\}$$

$$[Q_i,\mathcal{H}]=0 \qquad i=1,\dots n_G \ , \qquad X_i|0\rangle \neq 0 \ , \qquad H_i|0\rangle = 0$$

1. The subset of generators H_i which annihilate the vacuum forms a subalgebra

$$[H_i, H_k]|0\rangle = 0$$
 $i, k = 1, ... n_H$

$$[Q_i, \mathcal{H}] = 0$$
 $i = 1, \dots n_G$, $X_i | 0 \rangle \neq 0$, $H_i | 0 \rangle = 0$

1. The subset of generators H_i which annihilate the vacuum forms a subalgebra

$$[H_i, H_k]|0\rangle = 0$$
 $i, k = 1, \dots n_H$

2. The spectrum of the theory contains $n_G - n_H$ massless excitations

$$X_i|0\rangle$$
 $i=1,\ldots n_G-n_H$

from $[X_i, \mathcal{H}] = 0$ follows that $X_i|0\rangle$ is an eigenstate of the Hamiltonian with the same eigenvalue as the vacuum

$$[Q_i,\mathcal{H}]=0 \qquad i=1,\dots n_G \ , \qquad X_i|0\rangle \neq 0 \ , \qquad H_i|0\rangle = 0$$

- $ightharpoonup X_i|0\rangle$ are the Goldstone boson states
- ▶ the X_i are generators of the quotient space G/H
- ▶ the Goldstone fields are elements of the space G/H
- ▶ their transformation properties under G are fully dictated
- the dynamics of the Goldstone bosons at low energy is strongly constrained by symmetry

Matrix elements of conserved currents

Goldstone's theorem also asserts the following:

Take the transition matrix elements between the conserved currents associated with the generators Q_i and the Goldstone bosons

$$\langle 0|J_i^\mu|\pi^a(
ho)
angle=iF_i^a
ho^\mu$$

The $n_G \times (n_G - n_H)$ matrix F_i^a has rank $N_{GB} = n_G - n_H$

Matrix elements of conserved currents

Goldstone's theorem also asserts the following:

Take the transition matrix elements between the conserved currents associated with the generators Q_i and the Goldstone bosons

$$\langle 0|J_i^\mu|\pi^a(
ho)
angle=iF_i^a
ho^\mu$$

The $n_G \times (n_G - n_H)$ matrix F_i^a has rank $N_{GB} = n_G - n_H$

We have introduced the symbol π for the Goldstone boson fields, and will call them "pions", as in strong interactions. Our arguments, however, will remain completely general

$$p_{\mu}\langle\pi^{a_1}(p_1)\pi^{a_2}(p_2)\dots ext{out}|J_i^{\mu}|0
angle=0 \hspace{1cm} p^{\mu}=p_1^{\mu}+p_2^{\mu}+\dots$$

Pions do not interact at low energy

Current conservation implies

$$p_\mu \langle \pi^{a_1}(p_1)\pi^{a_2}(p_2)\dots ext{out} | J_i^\mu | 0
angle = 0 \qquad \qquad p^\mu = p_1^\mu + p_2^\mu + \dots$$

Consider the amplitude for pair creation

$$\langle \pi^{a_1}(p_1)\pi^{a_2}(p_2) \text{out} | J_i^{\mu} | 0 \rangle = \frac{p_3^{\mu}}{p_3^2} \sum_{a_2} F_i^{a_3} v_{a_1 a_2 a_3}(p_i) + \dots$$

Pions do not interact at low energy

Current conservation implies

$$p_\mu \langle \pi^{a_1}(p_1)\pi^{a_2}(p_2)\dots ext{out} | J_i^\mu | 0
angle = 0 \qquad \qquad p^\mu = p_1^\mu + p_2^\mu + \dots$$

Consider the amplitude for pair creation

$$\langle \pi^{a_1}(p_1)\pi^{a_2}(p_2) \text{out} | J_i^{\mu} | 0 \rangle = \frac{p_3^{\mu}}{p_3^2} \sum_{a_3} F_i^{a_3} v_{a_1 a_2 a_3}(p_i) + \dots$$

Current conserv.
$$\Rightarrow \sum_{a_3} F_i^{a_3} v_{a_1 a_2 a_3}(0) = 0 \Rightarrow v_{a_1 a_2 a_3}(0) = 0$$

Because of Lorentz invariance, the function $v_{a_1a_2a_3}(p_1, p_2, p_3)$ can only depend on p_1^2 , p_2^2 , p_3^2 : on the mass shell it is always zero

Pions do not interact at low energy

Now consider the amplitude for three-pion creation from a conserved current

$$\langle \pi^{a_1} \pi^{a_2} \pi^{a_3} \text{out} | J_i^{\mu} | 0 \rangle = \frac{p_4^{\mu}}{p_4^2} \sum_{a_4} F_i^{a_4} v_{a_1 a_2 a_3 a_4}(p_i) + \dots$$

Pions do not interact at low energy

Now consider the amplitude for three—pion creation from a conserved current

$$\langle \pi^{a_1} \pi^{a_2} \pi^{a_3} \text{out} | J_i^{\mu} | 0 \rangle = \frac{p_4^{\mu}}{p_4^2} \sum_{a_4} F_i^{a_4} v_{a_1 a_2 a_3 a_4}(p_i) + \dots$$

Current conservation again implies

$$\sum_{a_4} F_i^{a_4} v_{a_1 a_2 a_3 a_4}(0) = 0 \Rightarrow v_{a_1 a_2 a_3 a_4}(0) = 0$$

Pions do not interact at low energy

Now consider the amplitude for three—pion creation from a conserved current

$$\langle \pi^{a_1} \pi^{a_2} \pi^{a_3} \text{out} | J_i^{\mu} | 0 \rangle = \frac{p_4^{\mu}}{p_4^2} \sum_{a_4} F_i^{a_4} v_{a_1 a_2 a_3 a_4}(p_i) + \dots$$

Current conservation again implies

$$\sum_{a_4} F_i^{a_4} v_{a_1 a_2 a_3 a_4}(0) = 0 \Rightarrow v_{a_1 a_2 a_3 a_4}(0) = 0$$

In this case the vertex function can depend on two Lorentz scalars, s, and t, and we can do a Taylor expansion:

$$v_{a_1a_2a_3a_4}(p_1,p_2,p_3,p_4) = c^1_{a_1a_2a_3a_4}s + c^2_{a_1a_2a_3a_4}t + \dots$$

 Symmetry implies that Goldstone bosons do not interact at low energy

- Symmetry implies that Goldstone bosons do not interact at low energy
- If we take explicitly into account the poles in the Green functions which are due to exchanges of Goldstone bosons we can expand the vertices in powers of momenta

- Symmetry implies that Goldstone bosons do not interact at low energy
- If we take explicitly into account the poles in the Green functions which are due to exchanges of Goldstone bosons we can expand the vertices in powers of momenta
- The symmetry of the system implies also relations among the coefficients in the Taylor expansion in the momenta

- Symmetry implies that Goldstone bosons do not interact at low energy
- If we take explicitly into account the poles in the Green functions which are due to exchanges of Goldstone bosons we can expand the vertices in powers of momenta
- The symmetry of the system implies also relations among the coefficients in the Taylor expansion in the momenta
- ► The effective Lagrangian is a systematic method to construct this expansion in a way that automatically respects the symmetry of the system

- Symmetry implies that Goldstone bosons do not interact at low energy
- If we take explicitly into account the poles in the Green functions which are due to exchanges of Goldstone bosons we can expand the vertices in powers of momenta
- The symmetry of the system implies also relations among the coefficients in the Taylor expansion in the momenta
- The effective Lagrangian is a systematic method to construct this expansion in a way that automatically respects the symmetry of the system
- Effective Lagrangian for Goldstone Bosons = CHPT

The pion fields transform according to a representation of G

$$g \in \mathsf{G}: ec{\pi}
ightarrow ec{\pi}' = ec{f}(g, ec{\pi})$$

where f has to obey the composition law

$$\vec{f}(g_1, \vec{f}(g_2, \vec{\pi})) = \vec{f}(g_1g_2, \vec{\pi})$$

Consider the image of the origin $\vec{f}(g,0)$: the elements which leave the origin invariant form a subgroup – the conserved subgroup H

 $\vec{f}(gh,0)$ coincides with $\vec{f}(g,0)$ for each $g \in G$ and $h \in H \Rightarrow$ the function \vec{f} maps elements of G/H onto the space of pion fields

Transformation properties of the pions

The pion fields transform according to a representation of G

$$g \in G : ec{\pi}
ightarrow ec{\pi}' = ec{f}(g, ec{\pi})$$

where f has to obey the composition law

$$\vec{f}(g_1, \vec{f}(g_2, \vec{\pi})) = \vec{f}(g_1g_2, \vec{\pi})$$

The mapping is invertible: $\vec{f}(g_1, 0) = \vec{f}(g_2, 0)$ implies $g_1g_2^{-1} \in H$ \Rightarrow pions can be identified with elements of G/H

Action of G on G/H

Two elements of G, $g_{1,2}$ are identified with the same element of G/H if

$$g_1g_2^{-1}\in H$$

Let us call q_i the elements of G/H

Action of G on G/H

Two elements of G, $g_{1,2}$ are identified with the same element of G/H if

$$g_1g_2^{-1}\in H$$

Let us call q_i the elements of G/H

The action of G on G/H is given by

$$gq_1 = q_2h$$
 where $h(g, q_1) \in H$

Action of G on G/H

Two elements of G, $g_{1,2}$ are identified with the same element of G/H if

$$g_1g_2^{-1}\in H$$

Let us call q_i the elements of G/H

The action of G on G/H is given by

$$gq_1 = q_2h$$
 where $h(g, q_1) \in H$

The transformation properties of the coordinates of G/H under the action of G are nonlinear (h is in general a nonlinear function of q_1 and q)

The choice of a representative element inside each equivalence class is arbitrary. For example

$$g=(g_L,g_R)=(1,g_Rg_L^{-1})\cdot(g_L,g_L)=:q\cdot h$$
 but also
$$g=(g_L,g_R)=(g_Lg_R^{-1},1)\cdot(g_R,g_R)=:q'\cdot h'$$
 where
$$q,q'\in G/H \text{ and } h,h'\in H$$

The choice of a representative element inside each equivalence class is arbitrary. For example

$$g=(g_L,g_R)=(1,g_Rg_L^{-1})\cdot(g_L,g_L)=:q\cdot h$$
 but also
$$g=(g_L,g_R)=(g_Lg_R^{-1},1)\cdot(g_R,g_R)=:q'\cdot h'$$
 where
$$q,q'\in G/H \text{ and } h,h'\in H$$

Action of G on G/H

$$(V_L, V_R) \cdot (1, g_R g_L^{-1}) = (V_L, V_R g_R g_L^{-1})$$

= $(1, V_R g_R g_L^{-1} V_L^{-1}) \cdot (V_L, V_L)$

In the literature the pion fields are usually collected in a matrix–valued field U, which transforms like

$$U \stackrel{\mathsf{G}}{\longrightarrow} U' = V_R U V_L^{-1}$$

U is nothing but a shorthand notation for $(1, g_R g_L^{-1})$, or its non-trivial part $g_R g_L^{-1}$

In the literature the pion fields are usually collected in a matrix–valued field U, which transforms like

$$U \stackrel{\mathsf{G}}{\longrightarrow} U' = V_R U V_L^{-1}$$

U is nothing but a shorthand notation for $(1, g_R g_L^{-1})$, or its non-trivial part $g_R g_L^{-1}$

As a matrix U is a member of SU(3), and therefore it can be written as

$$U = e^{i\phi^a\lambda_a}$$

where ϕ^{a} are the eight pion fields

In order to reproduce the low-energy structure of QCD we construct an effective Lagrangian which:

contains the pion fields as the only degrees of freedom

In order to reproduce the low-energy structure of QCD we construct an effective Lagrangian which:

- contains the pion fields as the only degrees of freedom
- is invariant under G

In order to reproduce the low-energy structure of QCD we construct an effective Lagrangian which:

- contains the pion fields as the only degrees of freedom
- is invariant under G
- and expand it in powers of momenta

$$\mathcal{L}_{eff} = f_1(U) + f_2(U)\langle U^+ \Box U \rangle + f_3(U)\langle \partial_\mu U^+ \partial^\mu U \rangle + O(p^4)$$

The invariance under transformations $U \stackrel{G}{\longrightarrow} U' = V_R U V_i^{-1}$ implies that $f_{1,2,3}(U)$ do not depend on $U \Rightarrow f_1$ can simply be dropped, as it is an irrelevant constant

Using partial integration we end up with

$$\mathcal{L}_{\text{eff}} = \frac{\mathcal{L}_2}{4} + \mathcal{L}_4 + \mathcal{L}_6 + \dots$$
 $\frac{\mathcal{L}_2}{4} = \frac{\mathcal{F}^2}{4} \langle \partial_{\mu} \mathcal{U}^+ \partial^{\mu} \mathcal{U} \rangle$

where we have fixed the constant in front of the trace by looking at the Noether currents of the G symmetry:

$$V_{i}^{\mu}=i\frac{F^{2}}{4}\langle\lambda_{i}[\partial^{\mu}U,U^{+}]\rangle \qquad A_{i}^{\mu}=i\frac{F^{2}}{4}\langle\lambda_{i}\{\partial^{\mu}U,U^{+}\}\rangle$$

and comparing the result of the matrix element with the definition

$$\langle 0|A_i^{\mu}|\pi^k(p)\rangle=ip^{\mu}\delta_{ik}F$$

Some more details

The matrix field U is an exponential of the pion fields π . If we want fields π of canonical dimension, we have to introduce a dimensional constant in the definition of U:

$$U = \exp\left\{\frac{i}{F'}\pi^k\lambda_k\right\}$$

The requirement that the kinetic term of the pion fields is standard:

$$\mathcal{L}_{\mathsf{kin}} = rac{1}{2} \partial_{\mu} \pi^{i} \partial^{\mu} \pi^{i}$$
 implies: $F = F'$

The Lagrangian contains only one coupling constant which is the pion decay constant

The first prediction: $\pi\pi$ scattering

Isospin invariant amplitude:

$$M(\pi^{a}\pi^{b} \rightarrow \pi^{c}\pi^{d}) = \delta_{ab}\delta_{cd}A(s,t,u) + \delta_{ac}\delta_{bd}A(t,u,s) + \delta_{ad}\delta_{bc}A(u,s,t)$$

Using the effective Lagrangian above

$$A(s,t,u)=\frac{s}{F^2}$$

Exercise: calculate it!

The effective Lagrangian was constructed in order to systematically account for symmetry relations. If the symmetry is explicitly broken can we still use it?

- The effective Lagrangian was constructed in order to systematically account for symmetry relations. If the symmetry is explicitly broken can we still use it?
- If the symmetry breaking is weak we can make a perturbative expansion: matrix elements of the symmetry breaking Lagrangian (or of powers thereof) will appear

- The effective Lagrangian was constructed in order to systematically account for symmetry relations. If the symmetry is explicitly broken can we still use it?
- If the symmetry breaking is weak we can make a perturbative expansion: matrix elements of the symmetry breaking Lagrangian (or of powers thereof) will appear
- Once we know the transformation properties of the symmetry breaking term, we can use symmetry to constrain its matrix elements

- The effective Lagrangian was constructed in order to systematically account for symmetry relations. If the symmetry is explicitly broken can we still use it?
- If the symmetry breaking is weak we can make a perturbative expansion: matrix elements of the symmetry breaking Lagrangian (or of powers thereof) will appear
- Once we know the transformation properties of the symmetry breaking term, we can use symmetry to constrain its matrix elements
- The effective Lagrangian is still the appropriate tool to be used if we want to derive systematically all symmetry relations

Effective Lagrangian with ESB

$$\mathcal{L}^{ ext{QCD}} = \mathcal{L}_0^{ ext{QCD}} - ar{q}\mathcal{M}q$$

Summary

The symmetry breaking term

$$ar{q}\mathcal{M}q=ar{q}_{R}\mathcal{M}q_{L}+ ext{h.c.}$$

becomes also chiral invariant if we impose that the quark mass matrix $\ensuremath{\mathcal{M}}$ transforms according to

$$\mathcal{M} \to \mathcal{M}' = V_R \mathcal{M} V_L^+$$

Effective Lagrangian with ESB

$$\mathcal{L}^{ ext{QCD}} = \mathcal{L}_0^{ ext{QCD}} - ar{q}\mathcal{M}q$$

The symmetry breaking term

$$ar{q}\mathcal{M}q=ar{q}_{R}\mathcal{M}q_{L}+ ext{h.c.}$$

becomes also chiral invariant if we impose that the quark mass matrix $\ensuremath{\mathcal{M}}$ transforms according to

$$\mathcal{M} \to \mathcal{M}' = V_R \mathcal{M} V_L^+$$

We can now proceed to construct a chiral invariant effective Lagrangian that includes explicitly the matrix \mathcal{M} :

$$\mathcal{L}_{\mathsf{eff}} = \mathcal{L}_{\mathsf{eff}}(\textit{U}, \partial \textit{U}, \partial^2 \textit{U}, \dots, \mathcal{M})$$

Effective Lagrangian with ESB

To first order in \mathcal{M} there is only one chiral invariant term which one can construct:

$$\mathcal{L}_{\mathcal{M}}^{(1)} = rac{F^2}{2} \left[B \langle \mathcal{M} U^+
angle + B^* \langle \mathcal{M}^+ U
angle
ight]$$

Strong interactions respect parity \Rightarrow *B* must be real:

$$\mathcal{L}_{\mathcal{M}}^{(1)} = rac{F^2B}{2} \langle \mathcal{M} \left(U + U^+
ight)
angle$$

To first order in \mathcal{M} there is only one chiral invariant term which one can construct:

$$\mathcal{L}_{\mathcal{M}}^{(1)} = \frac{F^2}{2} \left[B \langle \mathcal{M} U^+ \rangle + B^* \langle \mathcal{M}^+ U \rangle \right]$$

Strong interactions respect parity $\Rightarrow B$ must be real:

$$\mathcal{L}_{\mathcal{M}}^{(1)} = rac{F^2B}{2} \langle \mathcal{M} \left(U + U^+
ight)
angle$$

Before using this Lagrangian: pin down the constant *B*:

$$B=-rac{1}{F^2}\langle 0|ar{q}q|0
angle \qquad M_\pi^2=2B\hat{m}$$

Leading order effective Lagrangian

The complete leading order effective Lagrangian of QCD reads:

$$\mathcal{L}_{2}=rac{\emph{F}^{2}}{4}\left[\left\langle \partial_{\mu}\emph{U}^{+}\partial^{\mu}\emph{U}
ight
angle +\left\langle 2\emph{B}\emph{M}\left(\emph{U}+\emph{U}^{+}
ight)
ight
angle
ight]$$

F is the pion decay constant in the chiral limit

B is related to the $\bar{q}q$ -condensate and to the pion mass

$$M_{\pi}^2=2B\hat{m}+O(\hat{m}^2)$$

$\pi\pi$ scattering to leading order

In the presence of quark masses the $\pi\pi$ scattering amplitude becomes

$$A(s,t,u) = \frac{s - M_{\pi}^2}{F_{\pi}^2}$$
 Weinberg (66)

The two S-wave scattering lengths read

$$a_0^0 = \frac{7M_\pi^2}{32\pi F_\pi^2} = 0.16$$
 $a_0^2 = -\frac{M_\pi^2}{16\pi F_\pi^2} = -0.045$

The chiral Lagrangian to higher orders

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_2 + \mathcal{L}_4 + \mathcal{L}_6 + \dots$$

 \mathcal{L}_2 contains (2,2) constants \mathcal{L}_4 contains (7,10) constants
Gasser, Leutwyler (84) \mathcal{L}_6 contains (53,90) constants
Bijnens, GC, Ecker (99)

The number in parentheses are for an SU(N) theory with N=(2,3)

The \mathcal{L}_4 Lagrangian

$$\mathcal{L}_{4} = L_{1}\langle D_{\mu}U^{\dagger}D^{\mu}U\rangle^{2} + L_{2}\langle D_{\mu}U^{\dagger}D_{\nu}U\rangle\langle D^{\mu}U^{\dagger}D^{\nu}U\rangle$$

$$+ L_{3}\langle D_{\mu}U^{\dagger}D^{\mu}UD_{\nu}U^{\dagger}D^{\nu}U\rangle + L_{4}\langle D_{\mu}U^{\dagger}D^{\mu}U\rangle\langle \chi^{\dagger}U + \chi U^{\dagger}\rangle$$

$$+ L_{5}\langle D_{\mu}U^{\dagger}D^{\mu}U(\chi^{\dagger}U + U^{\dagger}\chi)\rangle + L_{6}\langle \chi^{\dagger}U + \chi U^{\dagger}\rangle^{2}$$

$$+ L_{7}\langle \chi^{\dagger}U - \chi U^{\dagger}\rangle^{2} + L_{8}\langle \chi^{\dagger}U\chi^{\dagger}U + \chi U^{\dagger}\chi U^{\dagger}\rangle$$

$$- iL_{9}\langle F_{R}^{\mu\nu}D_{\mu}UD_{\nu}U^{\dagger} + F_{L}^{\mu\nu}D_{\mu}U^{\dagger}D_{\nu}U\rangle$$

$$+ L_{10}\langle U^{\dagger}F_{R}^{\mu\nu}UF_{L\mu\nu}\rangle$$

$$\begin{array}{lcl} D_{\mu}U & = & \partial_{\mu}U - ir_{\mu}U + iUI_{\mu} & \chi = 2B(s+ip) \\ F_{R}^{\mu\nu} & = & \partial^{\mu}r^{\nu} - \partial^{\nu}r^{\mu} - i[r^{\mu}, r^{\nu}] \\ r_{\mu} & = & v_{\mu} + a_{\mu} & I_{\mu} = v_{\mu} - a_{\mu} \end{array}$$

Summary

▶ I have discussed Goldstone's theorem and some of its physical implications at low energy

Summary

- ▶ I have discussed Goldstone's theorem and some of its physical implications at low energy
- ► The effective Lagrangian for Goldstone bosons is a tool to derive systematically the consequences of the symmetry on their interactions – I have discussed the principles that allow one to construct it

Summary

- ► I have discussed Goldstone's theorem and some of its physical implications at low energy
- ► The effective Lagrangian for Goldstone bosons is a tool to derive systematically the consequences of the symmetry on their interactions – I have discussed the principles that allow one to construct it
- The effective Lagrangian is useful also in the presence of a (small) explicit symmetry breaking – I have shown how to construct it even in this case