SUSY QCD corrections to electroweak gauge boson production with an associated jet

Ryan Gavin University of Wisconsin Madison

with F Petriello, M Trenkel in progress

PSI Particle Theory Seminar June 30, 2011

Outline

- EW Gauge Boson Production
- at Higher Orders
- sQCD Corrections to Z+Jet
- Numerical Results
- sQCD Corrections to W+Jet
- Concluding Remarks

The LHC

Running at 7 TeV since March 13, 2011

 $\mathcal{L}_{int} \sim 1.3 \text{ fb}^{-1}$

(generated 2011-06-29 08:12 including fill 1901)

- Z & W production still very interesting
 - playing an important role
 in LHC physics

- Z & W production still very interesting
 - playing an important role
 in LHC physics
- σ_Z, σ_W
 - large production cross sections
 - I to I0's of nbs

Z&W candidates

W→µv candidate

in 7 TeV collisions

 $p_{T}(\mu) = 40 \text{ GeV}$ $\eta(\mu) = 2.0$ $E_{T}^{miss} = 41 \text{ GeV}$ $M_{T} = 83 \text{ GeV}$

100k events/yr

PSI Particle Theory Seminar Jun 30, 2011

Ryan Gavin

Z&W candidates

W→µv candidate

in 7 TeV collisions

 $p_{T}(\mu) = 40 \text{ GeV}$ $\eta(\mu) = 2.0$ $E_{T}^{miss} = 41 \text{ GeV}$ $M_{T} = 83 \text{ GeV}$

Over One Year Old! 100k events/yr

PSI Particle Theory Seminar Jun 30, 2011

- Electroweak (EW) gauge boson production
 - decay to leptonic final state

- Electroweak (EW) gauge boson production
 - decay to leptonic final state

- Electroweak (EW) gauge boson production
 - decay to leptonic final state

- parton distribution functions (PDF)
 - probability to find a parton with momentum fraction x
 - process independent
 - μ_F factorization scale

- Clear collider signature
 - leptonic final states

$$pp \to Z/\gamma^* \to l^- l^+$$

- two opposite sign candidates
- high pT
- isolation & identification
- peak in M_1^+

CMS PAS EWK-10-007

- Clear collider signature
 - leptonic final states

$$pp \to W^- \to l^- \bar{\nu}$$

- single charged candidate
- high lepton p_T
- lepton isolation & identification
- missing E_T
- peak in M_T

$$M_T = [2p_T^l p_T^{\nu} (1 - \cos \phi_{l\nu})]^{\frac{1}{2}}$$

ATLAS-CONF-2011-041

- Make for good analyses on early data
 - integrated luminosity of nb⁻¹'s to pb⁻¹'s
- Rediscovering the EW gauge bosons at LHC

- Make for good analyses on early data
 - integrated luminosity of nb⁻¹'s to pb⁻¹'s
- Rediscovering the EW gauge bosons at LHC
- Z/W properties are well known reliable predictions
 - M_Z , M_W , Γ_M , Γ_W , cross sections

- Make for good analyses on early data
 - integrated luminosity of nb⁻¹'s to pb⁻¹'s
- Rediscovering the EW gauge bosons at LHC
- Z/W properties are well known reliable predictions
 - M_Z , M_W , Γ_M , Γ_W , cross sections
- LHC 'Standard Candles'

Ryan Gavin

- Detector calibration & performance
 - M_Z , Γ_M from M_{II} distributions at Z resonance
- Luminosity monitoring (Dittmar et. al.)
 - **-** σ_W, σ_Z
- Important for measuring EW parameter
 - precise measurements of M_W , Γ_W , $\sin^2\theta_{eff}$
- Look at new analysis tools
 - a_T, $φ_η^*$ → low Z p_T study
 - reduce uncertainty due to energy resolution

- Study of perturbative QCD
 - p_T distributions
 - Z pT > 0 starting at NLO

- Study of perturbative QCD
 - p_T distributions
 - Z pT > 0 starting at NLO

- Study of perturbative QCD
 - p_T distributions
 - Z pT > 0 starting at NLO

- PDF measurements
 - Z rapidity distributions

- PDF measurements
- Z rapidity distributions $d\sigma_{AB} = \sum_{a,b} \int dx_a f_{a/A}(x_a) \int dx_b f_{b/B}(x_b) \ d\hat{\sigma}_{ab}$

• PDF measurements

- Z rapidity distributions $d\sigma_{AB} = \sum_{a,b} \int dx_a f_{a/A}(x_a) \int dx_b f_{b/B}(x_b) \ d\hat{\sigma}_{ab}$ $x_a = \frac{Q}{\sqrt{s}} e^Y \quad \& \quad x_b = \frac{Q}{\sqrt{s}} e^{-Y}$

• PDF measurements

 Z rapidity distributions $d\sigma_{AB} = \sum \int dx_a f_{a/A}(x_a) \int dx_b f_{b/B}(x_b) d\hat{\sigma}_{ab}$ a,b $\dot{x_a} = \frac{Q}{\sqrt{s}} e^Y \quad \& \quad x_b = \frac{Q}{\sqrt{s}} e^{-Y}$ $Y = \frac{1}{2} \ln(\frac{x_a}{x_b})$

- PDF measurements
- Z rapidity distributions $d\sigma_{AB} = \sum \int dx_a f_{a/A}(x_a) \int dx_b f_{b/B}(x_b) d\hat{\sigma}_{ab}$ a,b $x_a = \frac{Q}{\sqrt{s}} e^Y \quad \& \quad x_b = \frac{Q}{\sqrt{s}} e^{-Y}$ **Distributions in rapidity** $Y = \frac{1}{2} \ln(\frac{x_a}{x_b})$
 - measure/constrain PDFs

- Constraint on some BSM physics
 - deviations in M_{II} distributions (e.g. Z')
 - deviations in forward/backward asymmetry, A_{FB}

Dittmar, Nicollerat, Djouadi arXiv:hep-ph/0307020

- LHC will produce large amount of data
 - \rightarrow small statistical error
 - → measurements limited by systematics & theoretical error

- LHC will produce large amount of data
 - \rightarrow small statistical error
 - → measurements limited by systematics & theoretical error
- As LHC continues to run
 - expect systematics to improve

- LHC will produce large amount of data
 - \rightarrow small statistical error
 - → measurements limited by systematics & theoretical error
- As LHC continues to run
 - expect systematics to improve
- Can expect percent level physics
 - need to reduce theoretical uncertainties

• Measurements require theory input

- Acceptances derived from calculation and simulation
- Precision physics → need higher order calculations

• Measurements require theory input

$$\sigma = \frac{N_{sig}}{\epsilon \cdot A \cdot \mathcal{L}_{int}}$$

- Acceptances derived from calculation and simulation
- Precision physics → need higher order calculations

• Measurements require theory input

$$\sigma = \frac{N_{sig}}{\epsilon \cdot A \cdot \mathcal{L}_{int}}$$

- Acceptances derived from calculation and simulation
- Precision physics → need higher order calculations

- Quantitative predictive power begins at NLO
- Improves normalization
- Reduces uncertainties
- More accurately describes distribution shapes

- Quantitative predictive power begins at NLO
- Improves normalization
- Reduces uncertainties
- More accurately describes distribution shapes

dijet production

- Quantitative predictive power begins at NLO
- Improves normalization
- Reduces uncertainties
- More accurately describes distribution shapes

- Quantitative predictive power begins at NLO
- Improves normalization
- Reduces uncertainties
- More accurately describes distribution shapes

number of jets	CDF	LO	NLO
1	53.5 ± 5.6	$41.40(0.02)^{+7.59}_{-5.94}$	$57.83(0.12)^{+4.36}_{-4.00}$
2	6.8 ± 1.1	$6.159(0.004)^{+2.41}_{-1.58}$	$7.62(0.04)^{+0.62}_{-0.86}$
3	0.84 ± 0.24	$0.796(0.001)^{+0.488}_{-0.276}$	$0.882(0.005)^{+0.057}_{-0.138}$

Berger, et al. arXiv:0907.1984

PSI Particle Theory Seminar Jun 30, 2011
• Z/W boson production purely EW $\sigma_{DY} \propto \alpha_{em}^2$

- Z/W boson production purely EW $\sigma_{DY} \propto \alpha_{em}^2$
- Introduce hard jets associated with DY
 - introduce strong coupling at tree level $\sigma_{DY+n\ jets} \propto lpha_{em}^2 lpha_s^n$

- Z/W boson production purely EW $\sigma_{DY} \propto \alpha_{em}^2$
- Introduce hard jets associated with DY
 - introduce strong coupling at tree level $\sigma_{DY+n\,jets}\propto lpha_{em}^2lpha_s^n$
- Emitted parton can be collinear or soft
 - well defined jet has a pT cutoff regulates IR divergences

- Z/W boson production purely EW $\sigma_{DY} \propto \alpha_{em}^2$
- Introduce hard jets associated with DY
 - introduce strong coupling at tree level $\sigma_{DY+n\,jets}\propto lpha_{em}^2lpha_s^n$
- Emitted parton can be collinear or soft
 - well defined jet has a pT cutoff regulates IR divergences
- Z/W + I jet helps constrain gluon PDF

- Z/W boson production purely EW $\sigma_{DY} \propto \alpha_{em}^2$
- Introduce hard jets associated with DY
 - introduce strong coupling at tree level $\sigma_{DY+n\,jets}\propto lpha_{em}^2lpha_s^n$
- Emitted parton can be collinear or soft
 - well defined jet has a p_T cutoff regulates IR divergences
- Z/W + I jet helps constrain gluon PDF
- Background to new physics searches

• Focus on Z+jet production

- Focus on Z+jet production
- LO process $\propto lpha_{em}^2 \ lpha_s$

- Focus on Z+jet production
- LO process $\propto lpha_{em}^2 \ lpha_s$

3 partonic processes $q \ \bar{q} \to Z/\gamma^* \ g \to \ell^- \ell^+ \ g$ $g \ q \to Z/\gamma^* \ q \to \ell^- \ell^+ \ q$ $g \ \bar{q} \to Z/\gamma^* \ \bar{q} \to \ell^- \ell^+ \ \bar{q}$

- Focus on Z+jet production
- LO process $\propto lpha_{em}^2 \ lpha_s$

3 partonic processes

$$q \ \bar{q} \to Z/\gamma^* \ g \to \ell^- \ell^+ \ g$$
$$g \ q \to Z/\gamma^* \ q \to \ell^- \ell^+ \ q$$
$$g \ \bar{q} \to Z/\gamma^* \ \bar{q} \to \ell^- \ell^+ \ \bar{q}$$

- Focus on Z+jet production
- LO process $\propto lpha_{em}^2 \ lpha_s$

3 partonic processes

 $q \ \bar{q} \to Z/\gamma^* \ g \to \ell^- \ell^+ \ g$ $g \ q \to Z/\gamma^* \ q \to \ell^- \ell^+ \ q$ $g \ \bar{q} \to Z/\gamma^* \ \bar{q} \to \ell^- \ell^+ \ \bar{q}$

diagrams obtained by quark and antiquark crossing with gluon

Z+Jet at NLO

- Quantitative predictive power begins at NLO
- Studies in EW & QCD NLO corrections Denner, Dittmaier, Kasprzik, Muck - arXiv:1103.0914
 - **–** QCD: $\sigma_{int} \sim 35\%$

- EW:
$$\sigma_{int} \sim -3$$
 to -5%

variation in differential distributions

• Z+jet a critical process at hadron colliders

- Z+jet a critical process at hadron colliders
- New physics can enter SM processes in the form of higher order corrections
 - how does new physics effect this standard candle?

- Z+jet a critical process at hadron colliders
- New physics can enter SM processes in the form of higher order corrections
 - how does new physics effect this standard candle?
- Consider Z+jet in the supersymmetric framework
 - calculate supersymmetric QCD corrections to Z+jet

- Z+jet a critical process at hadron colliders
- New physics can enter SM processes in the form of higher order corrections
 - how does new physics effect this standard candle?
- Consider Z+jet in the supersymmetric framework
 - calculate supersymmetric QCD corrections to Z+jet
- Goal: Investigate stability of Z+jet as a standard candle under sQCD corrections

Supersymmetry

- Symmetry relating fermions and bosons
- Solution to hierarchy problem
 - SM quadratic corrections to Higgs mass cancel against corrections from supersymmetric partners
- Gauge coupling unification (weak scale soft SUSY breaking)
- Dark matter candidate with *R*-parity conservation

$$P_R = (-1)^{3(B-L)+2s} \qquad \begin{array}{l} \text{B-baryon} \\ \text{L-lepton} \\ \text{s-spin} \end{array}$$

SM particle: $P_R = 1$ SUSY particle: $P_R = -1$

The MSSM

- Minimal Supersymmetric extension of the Standard Model
 - only I superpartner for each SM particle
 - anomaly free
 - supersymmetry is softly broken
 - R-parity conserved

MSSM Particle Content

chiral superfields

Names		spin 0	spin 1/2	$SU(3)_C, SU(2)_L, U(1)_Y$
squarks, quarks	Q	$(\tilde{u}_L, \tilde{d}_L)$	(u_L, d_L)	$(3,2,+\frac{1}{6})$
$(\times 3 \text{ families})$	ū	\tilde{u}_R^*	u_R^{\dagger}	$(\bar{3}, 1, -\frac{2}{3})$
	ā	\widetilde{d}_R^*	d_R^\dagger	$(\bar{3}, 1, +\frac{1}{3})$
sleptons, leptons	L	$(\tilde{\mathbf{v}}, \tilde{\mathbf{e}}_L)$	$(\mathbf{v}, \mathbf{e}_L)$	$(1, 2, -\frac{1}{2})$
$(\times 3 \text{ families})$	ē	\widetilde{e}_{R}^{*}	e_R^\dagger	$(\bar{1}, 1, +1)$
Higgs, higgsinos	H _u	(H_u^+, H_u^0)	$(\tilde{H}_u^+, \tilde{H}_u^0)$	$(1, 2, +\frac{1}{2})$
	H _d	(H_d^0, H_d^-)	$(\tilde{H}_d^0, \tilde{H}_d^-)$	$(1, 2, -\frac{1}{2})$

vector superfields

Names	spin 1/2	spin 1	$SU(3)_C, SU(2)_L, U(1)_Y$
gluino, gluon	\widetilde{g}	g	(8 , 1 ,0)
Winos, W bosons	$ ilde{W}^{\pm}, ilde{W}^{0}$	W^{\pm},W^{0}	(1 , 3 ,0)
Binos, B boson	\widetilde{B}^{0}	B^0	(1 , 1 , 0)

MSSM Particle Content

chiral superfields

Names		spin 0	spin 1/2	$SU(3)_C$, $SU(2)_L$, $U(1)_Y$
squarks, quarks	Q	$(\tilde{u}_L, \tilde{d}_L)$	(u_L, d_L)	$(3,2,+\frac{1}{6})$
$(\times 3 \text{ families})$	ū	\widetilde{u}_R^*	u_R^{\dagger}	$(\bar{3}, 1, -\frac{2}{3})$
	ā	\widetilde{d}_R^*	d_R^\dagger	$(\bar{3}, 1, +\frac{1}{3})$
sleptons, leptons	L	$(\tilde{\mathbf{v}}, \tilde{\mathbf{e}}_L)$	$(\mathbf{v}, \mathbf{e}_L)$	$(1, 2, -\frac{1}{2})$
$(\times 3 \text{ families})$	ē	\widetilde{e}_{R}^{*}	e_R^\dagger	$({f \bar 1},{f 1},{f +1})$
Higgs, higgsinos	H _u	(H_u^+, H_u^0)	$(\tilde{H}_u^+, \tilde{H}_u^0)$	$(1,2,+\frac{1}{2})$
	H _d	(H_d^0, H_d^-)	$(\tilde{H}_d^0, \tilde{H}_d^-)$	$(1,2,-rac{1}{2})$

interested in QCD-like corrections to Z+1 jet

what's charged under SU(3)_C?

vector superfields

Names	spin 1/2	spin 1	$SU(3)_C SU(2)_L, U(1)_Y$
gluino, gluon	\widetilde{g}	g	(8 , 1 ,0)
Winos, W bosons	$ ilde{W}^{\pm}, ilde{W}^{0}$	W^{\pm},W^{0}	(1 , 3 ,0)
Binos, B boson	\widetilde{B}^{0}	B^0	(1 , 1 ,0)

MSSM Particle Content

chiral superfields

Names		spin 0	spin 1/2	$SU(3)_C, SU(2)_L, U(1)_Y$
squarks, quarks	Q	$(\tilde{u}_L, \tilde{d}_L)$	(u_L, d_L)	$({\bf 3},{\bf 2},+{1\over 6})$
$(\times 3 \text{ families})$	ū	\widetilde{u}_R^*	u_R^{\dagger}	$(\bar{3}, 1, -\frac{2}{3})$
	ā	\widetilde{d}_R^*	d_R^\dagger	$(\bar{3}, 1, +\frac{1}{3})$
sleptons, leptons	L	$(\tilde{\mathbf{v}}, \tilde{\mathbf{e}}_L)$	$(\mathbf{v}, \mathbf{e}_L)$	$(1, 2, -\frac{1}{2})$
$(\times 3 \text{ families})$	ē	\widetilde{e}_{R}^{*}	e_R^\dagger	$(\bar{1}, 1, +1)$
Higgs, higgsinos	H _u	(H_u^+, H_u^0)	$(\tilde{H}_u^+, \tilde{H}_u^0)$	$(1,2,+\frac{1}{2})$
	H _d	(H_d^0, H_d^-)	$(\tilde{H}_d^0, \tilde{H}_d^-)$	$(1, 2, -\frac{1}{2})$

interested in QCD-like corrections to Z+I jet

what's charged under SU(3)_C?

vector superfields

Names	spin 1/2	spin 1	$SU(3)_C, SU(2)_L, U(1)_Y$
gluino, gluon	${ ilde g}$	g	(8 , 1 ,0)
Winos, W bosons	$ ilde{W}^{\pm}, ilde{W}^{0}$	$\mathit{W}^{\pm}, \mathit{W}^{0}$	(1 , 3 ,0)
Binos, B boson	\widetilde{B}^{0}	B^0	(1 , 1 ,0)

- supersymmetric QCD corrections
 - squarks, \tilde{q}_i & gluinos, \tilde{g}
- SM / SUSY interactions

- Conventional diagrammatic approach used
- Two independent calculations performed

- Conventional diagrammatic approach used
- Two independent calculations performed

- FeynArts, FeynCalc, LoopTools

hep-ph/0012260, hep-ph/0105349, hep-ph/9807565

- Conventional diagrammatic approach used
- Two independent calculations performed
 - FeynArts, FeynCalc, LoopTools

hep-ph/0012260, hep-ph/0105349, hep-ph/9807565

- QGRAF P. Nogueira
- in-house software using Form & Maple
- loops dealt with using AIR & QCDLoop library

hep-ph/0404258, arXiv:0712.1851

Loop Diagrams

Self-energy Insertions

Z-Vertex Corrections

Loop Diagrams

Gluon-Vertex Corrections

Box Corrections

Loop Integrals

- Tensor and scalar integrals present in calculation
 - reduce tensor integrals into scalar integrals
 - Automated Integral Reduction (AIR) hep-ph/0404258
- All loop integrals are reduced to a set of master scalar integrals
- QCDloop used in numerical evaluation of scalar loop integrals arXiv:0712.1851

Singularities

- Massive particles propagating in the loop
 - no soft or collinear (IR) singularities

- no real emission contribution
- Ultraviolet (UV) divergences do emerge from loop integrals
 - isolate UV singular structure using dimensional regularization
 - work in $d = 4 2\epsilon$ dimensions

Renormalization

- Self-energy insertions and vertex corrections divergent
 - boxes are finite
- redefine quark and gluon fields, and strong coupling to absorb UV divergences

add counterterm diagrams to cancel singularities

γ^5 in d-Dimensions

- γ^5 not well defined for $d \neq 4$
- Used non-anticommuting γ^5 scheme $\gamma^5 = \frac{i}{4!} \epsilon_{\mu\nu\rho\sigma} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}$

Larin: hep-ph/9302240

Need to symmetrize axial current

$$\gamma^{\mu}\gamma^{5} \rightarrow \frac{1}{2}(\gamma^{\mu}\gamma^{5} - \gamma^{5}\gamma^{\mu})$$

using identity above

$$\gamma^{\mu}\gamma^{5} \rightarrow \frac{i}{3!} \epsilon_{\mu\nu\rho\sigma} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}$$

γ^5 in d-Dimensions

- γ^5 not well defined for $d \neq 4$
- Used non-anticommuting γ^5 scheme $\gamma^5 = \frac{i}{4!} \epsilon_{\mu\nu\rho\sigma} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}$

Larin: hep-ph/9302240

Need to symmetrize axial current

$$\gamma^{\mu}\gamma^{5} \rightarrow \frac{1}{2}(\gamma^{\mu}\gamma^{5} - \gamma^{5}\gamma^{\mu})$$

using identity above

$$\gamma^{\mu}\gamma^{5} \to \frac{i}{3!} \epsilon_{\mu\nu\rho\sigma} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}$$

<u>Note</u>: Other calculation approach used naive anticommuting scheme

$$\{\gamma^{\mu},\gamma^5\}=0$$

where 4-dimensional

 $\left[\mathrm{Tr}[\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\gamma^{5}] = -4i\epsilon^{\mu\nu\rho\sigma}\right]$

remains

Numerical results in agreement

- $p_{T,jet} > 20 \text{ GeV}, |\eta_{jet}| < 2.5$
- $M_1^+ r^- > 50 \text{ GeV}$
- CTEQ6M PDF set
- $\mu_{R} = \mu_{F} = M_{Z}$

- $\alpha_s(M_Z) = 0.118$
- $\alpha \sim 1/132$
- u,d,c,s initial state quarks

- $p_{T,jet} > 20 \text{ GeV}, |\eta_{jet}| < 2.5$
- $M_{I^{+}I^{-}} > 50 \text{ GeV}$
- CTEQ6M PDF set
- $\mu_R = \mu_F = M_Z$
- $\sqrt{s} = 7 \text{ TeV}$ $\sigma_{\text{int}} = 124.1 \text{ pb}$

- $\alpha_s(M_Z) = 0.118$
- $\alpha \sim 1/132$
- u,d,c,s initial state quarks

- $p_{T,jet} > 20 \text{ GeV}, |\eta_{jet}| < 2.5$
- $M_{I^{+}I^{-}} > 50 \text{ GeV}$
- CTEQ6M PDF set
- $\mu_{R} = \mu_{F} = M_{Z}$

 $\sqrt{s} = 7 \text{ TeV}$ $\sigma_{int} = 124.1 \text{ pb}$

- $\alpha_s(M_Z) = 0.118$
- $\alpha \sim 1/132$
- u,d,c,s initial state quarks

msg = 600 GeV msq = 500 GeV

all squark masses equal no L-R squark mixing

- $p_{T,jet} > 20 \text{ GeV}, |\eta_{jet}| < 2.5$
- $M_{l^+l^-} > 50 \text{ GeV}$
- CTEQ6M PDF set
- $\mu_{R} = \mu_{F} = M_{Z}$

 $\sqrt{s} = 7 \text{ TeV}$ $\sigma_{int} = 124.1 \text{ pb}$

sQCD corr = 8.784 fb $\delta rel = 0.007\%$

$$\delta_{rel} = \frac{\mathcal{O}_{LO+sQCD} - \mathcal{O}_{LO}}{\mathcal{O}_{LO}}$$

 $- \alpha_s(M_Z) = 0.118$

- $\alpha \sim 1/132$
- u,d,c,s initial state quarks

msg = 600 GeV msq = 500 GeV

all squark masses equal no L-R squark mixing

Kinematic Distributions Preliminary

M

Jet p_T

MII

MII

lepton p_T

lepton rapidity

- Different squark and gluino masses?
- Suspect lower masses \rightarrow greater contribution

• Different squark and gluino masses?

Ryan Gavin

- Different squark and gluino masses?
- Suspect lower masses \rightarrow greater contribution

- Different squark and gluino masses?
- Suspect lower masses \rightarrow greater contribution

- Different masses, shift in kinematic distributions?
 - gluino mass = 350 GeV, squark mass = 400 GeV

- Different masses, shift in kinematic distributions?
 - gluino mass = 350 GeV, squark mass = 400 GeV gluon-quark

channel only

- Different masses, shift in kinematic distributions?
 - gluino mass = 350 GeV, squark mass = 400 GeV gluon-quark channel only

• W+jet production

W+Jet Process

- W+jet production
 - how do sQCD corrections effect this standard candle?

- W+jet production
 - how do sQCD corrections effect this standard candle?
- W+jet process similar to Z+jet

- W+jet production
 - how do sQCD corrections effect this standard candle?
- W+jet process similar to Z+jet

 same NLO structure: self-energy insertion, gluon and W vertex corrections, box terms

- W+jet production
 - how do sQCD corrections effect this standard candle?

only "left-handed" squarks contribute to W+jet with no L-R squark mixing

 same NLO structure: self-energy insertion, gluon and W vertex corrections, box terms

- $p_{T,jet} > 20 \text{ GeV}, |\eta_{jet}| < 2.5$
- p_{T,lep} > 25 GeV, E_{T,miss} > 25 GeV
- CTEQ6M PDF set
- $\mu_R = \mu_F = M_W$

- $\alpha_s(M_W) = 0.1203$
- $\alpha \sim 1/132$
- u,d,c,s initial state quarks

- $p_{T,jet} > 20 \text{ GeV}, |\eta_{jet}| < 2.5$
- p_{T,lep} > 25 GeV, E_{T,miss} > 25 GeV
- CTEQ6M PDF set
- $\mu_{R} = \mu_{F} = M_{W}$

 $\frac{\sqrt{s} = 7 \text{ TeV}}{\sigma_{\text{all,int}} = 635.94 \text{ pb}}$

 $aII = W^+ \& W^-$

- $\alpha_s(M_W) = 0.1203$
- $\alpha \sim 1/132$
- u,d,c,s initial state quarks

-
$$p_{T,jet} > 20 \text{ GeV}, |\eta_{jet}| < 2.5$$

- p_{T,lep} > 25 GeV, E_{T,miss} > 25 GeV
- CTEQ6M PDF set
- $\mu_{R} = \mu_{F} = M_{W}$

 $\sqrt{s} = 7 \text{ TeV}$ $\sigma_{\text{all,int}} = 635.94 \text{ pb}$

 $aII = W^+ \& W^-$

 $- \alpha_s(M_W) = 0.1203$

- $\alpha \sim 1/132$
- u,d,c,s initial state quarks

msg = 600 GeV msq = 500 GeV

all squark masses equal, no L-R squark mixing

-
$$p_{T,jet} > 20 \text{ GeV}, |\eta_{jet}| < 2.5$$

- p_{T,lep} > 25 GeV, E_{T,miss} > 25 GeV
- CTEQ6M PDF set
- $\mu_{R} = \mu_{F} = M_{W}$

 $\sqrt{s} = 7 \text{TeV}$ $\sigma_{\text{all,int}} = 635.94 \text{ pb}$

 $aII = W^+ \& W^-$

sQCD corr = 36.94 fb $\delta rel = 0.006\%$

- $\alpha_s(M_W) = 0.1203$
- $\alpha \sim 1/132$
- u,d,c,s initial state quarks

msg = 600 GeV msq = 500 GeV

all squark masses equal, no L-R squark mixing

ΜT

Jet p_T

E_{T,miss} PT

lepton pT

• Different squark and gluino masses?

• Different squark and gluino masses?

Drell-Yan at NLO in sQCD preformed previously (no jet)

- Drell-Yan at NLO in sQCD preformed previously (no jet)
 - neutral current arXiv:0911.2329
 - low invariant mass range: ~0.1% high (TeV): ~1-2%

- Drell-Yan at NLO in sQCD preformed previously (no jet)
 - neutral current arXiv:0911.2329
 - low invariant mass range: ~0.1% high (TeV): ~1-2%
 - charged current arXiv:0710.3309
 - low invariant mass range: <0.1% high (TeV): ~1%

- Drell-Yan at NLO in sQCD preformed previously (no jet)
 - neutral current arXiv:0911.2329
 - low invariant mass range: ~0.1% high (TeV): ~1-2%
 - charged current arXiv:0710.3309
 - low invariant mass range: <0.1% high (TeV): ~1%
- W/Z + jet production at NLO in sQCD is in good agreement with DY scenario

- EW gauge boson production is still a very important process at the LHC
 - standard candles
 - key processes for EW precision physics & PDFs
 - implications for BSM physics

- EW gauge boson production is still a very important process at the LHC
 - standard candles
 - key processes for EW precision physics & PDFs
 - implications for BSM physics
- Investigate Z/W+jet at NLO in sQCD
 - small K-factor
 - percent level relative corrections in large p_T kinematic regions
 - size of effect in agreement with earlier DY+0 jet studies

- EW gauge boson production is still a very important process at the LHC
 - standard candles
 - key processes for EW precision physics & PDFs
 - implications for BSM physics
- Investigate Z/W+jet at NLO in sQCD
 - small K-factor
 - percent level relative corrections in large p_T kinematic regions
 - size of effect in agreement with earlier DY+0 jet studies
- Outlook
 - Other BSM effects to Drell-Yan processes?
 - are they always smaller than theoretical and PDF uncertainites?

- EW gauge boson production is still a very important process at the LHC
 - standard candles
 - key processes for EW precision physics & PDFs
 - implications for BSM physics
- Investigate Z/W+jet at NLO in sQCD
 - small K-factor
 - percent level relative corrections in large p_T kinematic regions
 - size of effect in agreement with earlier DY+0 jet studies
- Outlook
 - Other BSM effects to Drell-Yan processes?
 - are they always smaller than theoretical and PDF uncertainites?
- Z/W+jet a very stable standard candle under sQCD corrections