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Abstract

These are the (mostly handwritten) notes of four introductory lec-
tures to supersymmetry. Lecture 1 provides a motivation for low-
energy supersymmetry and introduces two-component technology for
spin-1/2 fermions in quantum field theory. Lecture 2 discusses the
supersymmetric extension of the Poincare algebra and introduces the
concepts of superspace and chiral superfields. Lecture 3 treats su-
persymmetric gauge theories and supersymmetry breaking. Finally,
Lecture 4 introduces the minimal supersymmetric extension of the
Standard Model (MSSM) and describes how this model must be con-
strained in order to be phenomenologically viable. If there is time,
some topics beyond the MSSM (non-minimal extensions, R-parity vi-
olation and grand unified models) will be discussed.

Lectures given at the Zuoz 2004 Summer School
15-21 August 2004.



Outline of Topics

. Motivation for “Low-Energy” Supersymmetry

e Hierarchy, naturalness and all that

e Beyond the Standard Model: expectations for new
physics

. Spin-1/2 fermions in quantum field theory

e Two-component technology

e Feynman rules for Majorana fermions

. Supersymmetry—first steps

e Extending Poincaré invariance
e Simple supersymmetric models of fermions and their

scalar superpartners

. Superspace and chiral superfields

e How to construct a supersymmetric action

e Non-renormalization theorems



. Supersymmetric gauge field theories

e The marriage of supersymmetry and gauge theories
e Supersymmetric QED

e Supersymmetric Yang Mills theories

. Supersymmetry breaking

e spontaneous supersymmetry breaking

e generic soft-supersymmetry-breaking terms

. Supersymmetric extension of the Standard Model

e The minimal supersymmetric extension (MSSM)

e A tour of the supersymmetric spectrum
e The MSSM Higgs sector

. Constraining the low-energy supersymmetric model

e Counting the MSSM parameters
e Phenomenological disasters and how to avoid them
e A brief look at fundamental theories of supersymmetry

breaking
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What's missing?

So far, gravity is not yet included. Quantum gravitational
effects are relevant only at a very high energy scale, called
the Planck scale

Mpy, = (ch/GN)Y? ~ 10*° GeV,

which arises as follows. The gravitational potential
energy of a particle of mass M, GyM?/r (where Gy is
Newton's gravitational constant), evaluated at its Compton
wavelength, r = h/Mec, is of order the rest mass, Mc?, when

GnM? (%) ~ Mc*,
which implies that M2 ~ ch/Gx. When this happens,
the gravitational energy is large enough to induce pair
production, which means that quantum gravitational effects
can no longer be neglected. Thus, the Planck scale,
Mpr, = (ch/Gn)Y?, represents the energy scale at which
gravity and all other forces of elementary particles must be

incorporated into the same theory.



Where does the Standard Model

Break Down?

The Standard Model (SM) describes quite accurately physics
near the electroweak symmetry breaking scale [v = 246 GeV].
But, the SM is only a “low-energy” approximation to a more

fundamental theory.

e The Standard Model cannot be valid at energies above
the Planck scale, Mpr, = (ch/Gn)'/? ~ 10'° GeV, where

gravity can no longer be ignored.

e Neutrinos are exactly massless in the Standard Model.
But, recent experimental observations of neutrino
mixing imply that neutrinos have very small masses
(m,/me < 1077). Neutrino masses can be incorporated

in a theory whose fundamental scale is M > v. Neutrino

masses of order v2/M are generated, which suggest that
M ~ 10% GeV.



e \When radiative corrections are evaluated, one finds:

— The Higgs potential is unstable at large values of the
Higgs field (|®| > A) if the Higgs mass is too small.

— The value of the Higgs self-coupling runs off to infinity
at an energy scale above A if the Higgs mass is too

large.

This is evidence that the Standard Model must break

down at energies above A.
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The present-day theoretical uncertainties on the lower [Altarelli and Isidori; Casas, Espinosa and Quirds|
and upper [Hambye and Riesselmann] Higgs mass bounds as a function of energy scale A at which the
Standard Model breaks down, assuming my = 175 GeV and as(m ) = 0.118. The shaded areas

above reflect the theoretical uncertainties in the calculations of the Higgs mass bounds.



‘ Significance of the TeV Scale I

In 1939, Weisskopf computed the self-energy of a Dirac fermion and
compared it to that of an elementary scalar. The fermion self-
energy diverged logarithmically, while the scalar self-energy diverged
quadratically. If the infinities are cut-off at a scale A, then Weisskopf

argued that for the particle mass to be of order the self-energy,

o Forthee , A ~ mexp(a ') > Mp, [a = e? /41 ~ 1/137];

e For an elementary boson, A ~ m/g, where g is the coupling of the

boson to gauge fields.

In modern times, this is called the hierarchy and naturalness problem.
Namely, how can one understand the large hierarchy of energy scales
from v to Mpy, in the context of the SM? If the SM is superseded by
a more fundamental theory at an energy scale A, one expects scalar
squared-masses to exhibit at one-loop order quadratic sensitivity to A,
(in contrast to the logarithmic sensitivity of the fermions). That is,
the natural value for the scalar squared-mass is roughly (g*/167?)A%.
Thus,

A ~dmmy/g ~ O(1 TeV).
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On the Self-Energy and the Electromagnetic Field of the Electron

V. F. WEISSKOPF
University of Rochester, Rochester, New York

(Received April 12, 1939)

The charge distribution, the electromagnetic field and
the self-energy of an electron are investigated. It is found
that, as a result of Dirac’s positron theory, the charge and
the magnetic dipole of the electron are extended over a
finite region; the contributions of the spin and of the
fluctuations of the radiation field to the self-energy are
analyzed, and the reasons that the self-energy is only

logarithmically infinite in positron theory are given. It is
proved that the latter result holds to every approximation
in an expansion of the self-energy in powers of e2/hc. The
self-energy of charged particles obeying Bose statistics is
found to be quadratically divergent. Some evidence is
given that the ‘‘critical length’’ of positron theory is as
small as &/(mc) -exp (—hc/e?).

I. INTRODUCTION AND DISCUSSIONS OF
REsuLTs

HE self-energy of the electron is its total

energy in free space when isolated from
other particles or light quanta. It is given by the
expression

W=T+(1/8) f (K2 E?)dr. (1)
Here T is the kinetic energy of the electron; H
and E are the magnetic and electric field
strengths. In classical electrodynamics the self-
energy of an electron of radius a¢ at rest and
without spin is given by W~mc?+e€*/a and con-
sists solely of the energy of the rest mass and of
its electrostatic field. This expression diverges
linearly for an infinitely small radius. If the
electron is in motion, other terms appear repre-
senting the energy produced by the magnetic
field of the moving electron. These terms, of
course, can be obtained by a Lorentz transforma-
tion of the former expression.

The quantum theory of the electron has put
the problem of the self-energy in a critical state.
There are three reasons for this:

(a) Quantum kinematics shows that the radius
of the electron must be assumed to be zero. It is
easily proved that the product of the charge
densities at two different points, p(r—§/2)
Xp(r+£/2), is a delta-function €23(£). In other
words: if one electron alone is present, the
probability of finding a charge density simultane-
ously at two different points is zero for every.

finite distance between the points. Thus the

energy of the electrostatic field is infinite as

Wst =lim (a=o)82/a.

72

(b) The quantum theory of the relativistic
electron attributes a magnetic moment to the
electron, so that an electron at rest is surrounded
by a magnetic field. The energy

Unag=(1/87) f s

of this field is computed in Section III and the
result is

Unnag = €2h?/ (6rm2c?a®).

This corresponds to the field energy of a magnetic
dipole of the moment ¢k/2mc which is spread
over a volume of the dimensions a. The spin,
however, does not only produce a magnetic field,
it also gives rise to an alternating electric field.
The closer analysis of the Dirac wave equation
has shown! that the magnetic moment of the spin
is produced by an irregular circular fluctuation
movement (Zitterbewegung) of the electron
which is superimposed to the translatory motion.
The instantaneous value of the velocity is always
found to be ¢. It must be expected that this mo-
tion will also create an alternating electric field.
The existence of this field is demonstrated in
Section I1I by the computation of the expression

Ua=(1/8r) f E.dr.

There E, is the solenoidal part (div. E,=0) of the
electric field strength created by the electron.
The fact that the above expression does not
vanish for an electron at rest proves the existence

1E. Schroedinger, Berl. Ber. 1930, 418 (1930).
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zero in the one-electron theory, is negative and
quadratically divergent in the positron theory.
This is because of the negative contribution of
the magnetic field and the interference effect of
the electric field of the vacuum electrons.

(c) The energy Wie of forced vibrations
under the influence of the zero-point fluctuations
of the radiation field. The energies (b) and (c)
compensate each other to a logarithmic term.

It is interesting to apply similar considerations
to the scalar theory of particles obeying the Bose
statistics, as has been developed by Pauli and
the author.” Here the probability of finding two
equal particles closer than their wave-lengths is
larger than at longer distances. The effect on the
self-energy is therefore just the opposite. The
influence of the particle on the vacuum causes a
higher singularity in the charge distribution
instead of the hole which balanced the original
charge in the previous considerations. It is shown
in Section V that this gives rise to a quadratically
divergent energy of the Coulomb field of the
particle. Thus the situation here is even worse
than in the classical theory. The spin term
obviously does not appear and the energy Wiiues
is exactly equal to its value for a Fermi particle.

A few remarks might be added about the
possible significance of the logarithmic divergence
of the self-energy for the theory of the electron.
It is proved in Section VI that every term in the
expansion of the self-energy in powers of e?/kc

W= W (3)

diverges logarithmically with infinitely small
electron radius and is approximately given by

W ~z.mc(e?/he)*[1g (h/mca) ],

1=n.

Here the z, are dimensionless constants which
cannot easily be computed. It is therefore not
sure, whether the series (3) converges even for
finite @, but it is highly probable that it converges
if 6=e?/(hc)-lg (h/mca) <1. One then would get
W=mc*0(8) where O(8) =1 for a value of §<1.
We then can define an electron radius in the same
way as the classical radius ¢?/mc? is defined, by
putting the self-energy equal to mc?. One obtains
then roughly a value a~h/(mc)-exp (—hc/e?)

"W. Pauli and V. Weisskopf, Helv. Phys. Acta 7, 709
(1934),

which is about 103 times smaller than the
classical electron radius. The “critical length” of
the positron theory is thus infinitely smaller than
usually assumed.

The situation is, however, entirely different
for a particle with Bose statistics. Even the
Coulombian part of the self-energy diverges to a
first approximation as Wy~e*h/(mca?) and re-
quires a much larger critical length that is
a=(hc/e*)~* h/(mc), to keep it of the order of
magnitude of mc?. This may indicate that a
theory of particles obeying Bose statistics must,
involve new features at this critical length, or at
energies corresponding to this length ; whereas a
theory of particles obeying the exclusion prin-
ciple is probably consistent down to much
smaller lengths or up to much higher energies.

II. TuE CHARGE DISTRIBUTION OF
THE ELECTRON

The charge distribution in the neighborhood
of an electron can be determined from the
expression

G(¥) = f o(t—E/Dp(r+E/2dr; (&)

here p(r) is the charge density at the point
r. G(¥) is the probability of finding charge simul-
taneously at two points in a distance £. If ap-
plied to a situation in which one electron alone
is present, direct information can be drawn from
this expression concerning the charge distribution
in the electron itself. The charge density is
given by

p()=e{y*(1)¥(r)} —o, )

where ¥(r), the wave function, is a spinor with
four components y,, u=1, 2, 3, 4. We write

4
{‘l/*‘p} = g]‘/’n*‘l’n

for the scalar product of two spinors. ¢ is the

charge density of the unperturbed electrons in
the negative energy states which is to be sub-
tracted in the positron theory. In the one-
electron theory ¢ is zero. The wave function ¢
can be expanded in wave functions ¢, of the
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Can quadratic sensitivity to A be avoided

in a theory with elementary scalars?

A lesson from history

The electron self-energy in classical electromagnetism goes
like e?/a (a — 0), i.e., it is linearly divergent. In quantum
theory, fluctuations of the electromagnetic fields (in the
“single electron theory”) generate a quadratic divergence. If
these divergences are not canceled, one would expect that
QED should break down at an energy of order m./e far

below the Planck scale (a severe hierarchy problem).

The linear and quadratic divergences will cancel exactly if
one makes a bold hypothesis: the existence of the positron
(with a mass equal to that of the electron but of opposite

charge).

Weisskopf was the first to demonstrate this cancellation in
1934. .. well, actually he initially got it wrong, but thanks to

Furry, the correct result was presented in an erratum.



The self-energy of the electron

V. WEISSKOPF
Zeitschrift fiir Physik , 89: 27-39 (1934). Received 13 March 1934.

The self-energy of the electron is derived in a closer formal
connection with classical radiation theory, and the self-energy of
-an electron is calculated when the negative energy states are
occupied, corresponding to the conception of positive and nega-
tive electrons in the Dirac ‘hole’ theory. As expected, the self-
energy also divgl_'ges in th's theory, and specifically 10 the same
extent as in ordinary single-electron theory.

1 Problem definition

The self-energy of the electron is the energy of the electromagnetic field which is
generated by the electron in addition to the energy of the interaction of the electron
with this field. Waller,' Oppenheimer,? and Rosenfeld® calculated the self-energy of
the free electron by means of the Dirac relativistic wave equation of the electron and
the Dirac theory of the interaction between matter and light. They here used an
approximation method which represents the self-energy in powers of the charge e.
They found that the first term, which is proportional to e2, already becomes infinitely
large. The essential reason for this is that the theory of the interaction of the electron
with the electromagnetic field is built on the clessical equations of motion of a point-
shaped ‘clcctron whose self-energy, as is well known, also becomes infinite in classical
theory.

In the present note, the expressions for the self-energy shall be derived without direct
application of quantum electrodynamics, but by means of the Heisenberg radiation
theory,® which is linked much more closely to classical electrodynamics. The radiation
field is calculated classically from the current and charge densities of the .ztom;
however, the amplitudes of the electromagnetic potentials are regarded as non-com-
muting in the final result. Just as was shown in 2 corresponding paper by Casimir®
concerning the natural linewidth, this method yields the same result as explicit quantum

! 1. Waller, ZS. f. Phys. 62,.573, 1930.

? R. Uppenheimer, Phys. Rev. 35, 461, 1930.

* L. Rosenfeld, ZS. f. Phys. 70, 454 1931.
4 Recently, G. Wentzel (Z5. f. Ph}: 86, 479, 635, 1933) has shown that one can circumvent the |
divergence of the self-energy in classrca] electron theory by suitable limiting processes. The
transfer of these methods 1o quantum theory has iailcd, however, since, according to Waller,
the degree of infinity in quantum theory is highe- than in classical theory. The hope expressed
there that the degree of infinity will become smaller in the Dirac formalism of the ‘hole’ theory,
-does indeed hold for the electros:atic part but not for the electrodynamic part, €o that the
Wentzel method must fail here too.

5 W. Heisenberg, Ann. d. Phys. 338, 1931; see also W. Pauli’s article in Geiger-Scheel, Handb.
d. Phys. XX1C/1, 2nd edn., pp. 201-10.

€ H. Casimir, ZS. f. Phys. 81,496, 1933,




Correction to the paper: The self-energy
of the electron

Zeitschrift fiir Physik, 90: 817-18 (1934). Received 20 July 1934.

On [p. 166] of the paper cited above, there is a computational error which has seriously
garbled the results of the calculation for the electrodynamic self-energy of the electron

according to the Dirac hole theory. I am greatly indebted to Mr Furry (University of
California, Berkeley) for kindly pointing this out to me.

The degree of divergence of the self-energy in the hole theory is not, as asserted in
- [the preceding paper], just as great as in the Dirac one-electron theory, but the
divergence is only logarithmic. The expression for the electrostatic and electrodynamic
parts of the self-energy E of an electron with momentum p now correctly reads, in the
notations used in {the preceding paper]:

E=E*+ EP,
2 * dk
ES = h(mch-‘i PG @m3c? + p?) Lﬂ =+ finite terms,
E® = i (m%c? - % p?) J’w LB ap—
h(m?c? + p?)\? . i k k

For comparison, we cite the expressions obtained on the basis of the single-electron
theory:

2 (-3
ES= %L dk + finite terms,

2

B o isiasrite )y
Blp(mic + p) Z(mic?+p)—p "]
2e
W pz)mL kdk.
The computational error arose in the transformation of the electrodynamic portion
EP® for the case of the hole theory:
EP=1X@) - J*@), k=10r2,

where J5(B) is defined on [p. 166] whereas

1 -,
- PP, +— (kP)? + (kP) + m*c?
2=~ 5 :
2zh )k PP (P+ P, + k) _
and is not equal to the quantity J f(f;’], from which it differs only by a sign. Likewise,
one must set

ES.= 3 [1*@)ap
k=12

for the self-energy of the vacuum.
As a consequence of the new result, the question raised in note 4 of the paper
requires a new examination, whether the Wentzel method,'® to avoid the infinite

self-energy by suitable limiting processes, might not still lead to the objective in the
hole theory.

5 G. Wentzel, ZS. f. Phys, 86, 479, 635, 1933.

-



A remarkable result:

The linear and quadratic divergences of a
quantum theory of elementary fermions are
precisely canceled if one doubles the particle
spectrum—for every fermion, introduce an
anti-fermion partner of the same mass and

opposite charge.

In the process, we have introduced a new CPT-symmetry
that associates a fermion with its anti-particle and guarantees

the equality of their masses.



‘ Low-Energy Supersymmetry I

Will history repeat itself? Let's try it again. Take the Standard
Model and double the particle spectrum. Introduce a new symmetry—
supersymmetry—that relates fermions to bosons: for every fermion, there
is a boson of equal mass and vice versa. Now, compute the self-energy
of an elementary scalar. Supersymmetry relates it to the self-energy
of a fermion, which is only logarithmically logarithmically sensitive to
the fundamental high energy scale. Conclusion: quadratic sensitivity is

removed! The hierarchy problem is resolved.

However, no super-partner (degenerate in mass with the corresponding
SM particle) has ever been seen. Supersymmetry, if it exists in nature,

must be a broken symmetry. Previous arguments then imply that:

The scale of supersymmetry-breaking must be of order
1 TeV or less, if supersymmetry is associated with the

scale of electroweak symmetry breaking.

Still to be understood—the origin of supersymmetry breaking [which is a
difficult task not yet solved; there are many approaches but no compelling
model]. Nevertheless, TeV-scale supersymmetric physics could provide

our first glimpse of the Planck scale regime.
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Translation table relating bilinear covariants in

two-component and four-component notation
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where, to avoid confusion, Z# = Z[v*,+"]. Note that we may also

write: W y* Pr¥y = —mo5* 71, etc. It then follows that:




Wy = més + &7

Uiys Wy = —méa + &1

U0y = 615"E — M25"'m

Wiy ys Wy = =& — oo 'm
UMWy = 2i(n10" € + €15 T)

U Sy Wy = —2i(n10" € — €577 7,) .

For Majorana fermions defined by Wy, = ¥}, = C@L, the following
additional conditions are satisfied:

W Waye = Warn¥a,
Wanvs¥are = Yarevs W
Wan Y " Uare = =Wy " U,

Uy vs ¥ are = Uy vs W
Wan S W = =W S0y,
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The see-saw mechanism

The see-saw Lagrangian is given by:

L=i (EEWL% + Wﬁuﬁu%) — Mapap; — Mjpiapd

mis— [0 ™o
mp M
and (without loss of generality) mp and M are positive.
The Takagi factorization of this matrix is U MU = Mp,

where

where

I — tcosf sinb | My, — m_ 0 |
—isinf  cos6 0 my

and where my = % [\/J\I2 + 4m?3 + M} and

2 M
o cos 20 =

\/M2+4m%’ \/M2+4m2D.

sin 20 =



If M > mp, then the corresponding fermion masses are
m_ ~ m%/M and m, ~ M, while sinf ~ mp/M. The
mass eigenstates, x; are given by 1; = U/ x;; i.e. to leading

order in mgq/M,

) mp
iX1 Y1 — WQ% ;

m
Xo = 2+ =20

Indeed, one can check that:

L (1t + 1hathr) + S Miphy + hec.

1 [mD
=9 | XXt Mxax2 +h.c.|

which corresponds to a theory of two Majorana fermions—

one very light and one very heavy (the see-saw).



‘ Feynman rules for Majorana fermions I

Consider a set of neutral and charged fermions interacting with a neutral
scalar or vector boson. The interaction Lagrangian in terms of two-

component fermions is:
Lint = —%(Aijfifj + Xii€ )b — (K xim; + kijX' T )¢
—(Ge)i £€5"¢ A, — [(Gy)IX'T"x; + (G 15" i) Ay

where A is a complex symmetric matrix, K is an arbitrary complex matrix
and G¢, Gy and G, are hermitian matrices. By assumption, x and 7

have the opposite U(1) charges, while all other fields are neutral.

\IJM’L
Yy (NP + Ai; PR)
WALy
v,
__Q_b__ —’i(lﬁ:jiPL —|— IiijPR)
v
W
M}f“w< —iv,[(Ge)i’ PL — (Ge),;' Pr]
K \IJMJ
v,

_iWM[(Gx)ijPL — (Gn)jiPR]



The arrows on the Dirac fermion lines depict the flow of the conserved
charge. A Majorana fermion is self-conjugate, so its arrow simply reflects
the structure of Liy: i.e., Uiy [W /] is represented by an arrow pointing
out of [into] the vertex. The arrow directions determine the placement

of the w and v spinors in an invariant amplitude.

Next, consider the interaction of fermions with charged bosons, where
the charges of &, W and x are assumed to be equal. The corresponding

interaction Lagrangian is given by:

Line = =10 [k xi&5 + (k2)i7' €] — L®[kT0:i&; + ()X €]
—WL(G1) I X'T"E + (Ga)&ic" ;]
W [(G1 )] fja Xi + (G2)J _J_M&]

where k1 and ko are complex symmetric matrices and G; and G» are
hermitian matrices. We now convert to four-component spinors, and

note that C7 = —C and anti-commuting fermion fields imply that

T € Tl ~TL T ~—1 =

where the sign np = +1 for I' = 1, ~v5,v"y5 and np = —1 for
[' = ~#, 28 3HY~5. Hence, the Feynman rules for the interactions of
neutral and charged fermions with charged bosons can take two possible

forms:



—’i(lﬂ',%jPL —|- K/lijPR)

—’i(lﬂ',lijPL —|- IigijPR)

—iy"(G1i P, — Ga;' PrR)

iv" (G’ Pr — Ga;' Pp)

—’i’}/u(GljiPL — GgijPR)

iv" (G’ Pr — Ga;' Pp)

One is free to choose either a ¥ or W° line to represent a Dirac fermion
at any place in a given Feynman graph. The direction of the arrow on

the ¥ or W line indicates the corresponding direction of charge flow.*

ISince the charge of W€ is opposite to that of W, the corresponding arrow direction

of the two lines point in opposite directions.



Moreover, the structure of L, implies that the arrow directions on
fermion lines flow continuously through the diagram. This requirement
then determines the direction of the arrows on Majorana fermion lines.
In the computation of a given process, one may employ either W or ¥
when representing the propagation of a (virtual) Dirac fermion. Because

free Dirac fields satisfy:

(OIT(Wa(2)Ts())[0) = (OIT (W (2)T5(y))[0) ,
the Feynman rules for the propagator of a W and W€ line are identical.

Construction of invariant amplitudes involving Majorana fermions

When computing an invariant amplitude, one first writes down the
relevant Feynman diagrams with no arrows on any Majorana fermion
line. The number of distinct graphs contributing to the process is then
determined. Finally, one makes some choice for how to distribute the
arrows on the Majorana fermion lines and how to label Dirac fermion
lines (either W or W) in a manner consistent with the Feynman rules
for the interaction vertices. The end result for the invariant amplitude
(apart from an overall unobservable phase) does not depend on the

choices made for the direction of the fermion arrows.

Using the above procedure, the Feynman rules for the external fermion

wave functions are the same for Dirac and Majorana fermions:



e u(p,s): incoming ¥ [or U] with momentum P parallel to the

arrow direction,

e u(p,s): outgoing ¥ [or U] with momentum p parallel to the

arrow direction,

e v(P,s): outgoing ¥ [or ] with momentum P anti-parallel to the

arrow direction,

e U(pP,s): incoming W [or U] with momentum 5 anti-parallel to the

arrow direction.

Example: W (p1)W¥(p2) — P(k1)P(k2) via W p-exchange

The contributing Feynman graphs are:

Y

QC

A 4

A

_ — - - —

_ — > — - —

qijc

\

A

Following the arrows in reverse, the resulting invariant amplitude is:

i(ph — K1+ m)

t — m?

IM = (—i)QE(ﬁ2, s2) (k1 Pr + H;PR) [

+’i(/§/1 — P2+ m)

u — m?

] (k1Py + RyPR) (B, 51)



where t = (p1 — k1)?, u = (p2 — k1)? and m is the Majorana fermion
mass. The sign of each diagram is determined simply by the relative
permutation of spinor factors appearing in the amplitude (the overall

sign of the amplitude is unphysical).

Exercise: Check that 7 M is antisymmetric under interchange of the two
initial electrons. HINT: Taking the transpose and using v = u¢ = Ca’

(the u and v spinors are commuting objects), one easily verifies that:

@(ﬁ27 52)Fu(ﬁ17 81) — _nF'I_}(ﬁla Sl)Fu(ﬁ27 82) )

where as before np = +1 for I' = 1,5, v"v5 and np = —1 for
[ = ~", XM S e,

Example: W (p1)V“(p2) — Wa(ps)Wasr(ps) via charged P-exchange

Neglecting a possible s-channel annihilation graph, the contributing

Feynman graphs can be represented either by diagram set (i):

\ 4
A 4
A 4

Y s v W
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A 4

qijc
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or by diagram set (ii):
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The amplitude is evaluated by following the arrows in reverse. Using:

Q_J(ﬁ27 52)Fv(ﬁ47 84) — —”Irﬂ(ﬁ4> 84)Fu(ﬁ27 82) )

one can check that the invariant amplitudes resulting from diagram sets
(i) and (ii) differ by an overall minus sign, as expected due to the
fact that the corresponding order of the spinor wave functions differs
by an odd permutation [e.g., for the t-channel graphs, compare 3142
and 3124 for (i) and (ii) respectively]. For the same reason, there is
a relative minus sign between the t-channel and w-channel graphs for

either diagram set [e.g., compare 3142 and 4132 in diagram set(i)].

If s-channel annihilation contributes, its calculation is straightforward:

W W

] W

Relative to the t-channel graph of diagram set (ii), this diagram comes

with an extra minus sign [since 2134 is odd with respect to 3124].



In the computation of the unpolarized cross-section, non-standard spin
projection operators can arise in the evaluation of the interference terms.

One may encounter spin sums such as:’
> u(B, s)v’ (B, s) = (p+m)CT
_T, = — s — —1
Zu (p7 S)'U(p,S):C (ﬁ_m)7

which requires additional manipulation of the charge conjugation
matrix C. However, these non-standard spin projection operators can be
avoided by judicious use of spinor product relations of the kind displayed

on the previous two pages.

%see Appendix D of G.L. Kane and H.E. Haber, Phys. Rep. 117 (1985) 75.





