Supersymmetry searches at colliders

L. Pape (CERN)

Broad Outline

Some basics, models, sparticle spectra (Low energy experiments) Present and future accelerators

Higgs searches Sparticle decays

Existing limits on sparticles Future searches FRA

Some basic phenomenology

Contents:

- MSSM sparticle contents
- Gauge interactions
- Yukawa couplings
- (Unbroken MSSM Lagrangian)
- SUSY breaking models
- Sparticle spectroscopy
- See lectures by H.Haber

MSSM = minimal extension of SM:

Supermultiplet components: -Same gauge quantum numbers

- Differ only by 1/2 unit of spin

Gauge i	multiplet	Chiral multiplet			
J = 1	J = 1/2	J = 1/2	J = 0		
g	ĝ	$\boldsymbol{Q}_L, \boldsymbol{U}_L^C, \boldsymbol{D}_L^C$	$\widetilde{oldsymbol{Q}}_L, \widetilde{oldsymbol{U}}_L^C, \widetilde{oldsymbol{D}}_L^C$		
$\boldsymbol{W}^{\pm}, \boldsymbol{W}^{0}$	$\widetilde{oldsymbol{W}}^{ \pm}, \widetilde{oldsymbol{W}}^{ 0}$	$\boldsymbol{L}_{L}, \boldsymbol{E}_{L}^{C}$	$\widetilde{L}_L^{}, \widetilde{E}_L^C^{}$		
\boldsymbol{B}^0	$\widetilde{oldsymbol{B}}^{0}$	$\widetilde{H}_{d},\widetilde{H}_{u}$	$\boldsymbol{H}_{d}, \boldsymbol{H}_{u}$		

Zuoz Summer school 16-20/08/04

Luc Pape, CERN

CERN

Quantum Numbers

Chiral supermultiplet:

e.g. 1st family Charge is SU(3),SU(2),U(1) $Q = I_3 + Y/2$

Gauge supermultiplet: After EW symmetry breaking Mixing $\widetilde{W}^{\pm}, \widetilde{H}^{\pm} \Rightarrow c_{1-2}^{\pm}$ charginos Mixing $\widetilde{W}^{0}, \widetilde{B}^{0}, \widetilde{H}_{d}^{0}, \widetilde{H}_{u}^{0} \Rightarrow c_{1-4}^{0}$ neutralinos

	Charge		Scalar			
Q	(3,2,+1/3)		9	$Q = (\widetilde{u}_L, \widetilde{d}_L)$		
Uc	(3,1,-4/3)			$U^c = \widetilde{u}_L^c$		
Dc	(3,1,+2/3) (1,2,-1) (1,1,+2)		$D^c = \widetilde{d}_L^c$			
L			$L = (\widetilde{\mathbf{n}}_L, \widetilde{e}_L)$			
Ec			$E^c = \widetilde{e}_L^c$			
H _d	(1,2,-1)		H	$\overline{H}_d = (H_d^0, H_d^-)$)	
H _u	H _u (1,2,+1		H	$f_u = (H_u^+, H_u^0)$)	
Ferm	nion	VB		Charge		
\widetilde{g} (glu	\widetilde{g} (gluino) \widetilde{W} (Wino)			(8,1,0)		
₩̃ (W				(1,3,0)		
$\widetilde{\boldsymbol{B}}^{0}$ (Bi	no)	B ⁰		(1,1,0)		

From SM to MSSM interactions

- SM multiplets ? MSSM supermultiplets
 - By including superpartners differing by 1/2 unit in spin
 - Supermultiplets: Chiral = (ψ, ϕ) , Gauge = (A, λ)
- - But: amplitudes must be scalars in spin space
 - To go from SM to MSSM interaction:

Replace pair of SM particles by their superpartners

 Will not produce all MSSM interactions, But it provides a useful mnemonic

Gauge interactions (trilinear) Trilinear interactions as they control production and decay: $(A\phi\phi)$ SM: $(A\psi\psi)$ (λφψ) $g_1 = e/\cos q_W$, $g_2 = e/\sin q_W$, $a = e^2/4p$ SM: (AAA) (Αλλ) Strength: $\mathbf{a}_i = g_i^2/4\mathbf{p}$ $\mathbf{a}_1 \sim 1/100$, $\mathbf{a}_2 \sim 1/30$, $\mathbf{a}_3 \sim 0.12$

More formally: derived from covariant derivatives

Zuoz Summer school 16-20/08/04

Luc Pape, CERN

Yukawa interactions


```
Y_t=0.17-0.08, Y_b=1.10^{-4}-6.10^{-2}, Y_t=2.10^{-5}-1.10^{-2}
```

Y_=6.10⁻⁸-5.10⁻⁵, **Y**_e=1.10⁻¹²-1.10⁻⁹

Top Yukawa can never be neglected Bottom and Tau Yukawas for large tanβ

More formally: derived from Superpotential

Zuoz Summer school 16-20/08/04

Luc Pape, CERN

Operator dimensions

Supermultiplets: Chiral = (ψ, ϕ) , Gauge = (A, λ) • Lagrangian dimension = (E) In field theory: Lagrangian density L $[L] = (E/L^3) \rightarrow [L] = (E^4)$ • Fermion fields: kinetic term: **y[gy** \rightarrow [ψ] = (E)^{3/2} • Scalar fields: → [\phi] = (E)¹ Kinetic term: ¶_i *¶"i • Vectro boson fields: Kinetic term: $F_{\mathbf{m}}F^{\mathbf{m}}, F_{\mathbf{m}} = \P_{\mathbf{m}}A_{\mathbf{n}} - \P_{\mathbf{n}}A_{\mathbf{m}} + \dots$ \rightarrow [A] = (E)¹

Superpotential

- Specifies the Yukawa couplings
- Invariance under SUSY transformations:
 - Polynomial of order 3 in scalar fields, analytic function

$$W = \mathbf{e}_{ij} \left(- \widetilde{L}_L^i h_L \widetilde{E}_L^c H_d^j - \widetilde{Q}_L^i h_D \widetilde{D}_L^c H_d^j + \widetilde{Q}_L^i h_U \widetilde{U}_L^c H_u^j + \mathbf{m} H_u^i H_d^j \right)$$

- h_i= Yukawa couplings (matrices in generation space)
- μ = dimension of mass \rightarrow mixing of Higgs fields
- ϵ_{ij} = to make SU(2) scalars (ϵ_{12} = - ϵ_{21} =+1)
- Conserves B and L (R_p =+1 for SM particles, -1 for superpartners)
- But: additional terms are allowed which violate R_p
- Note: W is not a potential (dimension 3)
- Is a function from which to derive pieces of the Lagrangian Chiral fermions contribution and part of the scalar potential

Chiral fermions contribution

Chiral fermions contribution: $L_{chir} = -\frac{1}{2} \frac{\partial^2 W}{\partial f_i \partial f_j} \mathbf{y}_j \mathbf{y}_j + h.c.$

Contains fermion mass terms and Yukawa interactions:

• $\sim h_d (d_L d_L^c) H_d^0$ SM-like mass term after EW symm. Breaking

$$m_d = h_d < H_d^0 >= h_d v \cos \boldsymbol{b}$$

$$m_u = h_u < H_u^0 >= h_u v \sin \boldsymbol{b}$$

• $\mathbf{m} \left(\widetilde{H}_{d}^{0} \widetilde{H}_{u}^{0} - \widetilde{H}_{d}^{-} \widetilde{H}_{u}^{+} \right)$ mass mixing terms for higgsinos

Scalar potential

$$V(\mathbf{f}_i) = F_i^* F_i + \frac{1}{2} D^a D^a \qquad F_i = \frac{\partial W}{\partial \mathbf{f}_i}, \qquad D^a = -g \mathbf{f}_i^* T_{ij}^a \mathbf{f}_j$$

F-term, or chiral contribution • $|\mathbf{m}|^2 \left(|H_d^0|^2 + |H_u^0|^2 \right)$ quadratic Higgs term • $\partial W / \partial H_d \Rightarrow \mathbf{m}^* h_d (\tilde{d}_I \tilde{d}_I^c) H_u^{0*}$ mixing L and R sfermions D-term, or gauge contribution • Forced by supersymmetry and gauge invariance $\frac{1}{2}g_{2}^{2}\left(H_{d}^{*}\frac{\boldsymbol{t}^{a}}{2}H_{d}+H_{u}^{*}\frac{\boldsymbol{t}^{a}}{2}H_{u}\right)^{2}+\frac{1}{8}g_{1}^{2}\left(|H_{u}|^{2}-|H_{d}|^{2}\right)$ → Quartic Higgs interaction with gauge coupling strength as $|\mu|^2 > 0$, no vev is generated, masses are 0

SUPERSYMMETRY BREAKING

Unbroken MSSM

- Unbroken SUSY introduces new interactions but no new parameters
- All particles are massless
- Superpartners must be heavier than SM particles → SUSY broken
- Soft SUSY breaking (soft = no quadratic divergences)

 $\mathbf{d} V = \sum_{\tilde{q}, \tilde{l}, H_{d,u}} m^{2}_{0,i} |\Phi_{i}|^{2} + m_{1/2,a} \mathbf{l}_{a} \mathbf{l}_{a} + h.c.$

 $+A_{0,e}\widetilde{L}_{L}^{i}h_{L}\widetilde{E}_{L}^{c}H_{d}^{j}+A_{0,d}\widetilde{Q}_{L}^{i}h_{D}\widetilde{D}_{L}^{c}H_{d}^{j}+A_{0,u}\widetilde{Q}_{L}^{i}h_{U}\widetilde{U}_{L}^{c}H_{u}^{j}+B_{0}\mathbf{M}_{d}H_{u}+h.c.$

m_{0,i} scalar masses (matrix in generation space)
 m_{1/2,a} gaugino masses

Parametrization of our ignorance of SUSY breaking mechanism

→ Effective Lagrangian to derive phenomenology

Gauge coupling unification

Renormalization Group Equations (RGE):

• Connect gauge couplings at some scale q₀ to a scale q

$$\mathbf{a}_{a} \circ \frac{\mathbf{g}_{a}^{2}}{4\mathbf{p}} \quad \frac{\mathbf{d}}{\mathbf{dt}} \mathbf{a}_{a}^{-1}(t) = -\frac{\mathbf{b}_{a}}{4\mathbf{p}}, \quad t \circ \ln(\frac{\mathbf{q}_{0}^{2}}{\mathbf{q}^{2}})$$

 b_a are constants related to the charges under groups U(1), SU(2), SU(3) summed over all particles entering the loops, e.g.

SM particles only: $b_a = (41/10, -19/6, -7)$

Including MSSM particles: $b_a = (33/5, 1, -3)$

 RGEs allow extrapolation of couplings from weak scale, linear in α⁻¹ (at 1 loop)

Gauge coupling unification

 $1/\alpha_{i}$

60

50

40

30

20

10

0

1∀a.

Va,

1√as

- Do couplings unify at some scale? (GQW1974)
 - Precisely known since measurements at LEP (1991)
 - Evolving with 2-loop RGEs:
 - do not meet if SM only
 - meet if MSSM with sparticles around 1-10 TeV

W.de Boer, 1998

Gives support to the GUT idea and to MSSM With $M_{GUT} = 2 \ 10^{16} \text{ GeV}$, $\alpha_{GUT} = 1/24$ First experimental hint that there is something beyond SM

Zuoz Summer school 16-20/08/04

Mass Universality, MSUGRA

In general MSSM

- Many new parameters → MSSM124
- Most parameters involve flavour mixing or CP violating phases
- Universal mass parameters
 - Catastrophy is evaded by asuming Universality at GUT scale:
 - \rightarrow m_{0,I} = m₀, common scalar mass
 - \rightarrow m_{1/2,a} = m_{1/2}, common gaugino masses

$$\Rightarrow A_{0,i} = A_{0,i}$$

Remaining parameters:

$$\mathsf{m}_{\mathsf{0}}$$
 , $\mathsf{m}_{\mathsf{1/2}}$, A_{0} , B_{0} , \mathbf{m}

Called MSUGRA

MSUGRA Spectroscopy(1)

Parameters defined at the GUT scale

Run down to EW scale by Renormalization Group Equations (RGE)

11855 [CeV

600

590

400

393

300

100

Sfermions: m₀

- -Squarks increase fast (α_s)
- -Sleptons increase slower
- Gauginos: m_{1/2}
- -Gluino increases fast
- -Bino/Wino masses decrease (mix with higgsinos)
 - → 2 charginos, 4 neutralinos

Usually: lightest \mathbf{c}_{1}^{0} is Lightest SUSY Particle (LSP) \rightarrow stable \rightarrow

Zuoz Summer school 16-20/08/04

Luc Pape, CERN

16 Ice_n O

 $\sqrt{\mu_0 + \mu_0}$

W.de Boer, 1998

10

1.2

н

loq.

MSUGRA Spectroscopy(2)

Higgs mass parameters H_u and H_d at the GUT scale:

Large Yukawa coupling of H_u to t-quark

Drives mass² parameter of H_u < 0

Triggers EW symmetry breaking
 Radiative EWSB occurs naturally

in MSSM

Minimization of Higgs potential

→reduces number of parameters

 m_0 , $m_{1/2}$, A_0 , tan**b**, sgn(**n**)

$$\tan\beta = v_u / v_d$$

 $\sqrt{m_0^2 + m^2}$

Zuoz Summer school 16-20/08/04

Luc Pape, CERN

Focus Point scenario

-1

103

106

 10^{9}

Q (GeV)

 10^{15}

1012

CERN

Chargino/neutralino masses

- Gauginos mix with higgsinos • Off diagonal coupling $(\mathbf{l}, \mathbf{j}, \mathbf{y}) \mathbf{P} (\tilde{W}^+ H_d^0 \tilde{H}_d^-)$
- Mass matrices:
 - Charginos (2x2) matrix: M_2 , μ , tan β
 - Neutralinos (4x4) matrix: M_1 , M_2 , μ , tan β
 - In limit where neglect terms in $tan\beta$, simplify to

 $M(\mathbf{c}_1^{\pm}) * M_2, M(\mathbf{c}_2^{\pm}) * \mathbf{m}$

 $M(\mathbf{c}_1^0) \gg M_1, M(\mathbf{c}_2^0) \gg M_2, M(\mathbf{c}_3^0) \gg M(\mathbf{c}_4^0) \gg \mathbf{m}$

O → two extreme cases:

 $\mathbf{M}_{2} \longrightarrow \text{Lightest } \chi \text{ are "gaugino-like"}$ $\mathbf{M}_{2} >> \mathbf{M} \longrightarrow \text{Lightest } \chi \text{ are "higgsino-like"}$

• In MSUGRA (+GMSB): usually gaugino-like, χ_1^0 =Bino, χ_2^0, χ_1^{\pm} =Winos

Squark and slepton masses(1)

First two families: start from m₀ at GUT scale

- Yukawas are negligible
- Running dominated by $m_{1/2}$ and $\alpha_i s$
- Splitting by D-term (sfermion)²(higgs)² after SU(2)xU(1) breaking
- At weak scale (approx. formulae)

$$m^{2}(\tilde{u}_{L}) = m_{0}^{2} + 5.9m_{1/2}^{2} + 0.35\cos 2\mathbf{b}M_{Z}^{2}$$

$$m^{2}(\tilde{d}_{L}) = m_{0}^{2} + 5.9m_{1/2}^{2} - 0.42\cos 2\mathbf{b}M_{Z}^{2}$$

$$m^{2}(\tilde{u}_{R}) = m_{0}^{2} + 5.5m_{1/2}^{2} + 0.15\cos 2\mathbf{b}M_{Z}^{2}$$

$$m^{2}(\tilde{d}_{R}) = m_{0}^{2} + 5.4m_{1/2}^{2} - 0.07\cos 2\mathbf{b}M_{Z}^{2}$$

$$m^{2}(\tilde{e}_{L}) = m_{0}^{2} + .49m_{1/2}^{2} - 0.27\cos 2\mathbf{b}M_{Z}^{2}$$

$$m^{2}(\tilde{\mathbf{n}}_{L}) = m_{0}^{2} + .49m_{1/2}^{2} - 0.50\cos 2\mathbf{b}M_{Z}^{2}$$

$$m^{2}(\tilde{\mathbf{e}}_{R}) = m_{0}^{2} + .49m_{1/2}^{2} - 0.23\cos 2\mathbf{b}M_{Z}^{2}$$

D-term sum rule: $m_{\tilde{e}_L}^2 - m_{\tilde{n}_L}^2 = m_{\tilde{d}_L}^2 - m_{\tilde{u}_L}^2 = -M_W^2 \cos 2\mathbf{b}$ note that m_{gluino} is at most ~1.2 m_{squark} (for $m_0=0$)

Squark and slepton masses(2)

Third family: Yukawa couplings cannot be neglected

At weak scale
$$(\tan\beta = 10)$$

 $m^{2}(\tilde{t}_{L}) = m_{t}^{2} + .69m_{0}^{2} + 5.0m_{1/2}^{2} + 0.35\cos 2\mathbf{b}M_{Z}^{2}$
 $m^{2}(\tilde{b}_{L}) = m_{b}^{2} + .69m_{0}^{2} + 5.0m_{1/2}^{2} - 0.42\cos 2\mathbf{b}M_{Z}^{2}$
 $m^{2}(\tilde{t}_{R}) = m_{t}^{2} + .33m_{0}^{2} + 3.7m_{1/2}^{2} + 0.15\cos 2\mathbf{b}M_{Z}^{2}$
 $m^{2}(\tilde{b}_{R}) = m_{b}^{2} + m^{2}(\tilde{d}_{R})$

O → Yukawa couplings decrease mass

• Also L-R mixing: SUSY breaking and F-term

$$\begin{array}{ccc} & \boldsymbol{m}^{2}(\tilde{t}_{L}) & \boldsymbol{m}_{t}(\boldsymbol{A}_{t} - \mathbf{m}\cot \mathbf{b}) \ddot{\mathbf{p}} \\ & \boldsymbol{m}_{t}(\boldsymbol{A}_{t} - \mathbf{m}\cot \mathbf{b}) & \boldsymbol{m}^{2}(\tilde{t}_{R}) & \ddot{\boldsymbol{p}} \\ & \boldsymbol{p} & \boldsymbol{m}_{\tilde{t}_{1,2}}^{2} = \frac{1}{2} \left[\boldsymbol{m}_{\tilde{t}_{L}}^{2} + \boldsymbol{m}_{\tilde{t}_{R}}^{2} \mp \sqrt{(\boldsymbol{m}_{\tilde{t}_{L}}^{2} - \boldsymbol{m}_{\tilde{t}_{R}}^{2})^{2} + 4\boldsymbol{m}_{t}^{2}(\boldsymbol{A}_{t} - \mathbf{m}\cot \mathbf{b})^{2}} \right] \\ & \boldsymbol{o} & \boldsymbol{p} & \boldsymbol{m}_{\tilde{t}_{1,2}}^{2} = \frac{1}{2} \left[\boldsymbol{m}_{\tilde{t}_{L}}^{2} + \boldsymbol{m}_{\tilde{t}_{R}}^{2} \mp \sqrt{(\boldsymbol{m}_{\tilde{t}_{L}}^{2} - \boldsymbol{m}_{\tilde{t}_{R}}^{2})^{2} + 4\boldsymbol{m}_{t}^{2}(\boldsymbol{A}_{t} - \mathbf{m}\cot \mathbf{b})^{2}} \right] \\ & \boldsymbol{o} & \boldsymbol{S} \text{imilar for sbottom/stau replacing } \cot \boldsymbol{\beta} \text{ by } \tan \boldsymbol{\beta} \end{array}$$

Lightest squark: $\tilde{t}_1(low \tan b), \tilde{b}_1(high \tan b)$

Zuoz Summer school 16-20/08/04

Luc Pape, CERN

Example MSUGRA spectrum

Stable neutralino LSP Low m₀

High m₀ (Focus Point)

Zuoz Summer school 16-20/08/04

Luc Pape, CERN

Loops: $m_{soft} = \frac{a}{4p} \sqrt{F}$, for m_{soft} at EW scale $\sqrt{F} \approx 10^4 - 10^5 GeV$ Gravitino is the LSP (m ~ eV)

Parameters

• M= messenger scale (amount of RGE evolution)

• $\Lambda \approx \sqrt{F}$ mass splitting of scalar messengers (F= vev of X)

- N= messenger index, where a 5 contributes with 1 and a 10 with 3
- ${\color{black} \bullet}\ \mu$ and B obtained from gauge boson mass and $tan\beta$

Λ, M, N, tanβ, sign(μ)

Gauginos:

$$M_a = \frac{\boldsymbol{a}_a(t)}{4\boldsymbol{p}} N\Lambda \qquad t = \ln \left(M^2 / Q^2 \right)$$

Scalars (at messenger scale):

$$\widetilde{m}^2 = 2N\Lambda^2 \sum C_a \left(\frac{\boldsymbol{a}_a}{4\boldsymbol{p}}\right)^2$$

With C₃=4/3 (=0 if singlet), C₂=3/4 (=0 if singlet), C₁=3/5.(Y/2)²
 Note the different dependence on N

GMSB spectroscopy

Zuoz Summer school 16-20/08/04

Luc Pape, CERN

CERN

Anomaly Mediated SUSY Breaking

Principle

- SUGRA Lagrangian has conformal (=scale) invariance
- But broken at quantum level due to cut-off scale (regularization)
- Leads to residual couplings (anomaly) to observable fields

Parameters

- In pure AMSB, only 1 parameter m_{3/2}=gravitino mass
- But leads to tachyonic sleptons \rightarrow introduce m_0 (universal scalar mass)
- \bullet Also tanß and μ
- After imposing correct EWSB

m_{3/2}, m₀, tanβ, sign(μ)

AMSB Spectroscopy

Charginos/neutralinos:

- $(M_1, M_2, M_3) = (2.8:1:-7.1)$
- Wino lighter than Bino
- χ_1^{\pm} nearly degenerate with χ_1^{0}
- μ (from EWSB) larger than in MSUGRA

Scalars:

 Sleptons L and R of 1st 2 families nearly degenerate (accidental) with mass m₀

Signature:

E_{miss'} like MSUGRA
 χ₁[±]→ π[±] χ₁⁰ (soft pion) may be long lived

Comparison of Spectra

• Mass relative to χ_1^{\pm}

<u>CERN</u>

R-parity violation

SUSY permits to add terms to Superpotential

 $W_{RPV} = \mathbf{I}_{ijk} \widetilde{L}_i \widetilde{L}_j \widetilde{E}_k^c + \mathbf{I}'_{ijk} \widetilde{L}_i \widetilde{Q}_j \widetilde{D}_k^c + \mathbf{I}''_{ijk} \widetilde{U}_i^c \widetilde{D}_j^c \widetilde{D}_k^c$

- Yukawa couplings with i,j,k=generation indices
- Violate conservation of R-parity $R_p = (-1)^{3B+L+2S}$
- 1st 2 terms $\Delta L=1$, last term $\Delta B=1$

New parameters:

- λ : antisymmetric by SU(2) invariance: i<j, 9terms
- λ': 27 terms
- λ'' :antisymmetric by SU(3)_c invariance: j<k, 9 terms
 - → 45 new free parameters

R-parity violation

- Constrained by proton lifetime
 - λ' and λ'' non zero
- Several other low energy constraints
 - Review by H.Dreiner hep-ph/9707435
- LSP Neutralino decays
 - Via fermion-sfermion pair, followed by RPV decay
 - Missing energy signature is lost
 - New signatures appear (additional leptons and/or jets)
- LSP could be sfermion, decaying via RPV
- Single production of sfermions
 - E.g. sneutrino at LEP or squark at HERA

SUSY Signatures

Low Energy Measurements

Contents

- b \rightarrow s γ decay
- Other FCNC decays of b and s
- \circ g_µ 2 saga
- Many others
 - Proton decay, K0-K0bar oscillations, lepton violating decays, CP violation, electric dipole moments, atomic parity violation, LEP/SLC precision measurements ...

May bring first evidence for physics beyond the SM

- → Keep eyes wide open!
- See lectures of D.Wyler and W.Hollik

Accelerators

Contents

- Present accelerators
 Future funded accelerators
- Future proposed accelerators

Present accelerators

			vs, GeV	pb ⁻¹ /exp
LEP	e⁺e⁻	ADLO		
	LEP 1	1989-95	91	150
	LEP 2	95-2000	130-208	700
Tevatron	p-p	CDF,D0		
	Run 1		1800	110
	Run 2	01-~08	2000	? (3-20.10 ³)
HERA	e⁺p	H1,Zeus		
		1993-97	300	50
		98-~07	318	?(1.10 ³)

CERN

Future accelerators LHC (funded, at CERN) • Expected to start in ~Summer 2007, true data taking 2008 • $E_{cm} = 14 \text{ TeV}, \text{ p+p}$ • Run ~3 years at luminosity= 10^{33} cm⁻²s⁻¹ (~10 fb⁻¹/year) • Continue at 10³⁴cm⁻²s⁻¹ (~100 fb⁻¹/year) e+e- Collider • 3 techniques proposed: TESLA, NLC, JLC Start at 0.5, upgrade to ~1 TeV Decision on technique this year Detailed TDR for 2007, site selection 2008(?) • CLIC up to 3-5 TeV Feasibility to be demonstrated for 2010 Construction could start in 2013 (last 7 years) Others: µ collider, VLHC
Sparticle production Two basically different approaches e⁺e⁻ collider Pure partonic interactions fixed E_{cm}= partonic energy (kinematical constraints) allows E scans (e.g. thresholds) to be made/polarization precision measurements

but limited $\mathrm{E}_{\mathrm{cms}}$

Hadron collider (p-p or p-p)
 Variable partonic energy, e.g.

$$\mathbf{S}_{qg} = \mathbf{d} x_q dx_g \cdot F_q(x_q) \cdot F_g(x_g) \cdot \mathbf{S}_{qg}(s' = x_q x_g s)$$

but machine reaches higher energy

→ exploratory machine

SUSY Higgses

Contents

• Higgs mass in SM

- Higgs mass in MSSM
- Higgs mass radiative corrections
- Production in e+e- colliders
- Limits from LEP and Tevatron
- Future searches: Tevatron, LHC and LC

Higgs mass in SM (1)

• Higgs mass: $M_{H^2} = 2 v^2 \lambda(v)$ for v = 175 GeV

 \bullet Parameters μ and λ are free in SM

➔ Higss mass is undetermined in SM

`FDN

Higgs mass in SM (2)

Limits on Higgs mass can be derived from rad.corr.

• RGE evolution of λ due to Higgs and top (h_t=Yukawa) loops: $d\mathbf{I}(t) = 3$ ($\mathbf{I}_{2} + \mathbf{I}_{4}^{2} - \mathbf{I}_{4}^{4}$) ($\mathbf{I}_{2} + \mathbf{I}_{4}^{2} - \mathbf{I}_{4}^{4}$)

~FDA

Higgs in MSSM

In MSSM: 2 Higgs fields \rightarrow 8 degrees of freedom 3 are used to make W^{\pm} and Z^{0} massive $H_{d} = \begin{pmatrix} H_{d}^{0} \\ H_{d}^{-} \end{pmatrix} \quad H_{u} = \begin{pmatrix} H_{u}^{+} \\ H_{u}^{0} \end{pmatrix}$ MSSM contains 5 physical Higgs states • 2 charged scalars H[±] Mixture of H_d^- and H_{u^+} , fixed by tan β • 1 neutral CP-odd A⁰ Mixture of $Im(H_d^0)$ and $Im(H_u^0)$, fixed by tan β • 2 neutral CP-even h⁰ and H⁰ Mixture of Re(H_d⁰) and Re(H_H⁰), with mixing angle α

Higgs mass at tree level

From scalar potential, tree level masses are:

$$m_{H^{\pm}}^{2} = M_{W}^{2} + m_{A}^{2}$$

$$m_{H,h}^{2} = \frac{1}{2} (m_{A}^{2} + M_{Z}^{2}) \pm \frac{1}{2} \sqrt{(m_{A}^{2} + M_{Z}^{2})^{2} - 4m_{A}^{2}M_{Z}^{2} \cos^{2} 2\mathbf{b}}$$

Higgs masses depend on only 2 parameters: m_A and tanβ
 tanβ→1: m_h=0, m_H²=M_Z²+m_A²
 tanβ→8:m_h, m_H⁰=min,max(M_Z,m_A)

Mass hierarchy at tree level:

$$\bullet 0 = m_h = M_Z |\cos 2\beta|$$

•
$$m_h = m_A = m_H^{C}$$

•
$$m_{H^0} = M_Z$$

o
$$m_{H^{\pm}} = M_{W}$$

Expect light h^0 (coupling of $|\phi|^4$ term of gauge strength)

observable at LEP2

But radiative corrections are large, especially on m_h

Higgs mass radiative corrections

Zuoz Summer school 16-20/08/04

Luc Pape, CERN

Higgs masses, summary

Zuoz Summer school 16-20/08/04

Luc Pape, CERN

Higgs decays

```
Light Higgs h<sup>0</sup> <130 GeV:</p>
     • B(bb)~80-85%, B(\tau\tau) ~8%, B(\mu\mu) ~2.10<sup>-4</sup>, B(\gamma\gamma) ~1.5.10<sup>-3</sup>
     • For m_h > 120 GeV B(WW<sup>*</sup>) and B(ZZ<sup>*</sup>) increase
■ H<sup>0</sup>/A<sup>0</sup> (>130 GeV):
     • Large tan\beta>10: B(bb) dominates, B(\tau\tau) ~10%,
     • Small tan\beta: H<sup>o</sup> \rightarrow WW<sup>*</sup>, ZZ<sup>*</sup>, hh dominate
                     and A^0 \rightarrow 7h dominates
        but for m(H,A)>350 GeV B(tt)~90%
⊨ ⊢l±!
     • m(H<sup>±</sup>)<m<sub>t</sub>: B(τν)~100%
     • For m(H<sup>±</sup>)>200 GeV: B(tb) dominates, B(\tau v)~10%
All can decay to gauginos (depends on parameters)
```

Production in e⁺e⁻ machines(1)

Higgsstrahlung

Fusion (small) Associated production

$$e^+e^- \rightarrow h^0 Z$$
, $\mathbf{s} \propto \sin^2(\mathbf{b} - \mathbf{a})$
 $e^+e^- \rightarrow h^0 A$, $\mathbf{s} \propto \cos^2(\mathbf{b} - \mathbf{a})\mathbf{r}$

 α is mixing angle of h^o and H^o

The processes are complementary

Production in e⁺e⁻ machines(2)

Higgs search topologies

h⁰ Z topologies:

 $Z^0 \rightarrow l^+ l^-$

• $B(h^{0?} b-bbar)=86\%$, $B(h^{0?} \tau-\tau bar)=8\%$

 $\begin{array}{c} h^0 \rightarrow b\overline{b} \\ B.R.=9.3\% \\ \end{array} \qquad B.R.=18\% \\ \end{array}$

 $Z^0 \to q\overline{q} \\ h^0 \to b\overline{b}$

B.R.=64%

• Also $h^0 \rightarrow tt Z^0 \rightarrow q\overline{q}$ (B.R.=5.4%) included in search • For m_h > 130 GeV WW* and ZZ* become important

 $Z^0 \rightarrow n\bar{n}$

h⁰ A topologies

- For m_A<350 GeV: *bb bb*, *bb tE*, 4*t*
- For $m_A > 350$ GeV: $A \rightarrow tt$ may be important

Zuoz Summer school 16-20/08/04

<u>`ERN</u>

Higgs mass limits from LEP

LEP 95% C.L. exclusion from ADLO: Maximal stop mixing (m_h^{max}) No stop mixing LEP 88-209 GeV Preliminary LEP 88-209 GeV Preliminary tanβ tanß No Mixing m_{h°}-max 10 10 Excluded Excluded by LEP by LEP Theoretically 1 1 Inaccessible Theoretically Inaccessible 80 100 120 140 20 0 20 40 60 40 60 80 100 120 140 0 m_{h^0} (GeV/c²) m_{h^0} (GeV/c²) m_h=114.1 GeV Large m_A : For m_b^{max}: $\tan\beta = 2.4$ $m_{h}=91.0, m_{A}=91.9 \text{ GeV}$ Zuoz Summer school Luc Pape, CERN

16-20/08/04

49

Non-conventional Higgses

Charged Higgs at Tevatron

- Searched in t-tbar, t→H+b
 - BR large if tanβ large or very low
- Indirect search:
 - Measure σ (ttbar), t \rightarrow Wb
 - Theory \rightarrow limit on BR(t \rightarrow H⁺b)
- At tan $\beta > 1$: $H^+ \rightarrow t^+ n$
 - O → direct search
- At very low tan β : $H^+ \rightarrow c\bar{s}$
 - Ratio method
 - Evts 1I+jets from WbWb or HbWb
 - Evts 2I+jets only from WbWb
 - \rightarrow ratio gives limit BR(t \rightarrow H⁺b)
 - Caveat: neglects other decays:

 $H^{\pm} \otimes h^0 W^{\pm}, \mathbf{c}^{\pm} \mathbf{c}^0, \widetilde{\mathbf{t}} \widetilde{\mathbf{n}}$

Future searches: Tevatron(1)

Anastasiou, Melnikov, hep-ph/0207004

2 curves: $\mu=m_H/2, 2m_H$

Future searches: Tevatron(2)

Tevatron Run II

- After 2 fb⁻¹: Excl 120 GeV (95% CL)
- After 11 fb⁻¹ for 2008
 Excl 180 GeV (95% CL)
 3 σ < 130, 155-175 GeV
 5 σ < 110 GeV
- Discovery up to 130 GeV would require 30 fb⁻¹

Future searches: LHC(1)

Dominant cross sections:

- Gluon fusion
- Higgsstrahlung, e.g. Hb-bbar at high tanβ
- Gauge boson fusion (Hqq) low, especially at high tanβ)
- Associated production with VB (strongly suppressed)

Future searches: LHC(2)

Low Higgs mass region: O H→γγ most powerful Already with 30 fb⁻¹ get 50

- Already with 30 fb⁻¹ get 5σ up to 150 GeV
- ~60 fb⁻¹: $qqH, H \rightarrow tt$
- >60-100 fb⁻¹: $t\bar{t}H, H \rightarrow bb$
- O → several modes observable
- Higher masses > 130 GeV
 - H→WW*,ZZ*

Already with 10 fb⁻¹

Future searches: LHC(3)

Up to highest masses, with < 30 fb-1 ● Using H→WW,ZZ

SM(-like) Higgs

Future searches: LHC(4)

 h⁰→γγ only for m_A>200 GeV
 Importance of tth, h→bb and qqh, h→ττ
 Still m_A<130 GeV not covered (m_h<120 GeV, not SM-like)
 Hope to cover with gg→bbh, h→μμ,ττ (or sparticle decays)

Caveat:

- $gg \rightarrow h^0$ from loops with t or b
- In SUSY also stop+sbottom
 Stop-top negative interference
- May preclude discovery by $h^0 \rightarrow \gamma \gamma$ if $m(\tilde{t_1}) < 200 GeV$

Future searches: LHC(5)

<u>CERN</u>

Higgs from sparticle decays
 See later

Future searches: LHC

Old figure:

Zuoz Summer school 16-20/08/04

Luc Pape, CERN

Future searches: LC

Cross-section

- Familiar from LEP200
- Increase of fusion

Future searches: LC

Battaglia et al., hep-ex/0201018

Future searches: MuCOL

- MuCOL may produce Higgs in s-channel
- Expects ~1 fb⁻¹ per year
- can have very small beam energy spread
 - Ideal for line shape measurement
 - could measure
 - Mass to ±0.1 MeV (at 110 GeV)
 - Width to ±0.5 MeV
 - Cross-section to ±5%

Sparticle decays

Contents

- Chargino/neutralino
- Sleptons
- Squarks and gluinos

Chargino/neutralino decays

Chargino		Neutralino	
$\mathbf{c}_{i}^{\pm} \otimes \widetilde{\mathbf{n}} + l, \widetilde{l} + \mathbf{n}$	(ljy)	$\mathbf{c}_{i}^{0} \otimes \widetilde{\boldsymbol{l}} + \boldsymbol{l}, \widetilde{\mathbf{n}} + \mathbf{n}$	(ljy)
$\mathbf{c}_i^{\pm} \otimes \mathbf{c}_j^0 + W^{\pm}$	(A 11), (A yy)	$\mathbf{c}_i^0 \otimes \mathbf{c}_j^0 + \mathbf{Z}^0$	(Ayy)
$\mathbf{c}_{2}^{\pm} \otimes \mathbf{c}_{1}^{\pm} + \mathbf{Z}^{0}$	(A 11),(A yy)	$\mathbf{c}_{i}^{0} \otimes \mathbf{c}_{1}^{\pm} + \mathbf{W}^{\mp}$	(A 11),(A yy)
$\mathbf{c}_i^{\pm} \otimes \mathbf{c}_j^0 + H^{\pm}$	(ljy)	$\mathbf{c}_{i}^{0} \otimes \mathbf{c}_{j}^{0} + \boldsymbol{H}^{0}$	(ljy)
$\mathbf{c}_{2}^{\pm} \otimes \mathbf{c}_{1}^{\pm} + \boldsymbol{H}^{0}$	(ljy)	$\mathbf{c}_i^0 \ \mathbf{\mathbb{B}} \ \mathbf{c}_1^{\pm} + \boldsymbol{H}^{\mp}$	(ljy)
		$c_2^0 \otimes c_1^0 + g$	Loop decay

Are couplings with gauge strength

Dominant one depends on spectrum and χ^{\pm}/χ^0 composition

Zuoz Summer school 16-20/08/04

Luc Pape, CERN

Slepton decays

Slepton decay: *l*[±] (*s*) *c*⁰_i + *l*[±], *c*[±]_i + *n* (*ljy*)
slepton_L prefers a Wino (χ[±]₁ or χ⁰₂ in MSUGRA → cascade)
slepton_R only decays to a Bino (χ⁰₁ in MSUGRA)
Stau decays may be more complicated:
At large tanβ, Yukawa couplings contribute
can decay to higgsino
e.g. *t_R* (*k*) *h*⁰ + *t[±]*, *h[±]* + *n_t*But only *t_L* (*k*) *h*⁰ + *t[±]* is possible and *t_L* (*k*) *h[±]* + *n_t* is forbidden, as higgsino requires helicity flip

Squark/gluino decays

Squark strong decay: $\tilde{q} \otimes \tilde{g} + q$ for $m(\tilde{q}) > m(\tilde{g})$ • Preferred if kinematically allowed Electroweak decay: $\tilde{q} \otimes \mathbf{c}_{i}^{0} + q, \mathbf{c}_{i}^{\pm} + q'$ (**1** i y) • squark_L prefers a Wino (χ^{\pm}_1 or χ^0_2 in MSUGRA \rightarrow cascade) • squark_R only decays to a Bino (χ^0_1 in MSUGRA) Stop EW decay: • For light stop (m < m(χ^{\pm}_1)) above decays forbidden \rightarrow Loop decay $\tilde{t}_1 \otimes \mathbf{c}_1^0 + c$ may dominate Gluino decay: $\tilde{g} \otimes \tilde{q} + \bar{q}$ for $m(\tilde{q}) < m(\tilde{g})$ If lighter than squarks: $\widetilde{g} \otimes \mathbf{C}^{\pm} + q + \overline{q}', \mathbf{C}^{0} + q + \overline{q}, \mathbf{C}^{0} + g$ Caveat: only main decay modes • Others in special regions of parameter space, e.g. $\tilde{b} \rightarrow \tilde{t}_1 + W$ • For stop/sbottom Yukawa couplings may be relevant

Existing Limits, stable χ^{0}_{1}

Contents

- From Tevatron and LEP direct searches
- LEP limits on LSP mass
- Constraints on MSUGRA parameter space
- Including CDM constraints
- (Limits also exist for):
 - GMSB, AMSB scenarios
 - R-p violating couplings

(See http://lepsusy.web.cern.ch/lepsusy/Welcome.html)

Slepton limits from LEP

Squark/gluino limits

Limits from LEP and Tevatron, examples: $\widetilde{t} \otimes c\mathbf{C}_{1}^{0}$ $\tilde{\boldsymbol{b}} \otimes \boldsymbol{b} \mathbf{c}_1^0$ M²(GeV/c²) 100 ر] 150 (Color (Color) 150-ADLO Preliminary ADLO Preliminary ADLO Preliminary 400 $\theta = 0$ $\theta = 56^{\circ}$ 3 300 100 80 $\theta = 0^{6}$ $\theta = 68^{\circ}$ D0 CDF LEP 75 60 CDF 200 CDF 50-40 100 20 25 $M_{\tilde{d}} < M_{\tilde{f}}$ LEP I 80 120 140 60 80 100 120 60 100 200 400 600 $M_{stop}(GeV/c^2)$ $M_{sbottom}(GeV/c^2)$ gluino mass (GeV/c2)

Complementarity between LEP and Tevatron

Zuoz Summer school 16-20/08/04

Luc Pape, CERN

Chargino/neutralino production

 $-\sigma$ typically ~ pb

negative interference s- and t-channel For gaugino-like charginos σ negligible for small sneutrino mass

➔ loss of sensitivity

Neutralinos: e^+ g_2 g_2 g_2 g_1 g_2 g_1 g_2 g_1 g_2 g_1 g_2 g_2 g_1 g_2 g_2 g_3 g_4 g_1 g_2 g_1 g_2 g_3 g_4 g_4 g_4 g_5 g_4 g_4 g_5 g_4 g_5 g_4 g_5 g_4 g_5 g_5

σ typically ~ pb
t-channel only gaugino-like
increases for light selectron
→ some compensation for x-sect loss
in gaugino-like charginos

Chargino/neutralino topologies Chargino main decay mode for LEP: $c_1^{\pm} \rightarrow W^{\pm *} c_1^0$ $W \rightarrow l\mathbf{n}$ $W \rightarrow l\mathbf{n}$ $W \to q\overline{q}$ $W \rightarrow l\mathbf{n}$ $W \rightarrow q\bar{q}$ $W \rightarrow q\bar{q}$ B.R.=1/9B.R.=4/9B.R.=4/9small background • Use acoplanarity • Neutralino: mainly $e^+e^- \rightarrow c_2^0 c_1^0, c_2^0 \rightarrow Z^{0*} c_1^0$ • \rightarrow acoplanar I⁺I⁻ or 2-jets

• Other production modes also considered ($\chi_2^0 \chi_2^0, \chi_2^0, \chi_3^0, ...$)
Chargino limits

Zuoz Summer school 16-20/08/04

Luc Pape, CERN

^FRN

Direct search limits

Channel	M > (GeV)	ΔM	
ñ	43.7	EW measts	ADLO
$\widetilde{\boldsymbol{e}} \ \mathbb{\boldsymbol{R}} \ \boldsymbol{e} \mathbf{c}_1^0$	99	10 GeV	ADLO
$\widetilde{\mathbf{m}} \mathbf{\mathbb{R}} \ \mathbf{m} \mathbf{c}_1^0$	95	10 GeV	ADLO
$\mathbf{\tilde{t}} \otimes \mathbf{tc}_1^0$	85	10 GeV	ADLO
$\widetilde{t} \otimes c \mathbf{c}_1^0$	95	20 GeV	ADLO
<i>t̃</i> ℝ <i>bl</i> ĩn	96	20 GeV	ALO
$\widetilde{\boldsymbol{b}}$ ® $\boldsymbol{b} \mathbf{c}_1^0$	94	20 GeV	ADLO
$\widetilde{g} \otimes j + E_T^m$	195	-	CDF
$\mathbf{c}_1^{\pm} \otimes \mathbf{W} \mathbf{c}_1^0$	103.5	Large m _o	ADLO
$\mathbf{c}_1^{\pm} \otimes W \mathbf{c}_1^0$	92.4	Small ∆M	ADLO

Indirect limits on LSP(1)

No full coverage from neutralinos only • \rightarrow no direct limits on χ_1^0 mass Requires to combine results from: • Chargino searches: weak if gaugino and low $m(\tilde{\mathbf{n}})$ Neutralino searches: weak if not higgsino, but improves if gaugino for low $m(\tilde{e})$ • Slepton searches -LEP2 limit on $m(\tilde{e})$ using sum rule: $m_{\tilde{n}_r}^2 = m_{\tilde{e}_r}^2 + M_W^2 \cos 2\mathbf{b}$ -LEP1 limit on $m(\tilde{\mathbf{n}}) \stackrel{\mathbf{s}}{=} 4\bar{3}GeV$ • Scalar mass universality: $m_{\tilde{r}}^2 = m_0^2 + .81M_2^2 - .27M_{\bar{r}}^2 \cos 2b$ \rightarrow Allows exclusion of low regions of M₂ for fixed m₀

• Higgs searches: excludes low tanβ

Indirect limits on LSP(2)

- Example of interplay of these constraints (MSUGRA):
 - Yellow: no REWSB
 - Light blue: inconsistent with LEP1 measurements
 - Green: excluded by chargino
 - Red: excluded by slepton
 - Blue: excluded by hZ
- Regions depend on $tan\beta$

Indirect limits on LSP(3)

Luc Pape, CERN

Constrained MSUGRA

Constrained MSUGRA

Zuoz Summer school 16-20/08/04

Luc Pape, CERN

CMSUGRA allowed regions

Luc Pape, CERN

-red: stau LSP -green: excluded by $b \rightarrow sg$ -cyan: CDM constraint: $0.1 \leq \Omega h^2 \leq 0.3$ -blue: CDM constraint: $0.094 \le \Omega h^2 \le 0.129$ -pink: region preferred by (g_u-2) of Davier02

More quantitavely:

Zuoz Summer school 16-20/08/04

Zuoz Summer school 16-20/08/04

Luc Pape, CERN

Sparticle production at LHC

Contents

- Squark and gluino production
- Stop production
- Slepton production
- Direct chargino/neutralino production

Squark and gluino production

Contributing LO processes:

Squark/gluino cross sections

Stop cross section

NLO cross section at LHC • SUSY-QCD corrections $\sigma_{\rm NLO} \sim 1.4. \sigma_{\rm LO}$ • remaining scale dependence ~10-15% (uncertainty) • Only diagonal production is relevant, • At 1 TeV, summed $\sigma \sim 20$ fb

Beenakker et al., hep-ph/9906298 300 200220 240260 280 320 340 360 380 400 $m(t_1)$ [GeV] $pp \rightarrow t \bar{t} + X$ 10 $\sigma_{tot}[pb]$ $\sqrt{S} = 14 \text{ TeV}$ NLO : $\mu = m(t)$ $\mu = [m(t)/2, 2m(t)]$ LO : $\mathfrak{u} = \mathfrak{m}(\mathfrak{t})$ $m(t_{1})$ GeV 560 600 500 520 540 580

·ϝϼͷ

Slepton pair production

Zuoz Summer school 16-20/08/04

Luc Pape, CERN

16-20/08/04

Future Searches

Contents

- At LHC (discovery reach + mass reconstruction)
- At e+e- Linear Colliders (precision measurements)
- Extrapolation to the GUT scale

Sparticle production at LHC

Zuoz Summer school 16-20/08/04

LHC inclusive reach (1)

- Using E_T^{miss} + jets signature:
- s ~1 pb at 1 TeV
- After 1 year: ~10 fb⁻¹/year at "low luminosity"
 - → already significant reach
- "High lumi" ~100 fb⁻¹/year
 With 300 fb⁻¹,

squarks and gluinos up to ~ 2.5 TeV

Discovery at 5 s.d.

CERN

mSUGRA reach in E_{T}^{miss} + jets final state 1500 (GeV) $A_{\alpha} = 0$, $\tan\beta = 35$, $\mu > 0$ g(3000) 1400 m_{1/2} 1300 year, h 1200 g(2500)1100 Charged LSP 9(2000 1000 q(2000 900 800 700 g(1500) 600 500 g(1000) 400 300 h (114) mass lim g(500) 200 Chargino Searches at LEP 100 No symmetry breaking 0 500 1000 1500 2000 m_o (GeV)

LHC inclusive reach (2)

Zuoz Summer school 16-20/08/04

Luc Pape, CERN

Decay chain to dileptons

Final states with dileptons (1)

Zuoz Summer school 16-20/08/04

Luc Pape, CERN

Final states with dileptons (2)

M(l1q):

$$M_{l1q}^{\max} = M_{\tilde{q}} \sqrt{\left(1 - \frac{M_{c_2^0}^2}{M_{\tilde{q}}^2}\right)\left(1 - \frac{M_{\tilde{l}}^2}{M_{c_2^0}^2}\right)}$$

 $R = 1 \xrightarrow{q} 41$ $q = \overline{q} \qquad x = x_2^0$

M(I2q): leptons in same configuration as for M(II)^{max}

$$M_{l2q}^{\max} = M_{\tilde{q}} \left(1 - \frac{M_{c_2^0}^2}{M_{\tilde{q}}^2} \right) \left(1 - \frac{M_{c_1^0}^2}{M_{\tilde{l}}^2} \right) \right) \left(1 - \frac{M_{c_1^0}^2}{M_{\tilde{l}}^2} \right) \left(1 - \frac{M_{c_1^0}^2}{M_{\tilde{l}}^2} \right) \left(1 - \frac{M_{c_1^0}^2}{M_{\tilde{l}}^2} \right) \right) \left(1 - \frac{M_{c_1^0}^2}{M_{\tilde{l}}^2} \right) \left(1 - \frac{M_{c_1^0}^2}{M_{\tilde{l}}^2} \right) \right)$$

 $\frac{11}{q} = \frac{1}{q} = \frac{1}{x} = \frac{1}{x} = \frac{1}{x}$

→ Can distinguish M(l1q)^{max} from M(l2q)^{max}
 4 unknown masses: M_{q̃}, M_{c0}, M_{l̃}, M_{c0}
 4 endpoints: M(ll)^{max}, M(l1q)^{max}, M(l2q)^{max}, M(l2q)^{max}, M(llq)^{max}
 → all masses can be determined
 More information available: constraints
 (other end points, gluino decay)

End points and configurations

 $\tilde{q} \rightarrow q \, \tilde{\chi}^0_2 \;,\; \tilde{\chi}^0_2 \rightarrow \tilde{l}_1 + \tilde{l}\;,\; \tilde{l} \rightarrow l_2 + \tilde{\chi}^0_1$

 $i \colon \langle U \rangle^{max}$

7. (IIq)^{mm,max} versus (II) $\frac{(M(llq)^{mm,max})^2}{(M(llq)^{mm,max})^2} = \frac{M_Q^2}{2} + \frac{M_Q^2}{2} - \frac{1}{2}M_Q^2 (1 + \frac{M_X^2}{M_Q^2})(1 + \frac{M_Q^2}{M_X^2}) + \frac{M_Q^2}{2M_X^2} (1 + \frac{M_X^2}{M_Q^2})M_Q^2}{\frac{M_Q^2}{2} - \frac{M_Q^2}{M_X^2}}$ $\mp \frac{M_Q^2}{2} (1 - \frac{M_X^2}{M_Q^2}) \sqrt{(1 - \frac{M_Q^2}{M_X^2} - \frac{M_Q^2}{M_X^2})^2 - 4\frac{M_Q^2}{M_X^2}M_X^2}}$

Zuoz Summer school 16-20/08/04

Luc Pape, CERN

Decay chain to h⁰ or Z⁰

Final states with h⁰ or Z⁰

- Higgs can be reconstructed from b-bbar jets
 Could be a h^o discovery channel
- Z⁰ reconstructed from di-lepton decay
- Decay chain is shorter than for di-leptons
- Either need start from gluino M(q₁h⁰),M(q₂h⁰),M(qq),M(qqh⁰) to determine 4 masses
- 2. Or start from squark and combine with another channel

<u>`ERN</u>

Multiple end points in decays

16-20/08/04

LHC summary

LHC could discover SUSY quite early • With 10 fb⁻¹ squarks/gluinos up to 1.5-2 TeV ■ Ultimate reach (300 fb⁻¹) up to ~2.5 TeV LHC can also reconstruct sparticle masses • For all decay modes of χ^0_2 , even in $\tau\tau$ decays Reasonable accuracy: • (ATLAS, Gjelsten et al., ATL-PHYS-2004-007, SPS1A) • $\Delta M \sim 5$ GeV for neutralinos and sleptons (2.5-5%) • $\Delta M \sim 10-15$ GeV for gluino and squark (jet E-resolution) (2-3%) Futher work needed • (cross-sections, spin correlations, "flavour" identification, ...)

Comparison LHC/LC/CLIC

Complementary reach
 LHC: h⁰, squarks, gluino
 eeCOL: sleptons, gauginos

 E_{cms} limited

 Not fully representative

 Precision is also important

 May need >3 TeV to unravel whole spectrum

M.Battaglia et al.,hep-ph/0306219

Zuoz Summer school 16-20/08/04

Luc Pape, CERN

Lepton Colliders

IC 3 TeV

Identifying the model

- Topology: photons, excess leptons or jets, Taus from MSUGRA or GMSB
- Distinguish higgsino-like from AMSB?
- Distinguish MSUGRA from UED?
- Use decay BR? Production cross-sections?

·ϝϼͷ

Extrapolation to GUT scale

LHC only

LHC + LC

Blair, Porod, Zerwas, hep-ph/0011367

Luc Pape, CERN

Conclusion

- Today: completely in the dark (SM works too well)
- Something must exist beyond the SM
- But large number of candidate models
- Among them, SUSY is a respectable candidate
- Which SUSY? MSUGRA, GMSB, AMSB, RPV, NMSSM,

Eagerly need experimental guidance

Hope to see something at LHC (light Higgs!)
Then, will require another generation of accelerators
LC, CLIC, MUCOL, VLHC, ...

It is time that we discover something!

Further reading (biased sample)

Basic MSSM

- Perspectives on Supersymmetry, World Scientific, Singapore 1998, ed. G.L.Kane
- S.P.Martin, A Supersymmetry Primer, hep-ph/9709356 v.3
- H.Haber and M.Schmitt, Supersymmetry, PDG2004, <u>http://pdg.lbl.gov/</u>

Higgs

- The Higgs Hunter's Guide, Addison-Wesley 1990, ed. J.F.Gunion, H.E.Haber, G.Kane, S.Dawson
- Perspectives on Higgs Physics, World Scientific, Singapore 1993, ed. G.L.Kane
- M.Spira, P.M.Zerwas, Electroweak symmetry breaking and Higgs physics, hep-ph/9803257