
Introduction to Supersymmetry

Howard E. Haber

Santa Cruz Institute for Particle Physics
University of California, Santa Cruz, CA 95064, USA

Abstract

These are the (mostly handwritten) notes of four introductory lec-
tures to supersymmetry. Lecture 1 provides a motivation for low-
energy supersymmetry and introduces two-component technology for
spin-1/2 fermions in quantum field theory. Lecture 2 discusses the
supersymmetric extension of the Poincare algebra and introduces the
concepts of superspace and chiral superfields. Lecture 3 treats su-
persymmetric gauge theories and supersymmetry breaking. Finally,
Lecture 4 introduces the minimal supersymmetric extension of the
Standard Model (MSSM) and describes how this model must be con-
strained in order to be phenomenologically viable. If there is time,
some topics beyond the MSSM (non-minimal extensions, R-parity vi-
olation and grand unified models) will be discussed.

Lectures given at the Zuoz 2004 Summer School
15–21 August 2004.



Outline of Topics

1. Motivation for “Low-Energy” Supersymmetry

• Hierarchy, naturalness and all that

• Beyond the Standard Model: expectations for new

physics

2. Spin-1/2 fermions in quantum field theory

• Two-component technology

• Feynman rules for Majorana fermions

3. Supersymmetry—first steps

• Extending Poincaré invariance

• Simple supersymmetric models of fermions and their

scalar superpartners

4. Superspace and chiral superfields

• How to construct a supersymmetric action

• Non-renormalization theorems



5. Supersymmetric gauge field theories

• The marriage of supersymmetry and gauge theories

• Supersymmetric QED

• Supersymmetric Yang Mills theories

6. Supersymmetry breaking

• spontaneous supersymmetry breaking

• generic soft-supersymmetry-breaking terms

7. Supersymmetric extension of the Standard Model

• The minimal supersymmetric extension (MSSM)

• A tour of the supersymmetric spectrum

• The MSSM Higgs sector

8. Constraining the low-energy supersymmetric model

• Counting the MSSM parameters

• Phenomenological disasters and how to avoid them

• A brief look at fundamental theories of supersymmetry

breaking
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Where does the Standard Model

Break Down?

The Standard Model (SM) describes quite accurately physics

near the electroweak symmetry breaking scale [v = 246 GeV].

But, the SM is only a “low-energy” approximation to a more

fundamental theory.

• The Standard Model cannot be valid at energies above

the Planck scale, MPL ≡ (ch̄/GN)1/2 � 1019 GeV, where

gravity can no longer be ignored.

• Neutrinos are exactly massless in the Standard Model.

But, recent experimental observations of neutrino

mixing imply that neutrinos have very small masses

(mν/me <∼ 10−7). Neutrino masses can be incorporated

in a theory whose fundamental scale is M � v. Neutrino

masses of order v2/M are generated, which suggest that

M ∼ 1015 GeV.



• When radiative corrections are evaluated, one finds:

– The Higgs potential is unstable at large values of the

Higgs field (|Φ| > Λ) if the Higgs mass is too small.

– The value of the Higgs self-coupling runs off to infinity

at an energy scale above Λ if the Higgs mass is too

large.

This is evidence that the Standard Model must break

down at energies above Λ.

The present-day theoretical uncertainties on the lower [Altarelli and Isidori; Casas, Espinosa and Quirós]

and upper [Hambye and Riesselmann] Higgs mass bounds as a function of energy scale Λ at which the

Standard Model breaks down, assuming mt = 175 GeV and αs(mZ) = 0.118. The shaded areas

above reflect the theoretical uncertainties in the calculations of the Higgs mass bounds.



Significance of the TeV Scale

In 1939, Weisskopf computed the self-energy of a Dirac fermion and

compared it to that of an elementary scalar. The fermion self-

energy diverged logarithmically, while the scalar self-energy diverged

quadratically. If the infinities are cut-off at a scale Λ, then Weisskopf

argued that for the particle mass to be of order the self-energy,

• For the e−, Λ ∼ m exp(α−1) � MPL [α ≡ e2/4π � 1/137];

• For an elementary boson, Λ ∼ m/g, where g is the coupling of the

boson to gauge fields.

In modern times, this is called the hierarchy and naturalness problem.

Namely, how can one understand the large hierarchy of energy scales

from v to MPL in the context of the SM? If the SM is superseded by

a more fundamental theory at an energy scale Λ, one expects scalar

squared-masses to exhibit at one-loop order quadratic sensitivity to Λ,

(in contrast to the logarithmic sensitivity of the fermions). That is,

the natural value for the scalar squared-mass is roughly (g2/16π2)Λ2.

Thus,

Λ � 4πmh/g ∼ O(1 TeV).
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Following Kolda and Murayama [JHEP 0007 (2000) 035], a reconsideration of the Λ vs. Higgs mass plot

with a focus on Λ < 100 TeV. Precision electroweak measurements restrict the parameter space to lie

below the dashed line, based on a 95% CL fit that includes the possible existence of higher dimensional

operators suppressed by v2/Λ2. The unshaded area has less than one part in ten fine-tuning.

If we demand that the value of mh is natural, i.e., without substantial

fine-tuning, then Λ cannot be significantly larger than 1 TeV. Since Λ

represents the scale at which new physics beyond the SM must enter,

which will provide a natural explanation for the value of mh (or more

generally, the scale of electroweak symmetry breaking), we should ask:

What new physics is lurking at the TeV scale?



Can quadratic sensitivity to Λ be avoided

in a theory with elementary scalars?

A lesson from history

The electron self-energy in classical electromagnetism goes

like e2/a (a → 0), i.e., it is linearly divergent. In quantum

theory, fluctuations of the electromagnetic fields (in the

“single electron theory”) generate a quadratic divergence. If

these divergences are not canceled, one would expect that

QED should break down at an energy of order me/e far

below the Planck scale (a severe hierarchy problem).

The linear and quadratic divergences will cancel exactly if

one makes a bold hypothesis: the existence of the positron

(with a mass equal to that of the electron but of opposite

charge).

Weisskopf was the first to demonstrate this cancellation in

1934. . . well, actually he initially got it wrong, but thanks to

Furry, the correct result was presented in an erratum.







A remarkable result:
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The linear and quadratic divergences of a

quantum theory of elementary fermions are

precisely canceled if one doubles the particle

spectrum—for every fermion, introduce an

anti-fermion partner of the same mass and

opposite charge.

In the process, we have introduced a new CPT-symmetry

that associates a fermion with its anti-particle and guarantees

the equality of their masses.



Low-Energy Supersymmetry

Will history repeat itself? Let’s try it again. Take the Standard

Model and double the particle spectrum. Introduce a new symmetry—

supersymmetry—that relates fermions to bosons: for every fermion, there

is a boson of equal mass and vice versa. Now, compute the self-energy

of an elementary scalar. Supersymmetry relates it to the self-energy

of a fermion, which is only logarithmically logarithmically sensitive to

the fundamental high energy scale. Conclusion: quadratic sensitivity is

removed! The hierarchy problem is resolved.

However, no super-partner (degenerate in mass with the corresponding

SM particle) has ever been seen. Supersymmetry, if it exists in nature,

must be a broken symmetry. Previous arguments then imply that:

The scale of supersymmetry-breaking must be of order

1 TeV or less, if supersymmetry is associated with the

scale of electroweak symmetry breaking.

Still to be understood—the origin of supersymmetry breaking [which is a

difficult task not yet solved; there are many approaches but no compelling

model]. Nevertheless, TeV-scale supersymmetric physics could provide

our first glimpse of the Planck scale regime.





























Translation table relating bilinear covariants in

two-component and four-component notation

Ψ1(x) ≡
(

ξ1(x)

η̄1(x)

)
, Ψ2(x) ≡

(
ξ2(x)

η̄2(x)

)
.

Ψ1PLΨ2 = η1ξ2 Ψc
1PLΨc

2 = ξ1η2

Ψ1PRΨ2 = ξ̄1η̄2 Ψc
1PRΨc

2 = η̄1ξ̄2

Ψc
1PLΨ2 = ξ1ξ2 Ψ1PLΨc

2 = η1η2

Ψ1PRΨc
2 = ξ̄1ξ̄2 Ψc

1PRΨ2 = η̄1η̄2

Ψ1γ
µPLΨ2 = ξ̄1σ

µξ2 Ψc
1γ

µPLΨc
2 = η̄1σ

µη2

Ψc
1γ

µPRΨc
2 = ξ1σ

µξ̄2 Ψ1γ
µPRΨ2 = η1σ

µη̄2

Ψ1ΣµνPLΨ2 = 2i η1σ
µνξ2 Ψc

1Σ
µνPLΨc

2 = 2i ξ1σ
µνη2

Ψ1ΣµνPRΨ2 = 2i ξ̄1σ
µνη̄2 Ψc

1Σ
µνPRΨc

2 = 2i η̄1σ
µν ξ̄2

where, to avoid confusion, Σµν ≡ i
2[γ

µ, γν]. Note that we may also

write: Ψ1γ
µPRΨ2 = −η2σ

µη̄1, etc. It then follows that:



Ψ1Ψ2 = η1ξ2 + ξ̄1η̄2

Ψ1γ5Ψ2 = −η1ξ2 + ξ̄1η̄2

Ψ1γ
µ
Ψ2 = ξ1σ

µ
ξ2 − η̄2σ

µ
η1

Ψ1γ
µ
γ5Ψ2 = −ξ̄1σ

µ
ξ2 − η̄2σ

µ
η1

Ψ1Σ
µν

Ψ2 = 2i(η1σ
µν

ξ2 + ξ̄1σ
µν

η̄2)

Ψ1Σ
µν

γ5Ψ2 = −2i(η1σ
µν

ξ2 − ξ̄1σ
µν

η̄2) .

For Majorana fermions defined by ΨM = Ψc
M = CΨ

T

M , the following
additional conditions are satisfied:

ΨM1ΨM2 = ΨM2ΨM1 ,

ΨM1γ5ΨM2 = ΨM2γ5ΨM1 ,

ΨM1γ
µ
ΨM2 = −ΨM2γ

µ
ΨM1 ,

ΨM1γ
µ
γ5ΨM2 = ΨM2γ

µ
γ5ΨM1 ,

ΨM1Σ
µν

ΨM2 = −ΨM2Σ
µν

ΨM1 ,

ΨM1Σ
µν

γ5ΨM2 = −ΨM2Σ
µν

γ5ΨM1 .

In particular, if ΨM1 = ΨM2 ≡ ΨM , then

ΨMγ
µ
ΨM = ΨMΣ

µν
ΨM = ΨMΣ

µν
γ5ΨM = 0 .













The see-saw mechanism

The see-saw Lagrangian is given by:

L = i
(
ψ1 σµ∂µψ1 + ψ2 σµ∂µψ2

)
−M ijψiψj −Mijψi ψj ,

where

M ij =

(
0 mD

mD M

)
,

and (without loss of generality) mD and M are positive.

The Takagi factorization of this matrix is UTMU = MD,

where

U =

(
i cos θ sin θ

−i sin θ cos θ

)
, MD =

(
m− 0
0 m+

)
,

and where m± = 1
2

[√
M2 + 4m2

D ±M
]

and

sin 2θ =
2mD√

M2 + 4m2
D

, cos 2θ =
M√

M2 + 4m2
D

.



If M À mD, then the corresponding fermion masses are

m− ' m2
D/M and m+ ' M , while sin θ ' mD/M . The

mass eigenstates, χi are given by ψi = Ui
jχj; i.e. to leading

order in md/M ,

iχ1 ' ψ1 − mD

M
ψ2 ,

χ2 ' ψ2 +
mD

M
ψ1 .

Indeed, one can check that:

1
2mD(ψ1ψ2 + ψ2ψ1) + 1

2Mψ2ψ2 + h.c.

' 1
2

[
m2

D

M
χ1χ1 + Mχ2χ2 + h.c.

]
,

which corresponds to a theory of two Majorana fermions—

one very light and one very heavy (the see-saw).



Feynman rules for Majorana fermions

Consider a set of neutral and charged fermions interacting with a neutral

scalar or vector boson. The interaction Lagrangian in terms of two-

component fermions is:

Lint = −1
2(λ

ij
ξiξj + λijξ̄

i
ξ̄

j
)φ − (κ

ij
χiηj + κijχ̄

i
η̄

j
)φ

−(Gξ)i
j
ξ̄

i
σ

µ
ξjAµ − [(Gχ)i

j
χ̄

i
σ

µ
χj + (Gη)i

j
η̄

i
σ

µ
ηj]Aµ ,

where λ is a complex symmetric matrix, κ is an arbitrary complex matrix

and Gξ, Gχ and Gη are hermitian matrices. By assumption, χ and η

have the opposite U(1) charges, while all other fields are neutral.

φ
ΨMj

ΨMi

−i(λijPL + λijPR)

φ
Ψj

Ψi

−i(κjiPL + κijPR)

Aµ ΨMj

ΨMi

−iγµ[(Gξ)i
jPL − (Gξ)j

iPR]

Aµ Ψj

Ψi

−iγµ[(Gχ)i
jPL − (Gη)j

iPR]



The arrows on the Dirac fermion lines depict the flow of the conserved

charge. A Majorana fermion is self-conjugate, so its arrow simply reflects

the structure of Lint; i.e., ΨM [ΨM ] is represented by an arrow pointing

out of [into] the vertex. The arrow directions determine the placement

of the u and v spinors in an invariant amplitude.

Next, consider the interaction of fermions with charged bosons, where

the charges of Φ, W and χ are assumed to be equal. The corresponding

interaction Lagrangian is given by:

Lint = −1
2Φ

∗
[κ

ij
1 χiξj + (κ2)ijη̄

i
ξ̄

j
] − 1

2Φ[κ
ij
2 ηiξj + (κ1)ijχ̄

i
ξ̄

j
]

−1
2Wµ[(G1)i

jχ̄iσµξj + (G2)i
jξ̄iσ

µηj]

−1
2W

∗
µ [(G1)j

iξ̄jσµχi + (G2)j
iη̄jσµξi] ,

where κ1 and κ2 are complex symmetric matrices and G1 and G2 are

hermitian matrices. We now convert to four-component spinors, and

note that CT = −C and anti-commuting fermion fields imply that

Ψ
c

iΓΨc
j = −ΨT

i C−1ΓCΨ
T

j = ΨjCΓTC−1Ψi = ηΓΨjΓΨi ,

where the sign ηΓ = +1 for Γ = 1, γ5, γµγ5 and ηΓ = −1 for

Γ = γµ, Σµν, Σµνγ5. Hence, the Feynman rules for the interactions of

neutral and charged fermions with charged bosons can take two possible

forms:



Φ
ΨMj

Ψi

or
Φ

ΨMj

Ψc
i

−i(κ2ijPL + κ1ijPR)

Φ
ΨMj

Ψi

or
Φ

ΨMj

Ψc
i

−i(κ1ijPL + κ2ijPR)

W
ΨMj

Ψi

−iγµ(G1i
jPL − G2j

iPR)

W
ΨMj

Ψc
i

iγµ(G1i
jPR − G2j

iPL)

W
ΨMj

Ψi

−iγµ(G1j
iPL − G2i

jPR)

W
ΨMj

Ψc
i

iγµ(G1i
jPR − G2j

iPL)

One is free to choose either a Ψ or Ψc line to represent a Dirac fermion

at any place in a given Feynman graph. The direction of the arrow on

the Ψ or Ψc line indicates the corresponding direction of charge flow.1

1Since the charge of Ψc is opposite to that of Ψ, the corresponding arrow direction

of the two lines point in opposite directions.



Moreover, the structure of Lint implies that the arrow directions on

fermion lines flow continuously through the diagram. This requirement

then determines the direction of the arrows on Majorana fermion lines.

In the computation of a given process, one may employ either Ψ or Ψc

when representing the propagation of a (virtual) Dirac fermion. Because

free Dirac fields satisfy:

D
0|T (Ψα(x)Ψβ(y))|0

E
=

D
0|T (Ψ

c
α(x)Ψ

c

β(y))|0
E

,

the Feynman rules for the propagator of a Ψ and Ψc line are identical.

Construction of invariant amplitudes involving Majorana fermions

When computing an invariant amplitude, one first writes down the

relevant Feynman diagrams with no arrows on any Majorana fermion

line. The number of distinct graphs contributing to the process is then

determined. Finally, one makes some choice for how to distribute the

arrows on the Majorana fermion lines and how to label Dirac fermion

lines (either Ψ or Ψc) in a manner consistent with the Feynman rules

for the interaction vertices. The end result for the invariant amplitude

(apart from an overall unobservable phase) does not depend on the

choices made for the direction of the fermion arrows.

Using the above procedure, the Feynman rules for the external fermion

wave functions are the same for Dirac and Majorana fermions:



• u(�p, s): incoming Ψ [or Ψc] with momentum �p parallel to the

arrow direction,

• ū(�p, s): outgoing Ψ [or Ψc] with momentum �p parallel to the

arrow direction,

• v(�p, s): outgoing Ψ [or Ψc] with momentum �p anti-parallel to the

arrow direction,

• v̄(�p, s): incoming Ψ [or Ψc] with momentum �p anti-parallel to the

arrow direction.

Example: Ψ(p1)Ψ(p2) → Φ(k1)Φ(k2) via ΨM -exchange

The contributing Feynman graphs are:

Ψ

Ψc

Ψ

Ψc

Following the arrows in reverse, the resulting invariant amplitude is:

iM = (−i)
2
v̄(�p2, s2)(κ1PL + κ

∗
2PR)

»
i( /p1 − /k1 + m)

t − m2

+
i( /k1 − /p2 + m)

u − m2

–
(κ1PL + κ

∗
2PR)u(�p1, s1) ,



where t ≡ (p1 −k1)
2, u ≡ (p2 −k1)

2 and m is the Majorana fermion

mass. The sign of each diagram is determined simply by the relative

permutation of spinor factors appearing in the amplitude (the overall

sign of the amplitude is unphysical).

Exercise: Check that iM is antisymmetric under interchange of the two

initial electrons. HINT: Taking the transpose and using v ≡ uc ≡ CūT

(the u and v spinors are commuting objects), one easily verifies that:

v̄(�p2, s2)Γu(�p1, s1) = −ηΓv̄(�p1, s1)Γu(�p2, s2) ,

where as before ηΓ = +1 for Γ = 1, γ5, γµγ5 and ηΓ = −1 for

Γ = γµ, Σµν, Σµνγ5.

Example: Ψ(p1)Ψ
c(p2) → ΨM(p3)ΨM(p4) via charged Φ-exchange

Neglecting a possible s-channel annihilation graph, the contributing

Feynman graphs can be represented either by diagram set (i):

ΨM

ΨM

Ψ

Ψc

ΨM

ΨM

Ψ

Ψc

or by diagram set (ii):



ΨM

ΨM

Ψ

Ψ

ΨM

ΨM

Ψ

Ψ

The amplitude is evaluated by following the arrows in reverse. Using:

v̄(�p2, s2)Γv(�p4, s4) = −ηΓū(�p4, s4)Γu(�p2, s2) ,

one can check that the invariant amplitudes resulting from diagram sets

(i) and (ii) differ by an overall minus sign, as expected due to the

fact that the corresponding order of the spinor wave functions differs

by an odd permutation [e.g., for the t-channel graphs, compare 3142

and 3124 for (i) and (ii) respectively]. For the same reason, there is

a relative minus sign between the t-channel and u-channel graphs for

either diagram set [e.g., compare 3142 and 4132 in diagram set(i)].

If s-channel annihilation contributes, its calculation is straightforward:

ΨM

ΨM

Ψ

Ψ

Relative to the t-channel graph of diagram set (ii), this diagram comes

with an extra minus sign [since 2134 is odd with respect to 3124].



In the computation of the unpolarized cross-section, non-standard spin

projection operators can arise in the evaluation of the interference terms.

One may encounter spin sums such as:2

X
s

u(�p, s)vT (�p, s) = (/p + m)CT ,

X
s

ū
T
(�p, s)v̄(�p, s) = C

−1
(/p − m) ,

which requires additional manipulation of the charge conjugation

matrix C. However, these non-standard spin projection operators can be

avoided by judicious use of spinor product relations of the kind displayed

on the previous two pages.

2see Appendix D of G.L. Kane and H.E. Haber, Phys. Rep. 117 (1985) 75.




