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Motivations



Why NLO computations
• LO computations describe reasonably well only 

inclusive quantities / total rates

• Differential NLO spectra often have shapes clearly 
different from LO ones (non constant K-factors)

• NLO both improves observables estimate (central 
value) and reduces theoretical uncertainty

• Weakness: poor description of the emissions in the 
soft - collinear region of the phase space

For the LHC is mandatory to know every observable at 
least at the NLO

(both for signal prediction and for background estimation)



Why Parton Showers (PSMC)

• Parton Showers Monte Carlos (PSMC’s) offer 
resummation of large logarithms in the soft - collinear 
region at the LL accuracy

• PSMC is a realistic framework, including 
hadronisation, multiple interactions, non perturbative 
models and possibility of passing events through 
detector simulation

• Weaknesses: LO normalization and poor description 
on the hard region



Why matching
• NLO and PSMC are complementary approaches: the 

former good for hard emissions, the latter for soft - 
collinear ones

• Retain the virtues of the two discarding their 
weaknesses: give a prediction which is PSMC in the 
soft - collinear region, NLO for hard emission

• Attain NLO precision

• Achieve a smooth transition between the two 
predictions and avoid double counting

Matched computations are some of the most 
accurate / realistic predictions currently available



Why automation
• NLO computations conceptually easy but viable only 

for small multiplicities

• The core of the PSMC and of the matching machinery 
(see below) is process-independent

• Reduce bugs and avoid writing / debugging / validating 
one code each physical process

• Develop general tools that can be applied to any 
model and any multiplicity (up to CPU)

automation + PSMC + NLO = aMC@NLO



Parton Showers and NLO



a
c

b

a
c

bMn+1 Mn

 Cross section factorization in the collinear limit

|Mn+1|2dΦn+1 � |Mn|2dΦn
dt

t
dz

dφ

2π

αS

2π
Pa→bc(z)

•        virtuality of particle    (could be its     or       ...)
   it represents the hardness of the branching
•        energy fraction of parton   relative to 
•                  Altarelli - Parisi splitting kernel
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PSMC I: collinear factorization



PSMC II: multiple emission
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Factorized rate for multiple emission

Parton Shower Monte Carlo knows about the Leading 
Logarithmic (LL) collinear approximation of the total rate
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PSMC III: emission probability
Differential probability for the 
branching            at scale  :t

No emission probability between scales      and  :Q2 t
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Probability of first 
branching at scale  :t

dPa(Q
2, t) = ∆a(Q

2, t) dp(t)

∆a(Q
2, t) is called Sudakov form factor



PSMC IV: unitarity
Cross section for 0 or 1 emission in the Parton Shower

normalization 
(LO)

no-emission
1 emission at scale t

Expand at first order in  αS
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PSMC V: practical implementation

• Extract the evolution scale of the branching by
   solving the equation                     , with      a flat
   random number between 0 and 1

∆a(Q
2, t) = R# R#
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PSMC V: practical implementation

• Extract the evolution scale of the branching by
   solving the equation                     , with      a flat
   random number between 0 and 1
• Extract the energy sharing    and the daughters
   identities    and    according to            
• Extract
• Reiterate until all ‘external’ partons have scale smaller
   than a threshold
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PSMC V: practical implementation

• Extract the evolution scale of the branching by
   solving the equation                     , with      a flat
   random number between 0 and 1
• Extract the energy sharing    and the daughters
   identities    and    according to            
• Extract
• Reiterate until all ‘external’ partons have scale smaller
   than a threshold
• Put partons on shell and hadronise

∆a(Q
2, t) = R# R#

b c

z

Pa→bc(z)

φ



PSMC VI: differences

Mainly : choice of the evolution variable a
b

c
θ

• HERWIG6:
 
• Herwig++: 
 
• PYTHIA6:
 
• Pythia 8:

t =
pb · pc
EbEc

� 1− cos θ

t =
(pb⊥)2

z2(1− z)2
, z =

n · pa
n · (pa + pc)

t = (pb + pc)
2

t = z(1− z)(pb + pc)
2 , z =

Eb

Eb + Ec



NLO: cross section
Oversimplified structure of an NLO cross section

dσNLO = dΦB

�
B + V +

�
dΦ(+1) R

�

                 : n+1-bodies phase space

dΦB

B

V

R

        : Born matrix element squared

        :  Virtual-emission matrix element squared (infinite)

        : Real-emission matrix element squared (infinite)

        : n-bodies phase space

dΦBdΦ(+1)

                            finite (KLN theorem)V +

�
dΦ(+1) R



Matching the two 
approaches: MC@NLO



Naive matching at NLO I
Take NLO cross section and PSMC formulae

Naive matching definition

      is the PSMC emission probability obtained 
showering from a     bodies hard kinematicsk−

dσNLO = dΦB

�
B + V +

�
dΦ(+1) R

�

dσMC@NLO = [dΦB(B + V )] I(n)MC +
�
dΦBdΦ(+1) R

�
I(n+1)
MC

I(k)MC

Example:       for 0 or 1 emission is 
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I(n)MC

dσMC = dΦBBI(n)MC



Naive matching at NLO II

This simple approach does not work:

• Instability: weights associated to       and         
   are separately divergent (regulate them, but inefficient
   unweighting)

I(n)MC I(n+1)
MC

dσMC@NLO = [dΦB(B + V )] I(n)MC +
�
dΦBdΦ(+1) R

�
I(n+1)
MC



Naive matching at NLO II

This simple approach does not work:

• Instability: weights associated to       and         
   are separately divergent (regulate them, but inefficient
   unweighting)

• Double counting:              expanded at NLO does not
   coincide with NLO rate.  Some configurations are
   dealt with by both the NLO and the PSMC
   

I(n)MC I(n+1)
MC

dσMC@NLO = [dΦB(B + V )] I(n)MC +
�
dΦBdΦ(+1) R

�
I(n+1)
MC

dσ(naive)
MC@NLO



MC@NLO I: modified subtraction
Modify the naive formula

Rough structure of the Monte Carlo counterterm: 

MC =

����
∂(tMC, zMC,φ)

∂Φ(+1)

����
1

tMC

αS

2π

1

2π
P (zMC)B

• It is the cross section for the first emission in the MC
   (more on its details later)

• It essentially depends on PSMC one is interfacing to

dσMC@NLO =

�
dΦB(B + V +

�
dΦ(+1)MC)

�
I(n)MC +

�
dΦBdΦ(+1) (R−MC)

�
I(n+1)
MC

Frixione, Webber: hep-ph/0204244



MC@NLO II: FKS
Deal with infinite cancellations: subtraction method.
MC@NLO uses Frixione-Kunszt-Signer formalism

• Partition the phase space with a set of functions (‘S’)
   each of which selects one soft and one collinear
   singularity and whose sum is 1

Frixione, Kunstz, Signer: hep-ph/9512328
 Frixione: hep-ph/9706545

R =
�

ij

Rij , Rij = SijR

�

ij

Sij = 1

�

j

Sij → 1 when ki → 0

Sij → 1 when ki � kj

Sij → 0 for all other singularities



MC@NLO II: FKS

• Perform analytically the cancellation of the IR poles
   in each singular region separately:

RijdΦBdΦ(+1) →
�

1

Ei

�

+

�
1

1− cos θij

�

+

Ei(1− cos θij)RijdΦBdΦ(+1)

• Exploit symmetries so that the number of subtraction
   terms scales mildly with the multiplicity (slower than
   the naive     )
   Example: for          gluons one has only 3 subtractions 2 → n

• FKS subtraction method has better ‘scaling‘ properties
   with respect to other methods like dipole subtraction   

n2



MC@NLO III: properties
Nice features of the modified subtraction:

• Stability: weights associated to different kinematics are
   now separately finite. The MC term has the same 
   collinear poles as the real (subtlety: soft poles)



MC@NLO III: properties
Nice features of the modified subtraction:

• Stability: weights associated to different kinematics are
   now separately finite. The MC term has the same 
   collinear poles as the real (subtlety: soft poles)
• Double counting avoided: the rate expanded at NLO
   coincides with the total NLO cross section



MC@NLO IV: properties

• More on (no) double counting

dσMC@NLO =

�
dΦB(B + V +

�
dΦ(+1)MC)

�
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dΦBdΦ(+1) (R−MC)
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Expand at NLO
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B
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+
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� dΦB(B + V + dΦ(+1) R) = dσNLO



Nice features of the modified subtraction:

• Stability: weights associated to different kinematics are
   now separately finite. The MC term has the same
   collinear poles as the real (subtlety for the soft poles)
• Double counting avoided: the rate expanded at NLO
   coincides with the total NLO cross section
• Smooth matching: MC@NLO predictions coincide with   
   the MC in shape in the soft and collinear region, with
   the NLO in the hard region

MC@NLO III: properties



MC@NLO IV: properties

• More on (no) double counting

dσMC@NLO =

�
dΦB(B + V +

�
dΦ(+1)MC)

�
I(n)MC +

�
dΦBdΦ(+1) (R−MC)

�
I(n+1)
MC

Expand at NLO

I(1
stem)
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0

dt

t
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dφ

2π

αS

2π
P (z) + dz

dt

t
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2π
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�
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MC

B
+ dΦ(+1)

MC

B

! Soft-collinear region:
! Hard region: sensible     expansion
  (shower effects cancel at         and NLO = Real)

=⇒ dσMC@NLO � dΦBdΦ(+1) RαS

dσMC@NLO =

�
dΦB(B + V +

�
dΦ(+1)MC)

� �
1−

�
dΦ(+1)

MC

B
+ dΦ(+1)
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B

�

+
�
dΦBdΦ(+1) (R−MC)

�
� dΦB(B + V + dΦ(+1) R) = dσNLO

O(αS)

• More on smooth matching
R � MC =⇒ dσMC@NLO ∝ I(n)MC



Nice features of the modified subtraction:

• Stability: weights associated to different kinematics are
   now separately finite. The MC term has the same
   collinear poles as the real (subtlety for the soft poles)
• Double counting avoided: the rate expanded at NLO
   coincides with the total NLO cross section
• Smooth matching: MC@NLO predictions coincide with   
   the MC in shape in the soft and collinear region, with
   the NLO in the hard region
• Normalization: MC@NLO is normalized to NLO
Integrands associated with      and            kinematics 
are called S (for standard) and H (for hard), respectively 

n− (n+ 1)−

MC@NLO III: properties



dσMC@NLO =

�
dΦB(B + V +

�
dΦ(+1)MC)

�
I(n)MC +

�
dΦBdΦ(+1) (R−MC)

�
I(n+1)
MC

S- and H- integrands can be negative somewhere :  
MC@NLO is not positive-definite (negative weights)
 
• Compute S- and H- integrals (        ) and integrals of
   the absolute value of the S- and H- integrands (        )

• Generate events distributed according to         
   (probability distributions are positive definite) but
   assign them a weight with sign    depending on
   (unweighting up to a sign)

IS, IH

JS, JH

Fraction of negative weights : 

MC@NLO V: implementation

JS, JH

IS, IH±

f (neg)
S,H =

1

2

�
1− IS,H

JS,H

�



MC@NLO VI: negative weights
Negative fractions expected to be reasonably small
(LO is dominant and positive definite)

Is it a problem to have negative weights?

NO : after showering MC@NLO distributions are 
positive definite (asymptotically) and physical

Fraction of negative weights just affects the efficiency, i.e. 
the ‘threshold’ beyond which smooth spectra are obtained 
(the less the negative weights the smoother the spectrum) 



MC@NLO VII: old limitations

• Lack of a systematic approach
! One code per process / simple processes only
! Necessary slowness in including new processes
! Necessary slowness in adding a new PSMC

• Possibly different parametrizations for different
   processes: unease in extensions
• Approximations here and there

Fortran HERWIG:   from 2002, O(30) processes
Herwig++:              from 2007, the same

Fortran PYTHIA:     from 2008, 1(+1) processes
Frixione, Stoeckli, Webber, White, P.T.: hep-ph/10100819
          Frixione, Stoeckli, Webber, P.T.: hep-ph/10100568

                                   Frixione, P.T.: hep-ph/10024293



MC@NLO 4.0 [Oct 10]
IPROC IV IL1 IL2 Spin Process

–1350–IL ! H1H2 → (Z/γ∗ →)lILl̄IL + X
–1360–IL ! H1H2 → (Z →)lILl̄IL + X
–1370–IL ! H1H2 → (γ∗ →)lILl̄IL + X
–1460–IL ! H1H2 → (W+ →)l+ILνIL + X
–1470–IL ! H1H2 → (W− →)l−ILν̄IL + X

–1396 × H1H2 → γ∗(→
∑

i fif̄i) + X
–1397 × H1H2 → Z0 + X
–1497 × H1H2 → W+ + X
–1498 × H1H2 → W− + X

–1600–ID H1H2 → H0 + X
–1705 H1H2 → bb̄ + X
–1706 7 7 × H1H2 → tt̄ + X

–2000–IC 7 × H1H2 → t/t̄ + X
–2001–IC 7 × H1H2 → t̄ + X
–2004–IC 7 × H1H2 → t + X

–2030 7 7 × H1H2 → tW−/t̄W+ + X
–2031 7 7 × H1H2 → t̄W+ + X
–2034 7 7 × H1H2 → tW− + X
–2040 7 7 × H1H2 → tH−/t̄H+ + X
–2041 7 7 × H1H2 → t̄H+ + X
–2044 7 7 × H1H2 → tH− + X

–2600–ID 1 7 × H1H2 → H0W+ + X
–2600–ID 1 i ! H1H2 → H0(W+ →)l+i νi + X
–2600–ID -1 7 × H1H2 → H0W− + X
–2600–ID -1 i ! H1H2 → H0(W− →)l−i ν̄i + X
–2700–ID 0 7 × H1H2 → H0Z + X
–2700–ID 0 i ! H1H2 → H0(Z →)lil̄i + X

–2850 7 7 × H1H2 → W+W− + X
–2860 7 7 × H1H2 → Z0Z0 + X
–2870 7 7 × H1H2 → W+Z0 + X
–2880 7 7 × H1H2 → W−Z0 + X

http://www.hep.phy.cam.ac.uk/theory/webber/MCatNLO

Slide by S. Frixione



MC@NLO 4.0 [Oct 10]

IPROC IV IL1 IL2 Spin Process
–1706 i j ! H1H2 → (t →)bkfif ′

i(t̄ →)b̄lfjf ′
j + X

–2000–IC i ! H1H2 → (t →)bkfif ′
i/(t̄ →)b̄kfif ′

i + X
–2001–IC i ! H1H2 → (t̄ →)b̄kfif ′

i + X
–2004–IC i ! H1H2 → (t →)bkfif ′

i + X
–2030 i j ! H1H2 → (t →)bkfif ′

i(W
− →)fjf ′

j/
(t̄ →)b̄kfif ′

i(W
+ →)fjf ′

j + X
–2031 i j ! H1H2 → (t̄ →)b̄kfif ′

i(W
+ →)fjf ′

j + X
–2034 i j ! H1H2 → (t →)bkfif ′

i(W
− →)fjf ′

j + X
–2040 i ! H1H2 → (t →)bkfif ′

iH
−/

(t̄ →)b̄kfif ′
iH

+ + X
–2041 i ! H1H2 → (t̄ →)b̄kfif ′

iH
+ + X

–2044 i ! H1H2 → (t →)bkfif ′
iH

− + X
–2850 i j ! H1H2 → (W+ →)l+i νi(W− →)l−j ν̄j + X
–2870 i j ! H1H2 → (W+ →)l+i νi(Z0 →)l′j l̄

′
j + X

–2880 i j ! H1H2 → (W+ →)l−i ν̄i(Z0 →)l′j l̄
′
j + X

http://www.hep.phy.cam.ac.uk/theory/webber/MCatNLO

MC@NLO 3.4 is in GENSER (thanks to M. Kirsanov and A. Ribon). A
GENSERisation script is now available (F. Stoeckli) and is being tested

Slide by S. Frixione



Automation: aMC@NLO



From MC@NLO to aMC@NLO

• MC@NLO framework is solid and mature
• Limitations only in the implementation not in the
  method

To overtake old weaknesses

• Compute automatically NLO cross sections
! MadGraph: Born contribution
! MadFKS: poles subtraction and finite part of the Real
! MadLoop: finite part of the Virtual

• Compute automatically MC counterterms:  aMC@NLO



• A new MadGraph module to perform an NLO 
computation up to the finite part of the Virtual

• Automatic generation of Born an Real emission 
diagrams by MadGraph

• Analytical subtraction of IR singularities using the FKS 
formalism

• Efficient phase space integration

• Completely general and automatic

MadFKS
          Frederix, Frixione, Maltoni, Stelzer: hep-ph/09084272



• A new MadGraph module to compute the finite part 
of the Virtual (UV and IR regularized)

• Generates loop diagrams exploiting the ability of 
MadGraph of generating tree level diagrams (‘L-cut 
diagrams’)

MadLoop I
          Hirschi, Frederix, Frixione, Garzelli, Maltoni, Pittau: hep-ph/11030621

Rikkert Frederix, May 5, 2011

Instead of writing a new code to generate loop diagrams, we use the existing, 
well-tested MadGraph code to generate tree-level diagrams

A loop diagrams with the loop cut open has to extra external particles. 
Consider e+e- ! u* ubar* u ubar (loop particles are denoted with a star). 
MadGraph will generate 8 L-cut diagrams. Here are two of them:

23

All diagrams with two extra 
particles are generated and the 
ones that are needed are 
filtered out

Each diagram gets an unique 
tag: any mirror and/or cyclic 
permutations of tags of 
diagrams already in the set are 
taken out

Additional filter to eliminate 
tadpoles and bubbles attached 
to external lines

!

!

Diag 1 = [u∗(6)g∗(5)u∗(A)]

Diag 3 = [u∗(A)u∗(6)g∗(5)]

• Instructs MadGraph to treat starred particles

• Automatically computes the numerator of the loop 
integrand



• Performs many sanity checks (IR poles, Ward, ...) and 
exploits many symmetry properties (cyclic, mirror, ...)

• Passes the numerator of the integrand to CutTools

• CutTools automatically implements the OPP reduction 
at the integrand level: evaluates the numerator at 
various points and numerically solves algebraic 
equations to obtain the coefficients of master scalar 
integrals and gives the integrals themselves

• MadLoop UV renormalizes and gives the finite part of 
the Virtual

MadLoop II
          Hirschi, Frederix, Frixione, Garzelli, Maltoni, Pittau: hep-ph/11030621

                                    Ossola, Papadopoulos, Pittau: hep-ph/07113596
                                  Ossola, Papadopoulos, Pittau: hep-ph/0609007



aMC@NLO I: structure
MC =

�

pq,c,l∈c

δp∈l

Np

αS

(2π)2

�����
∂(t(l)p , z(l)p ,φ)

∂Φ(+1)

�����
Pp→qr(z

(l)
p )|Mc|2B +Qp→qr(z

(l)
p )|�Mc|2

t(l)p

×

×Θ(DZ)dΦB(1− G(Φ(+1))) + dΦBdΦ(+1) R G(Φ(+1))

•            color flow / color line
•                                                 barred Born amplitude
  squared  - to recover the full Born summing only on 
  leading color

c, l =

•                       azimuthal kernel
•               barred azimuthal amplitude
•                 dead zone 
                  (built-in for HERWIG, imposed to PYTHIA)
•                   to recover correct soft limit

Qp→qr(z
(l)
p ) =

|�Mc|2 =

Θ(DZ) =

G(Φ(+1)) =

Odagiri: hep-ph/9806531

|Mc|2B ≡ B|Mc|2B/
�

c� |Mc� |2B =



aMC@NLO II: structure
MC =

�

pq,c,l∈c

δp∈l

Np

αS

(2π)2

�����
∂(t(l)p , z(l)p ,φ)

∂Φ(+1)

�����
Pp→qr(z

(l)
p )|Mc|2B +Qp→qr(z

(l)
p )|�Mc|2

t(l)p

×

×Θ(DZ)dΦB(1− G(Φ(+1))) + dΦBdΦ(+1) R G(Φ(+1))

• Assignment of color flow and color partner (MC scales  
   and variable definitions may depend on it)
• Assign splitting type (ISR from leg 1 or 2, FSR from
   massive or massless leg) 
• Shower variables definitions and jacobian computation
• Computation of barred amplitudes
• Compute the G-function
• Compute the AP kernels
• Compute the MC counterterms
• Compute S- and H- integrands



aMC@NLO II: structure
MC =

�

pq,c,l∈c

δp∈l

Np

αS

(2π)2

�����
∂(t(l)p , z(l)p ,φ)

∂Φ(+1)

�����
Pp→qr(z

(l)
p )|Mc|2B +Qp→qr(z

(l)
p )|�Mc|2

t(l)p

×

×Θ(DZ)dΦB(1− G(Φ(+1))) + dΦBdΦ(+1) R G(Φ(+1))

• Assignment of color flow and color partner (MC scales  
  and variable definitions may depend on it)
• Computation of barred amplitudes
• Shower variables definitions and jacobian computation
• Assign splitting type (ISR from leg 1 or 2, FSR from
  massive or massless leg)
• Compute the G-function
• Compute the AP kernels
• Compute the MC counterterms
• Compute S- and H- integrands

Structure fully general and process-independent



aMC@NLOIII: checks / validation

• IR limits / finiteness of S- and H- integrals
• Total cross section
• Symmetry properties (done for simple processes)

Checks



aMC@NLO III: checks / validation
Checks

Validation

• Fixed process and parameters, all spectra have to
  coincide with MC@NLO (helped spotting a small
  mistake in the non-automatic implementation)

• IR limits / finiteness of S- and H- integrals
• Total cross section
• Symmetry properties (done for simple processes)



Status and plans



aMC@NLO IV: status for HERWIG6

• Validated for all kinds of emission types (ISR,  FSR
  massive...) against benchmark MC@NLO processes
                   Agreement for all spectra
  Non trivial since structure completely different!

• Moved to new complex processes (first time more
   than 2 final state particles)

!                              
!                                                   (massive b, spin corr.)                
!                                                   (spin corr., interf.)
!                                                   (massive b)
!      ...

pp → tt̄H / tt̄A+X Frederix, Frixione, Hirschi, Maltoni, Pittau, P.T.: hep-ph/11045613

pp → 2(γ∗/Z∗) → e+e−µ+µ− +X

pp → bb̄H +X

pp → bb̄(W±∗
)/bb̄(Z∗) → bb̄ll +X



Htt̄ and Att̄ with aMC@NLO

Solid: aMC@NLO scalar. Dashed: aMC@NLO pseudoscalar

Dotted: NLO scalar. Dotdashed: NLO pseudoscalar

Left: tt̄ invariant mass. Right: tt̄H pT

mH = mA = 120 GeV

Slide by S. Frixione



(W →)eνbb̄ with aMC@NLO

Solid: aMC@NLO. Dashed: aMC@LO Dotted: NLO. Dotdashed: LO

Left: bb̄ invariant mass (LO rescaled). Right: bb̄ pT (LO rescaled)

Slide by S. Frixione



aMC@NLO V: status for PYTHIA6

• Validated for half of the emission types (ISR) against 
  the only available MC@NLO processes
   Agreement for all spectra

• Last checks for FSR: still one subtlety missing about 
  PSMC maximum scale (intense activity)

• Only virtuality-ordered shower at the moment



aMC@NLOVI: status for other PSMC’s

• Herwig++: all needed formulae known (from 
   MC@NLO 4.0), just need to implement them and
   debug / check / validate Frixione, Stoeckli, Webber, White, P.T.: hep-ph/10100819



aMC@NLO VI: status for other PSMC’s

• Herwig++: all needed formulae known (from 
   MC@NLO 4.0), just need to implement them and
   debug / check / validate

• PYTHIA6 - pT: formulae known for ISR (very similar
   to virtuality - ordered case) just need to type them
   and debug / check / validate

Frixione, Stoeckli, Webber, White, P.T.: hep-ph/10100819



aMC@NLO VI: status for other PSMC’s

• Herwig++: all needed formulae known (from 
   MC@NLO 4.0), just need to implement them and
   debug / check / validate

• PYTHIA6 - pT: formulae known for ISR (very similar
   to virtuality - ordered case) just need to type them
   and debug / check / validate

Frixione, Stoeckli, Webber, White, P.T.: hep-ph/10100819

• Pythia8: nothing done yet (but no conceptual obstacles)



aMC@NLO project: future plans
• Complete implementation for Herwig++ and Pythia
• Produce results for BSM (something already available !) 



Rikkert Frederix, May 5, 2011

Also BSM

squark-gluino associated production

real emission corrections included, but virtual 
correction not (yet)

43Rikkert Frederix, September 14, 2010

squark-gluino associated production

real emission corrections included, 
but virtual correction not (yet)
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aMC@NLO project: future plans
• Complete implementation for Herwig++ and Pythia
• Produce results for BSM (something already available !) 

• Move completely to MadGraph5:
   There will be huge benefits in terms of

! Speed
! Flexibility
! Possibility to implement new models
! Possibility to overtake current limitations (mainly in

     MadLoop)
• Dedicate large amount of time to studying exciting
   phenomenology
• Improve the code to make it more and more usable
   for experimental collaborations

Alwall, Herquet, Maltoni, Mattelaer, 
Stelzer: hep-ph/11060522



Outlook



Outlook
• MC@NLO is well established theoretically: currently 

it provides some of the most accurate predictions for 
large classes of processes

• aMC@NLO is reaching maturity and will bring 
theoretical analyses to a new level of accuracy 

• We are rapidly approaching the era of fully matched, 
automatic NLO + PSMC computations !

Thank you


