

Outline:

- The SUSY flavor and CP problem
- Self-energies in the MSSM
- Resummation of chirally enhanced corrections
- Effective Higgs vertices
- Chirally enhanced corrections to FCNC processes
- Flavor from SUSY
- Right-handed W-coupling and the determination of V_{ub} and V_{cb}.
- Constraints on the squark mass splitting from Kaon and D mixing

Introduction

Sources of flavor violation in the MSSM

Quark masses

- Top quark is very heavy: $\mathrm{m}_{\mathrm{t}} \approx \mathrm{v}$
- Bottom quark rather light, but Y^{b} can be big at large $\tan (\beta)$
- All other quark masses are very small
\square sensitive to radiative corrections

CKM matrix

- CKM matrix is the only source of flavor and CP violation in the SM.
- No tree-level FCNCs

$$
\mathrm{V}_{\mathrm{CKM}}=
$$

- Off-diagonal CKM elements are small

\longrightarrow
Flavor-violation
 is suppressed in the Standard Model.

SUSY flavor (CP) problem

- The squark mass matrices are not necessarily diagonal (and real) in the same basis as the quark mass matrices.
- Especially the trilinear A-terms can induce dangerously large flavormixing (and complex phases) since they don't necessarily respect hierarchy of the SM.
- The MSSM possesses two Higgs-doublets: Flavor-changing charged and (loop-induced) neutral Higgs interactions.
\square Why is the observed flavor violation so small?
- Possible solutions:
- MFV D'Ambrosio, Giudice, Isidori, Strumia hep-ph/0207036
- Flavor-symmetries
- effective SUSY Barbieri et at hep-ph/10110730
- Radiative flavor violation

Squark mass matrix

$$
M_{\tilde{\mathrm{q}}}^{2}=\left(\begin{array}{cc}
M_{\mathrm{LL}}^{\tilde{\mathrm{q}} 2} & \Delta^{\tilde{\mathrm{q}} \mathrm{LR}} \\
\Delta^{\tilde{\mathrm{q}} \mathrm{LR} \dagger} & \mathrm{M}_{\mathrm{RR}}^{\tilde{\tilde{q}} 2}
\end{array}\right)
$$

hermitian: $\longrightarrow \mathrm{W}^{\tilde{\widetilde{q}} \boldsymbol{T}} \mathrm{M}_{\tilde{\mathrm{q}}}^{2} \mathrm{~W}^{\tilde{\mathrm{q}}}=\mathrm{M}_{\tilde{\mathrm{q}}}^{2(\mathrm{D})}$
$\mathrm{M}_{\mathrm{LL}, \mathrm{RR}}^{\hat{\mathrm{q}}^{2}}$ involves only bilinear terms (in the decoupling limit)

The chirality-changing elements are proportional to a vev
$\Delta_{\mathrm{ij}}^{\mathrm{dLR}}=-\mathrm{v}_{\mathrm{d}}\left(\mu \tan (\beta) \mathrm{Y}_{\mathrm{i}}^{\mathrm{d}(0)} \delta_{\mathrm{ij}}+\mathrm{A}_{\mathrm{ij}}^{\mathrm{d}}\right)$
$\Delta_{\mathrm{ij}}^{\mathrm{uLR}}=-\mathrm{v}_{\mathrm{u}}\left(\mu \cot (\beta) \mathrm{Y}_{\mathrm{i}}^{\mathrm{u}(0)} \delta_{\mathrm{ij}}+\mathrm{A}_{\mathrm{ij}}^{\mathrm{u}}\right)$

$$
\tan (\beta)=\frac{v_{u}}{v_{d}}
$$

Mass insertion approximation

(L.J. Hall, V.A. Kostelecky and S. Raby, Nucl. Phys. B 267 (1986) 415.)

- Useful to visualize flavor-changes in the squark sector $\Delta_{\mathrm{ij}}^{\mathrm{q}} \mathrm{AB}$ off-diagonal element of the squark mass matrix
- $\mathrm{q}=\mathrm{u}, \mathrm{d}$
- i, j flavor indices $1,2,3$
- A,B chiralitys L,R

Self-energies

in the MSSM

SQCD self-energy:

Finite and proportional to at least one power of $\Delta_{f i}^{q} L R$

$$
\begin{aligned}
& \text { decoupling limit }
\end{aligned}
$$

Decomposition of the self-energy

Decompose the self-energy

$$
\Sigma_{\mathrm{if}}^{\mathrm{d} L R}=\Sigma_{\mathrm{ii} \mathrm{~A}}^{\mathrm{d}}+\Sigma_{\mathrm{ii} Y}^{\mathrm{d} \mathrm{LR}}
$$

into a holomorphic part proportional to an A-term
$\sum_{\mathrm{fi}}^{\mathrm{d} A R}=-\mathrm{v}_{\mathrm{d}} \alpha_{\mathrm{s}} \frac{2}{3 \pi} \mathrm{~m}_{\tilde{\mathrm{g}}} \mathrm{W}_{\mathrm{fs}}^{\mathrm{d}} \mathrm{W}_{\mathrm{js}}^{\mathrm{d}^{\mathrm{z}}} \mathrm{A}_{\mathrm{jl}}^{\mathrm{q}} \mathrm{W}_{\mathrm{tt}}^{\mathrm{d}} \mathrm{W}_{\mathrm{it}}^{\mathrm{d}^{\mathrm{s}}} \mathrm{C}_{0}\left(\mathrm{~m}_{\tilde{\mathrm{g}}}{ }^{2}, \mathrm{~m}_{\tilde{\mathrm{q}}_{\mathrm{s}}}^{2}, \mathrm{~m}_{\tilde{\mathrm{q}}_{\mathrm{t}}}^{2}\right)$
non-holomorphic part proportional to a Yukawa
$\sum_{\mathrm{fi} Y}^{\mathrm{dLR}}=-\mathrm{v}_{\mathrm{u}} \mu \alpha_{\mathrm{s}} \frac{2}{3 \pi} \mathrm{~m}_{\tilde{\mathrm{g}}} \mathrm{W}_{\mathrm{fs}}^{\mathrm{d}} \mathrm{W}_{\mathrm{js}}^{\mathrm{d}^{*}} \mathrm{Y}^{\mathrm{d}_{\mathrm{j}}} \mathrm{W}_{\mathrm{jt}}^{\mathrm{d}} \mathrm{W}_{\mathrm{it}}^{\mathrm{d}^{*}} \mathrm{C}_{0}\left(\mathrm{~m}_{\tilde{\mathrm{g}}}{ }^{2}, \mathrm{~m}_{\overline{\mathrm{q}}_{\mathrm{s}}}^{2}, \mathrm{~m}_{\tilde{\mathrm{q}}_{\mathrm{t}}}^{2}\right)$
Define dimensionless quantity $\varepsilon_{\mathrm{i}}^{\mathrm{d}}=\Sigma_{\mathrm{ii}}^{\mathrm{d} \mathrm{Y}} / \mathrm{v}_{\mathrm{u}} \mathrm{Y}^{\mathrm{d}_{\mathrm{i}}}$
which is independent of a Yukawa coupling

Chargino self-energy:

$$
\begin{aligned}
& \sum_{\mathrm{d}_{\mathrm{f}} \mathrm{~d}_{3}}^{\tilde{\mathrm{x}}^{ \pm} \mathrm{LR}}=\frac{-1}{16 \pi^{2}} \mu \mathrm{Y}^{\mathrm{d}_{3}}\left[\mathrm{~V}_{3 \mathrm{f}}^{\mathrm{CKM}(0)^{*}} Y^{\mathrm{u}_{3}{ }^{*}} \Delta_{33}^{u \mathrm{RL}} \sum_{\mathrm{s}, \mathrm{t}=1}^{6} \mathrm{~V}_{\mathrm{s} 33}^{\mathrm{uRR}} \mathrm{~V}_{\mathrm{t} 33}^{\mathrm{dLL}} C_{0}\left(|\mu|^{2}, \mathrm{~m}_{\tilde{\mathrm{u}}_{s}}^{2}, \mathrm{~m}_{\tilde{\mathrm{u}}_{\mathrm{t}}}^{2}\right)\right. \\
& \left.-\sqrt{2} g_{2} \sin (\beta) M_{W} M_{2} \sum_{s=1}^{6} V_{s f 3}^{d L L} C_{0}\left(m_{\tilde{q}_{s}}^{2},|\mu|^{2},\left|M_{2}\right|^{2}\right)\right]
\end{aligned}
$$

Finite Renormalization

and resummation of chirally enhanced corrections

AC, Ulrich Nierste, arXiv:0810.1613
AC, Ulrich Nierste, arXiv:0908.4404
AC, arXiv:1012.4840
AC, Lars Hofer, Janusz Rosiek arXiv:1103.4272

Renormalization I

- All corrections are finite; counter-term not necessary.
- Minimal renormalization scheme is simplest.

Mass renormalization

$$
\begin{aligned}
\mathrm{m}_{\mathrm{d}_{\mathrm{i}}} & =\mathrm{v}_{\mathrm{d}} \mathrm{Y}^{\mathrm{d}_{\mathrm{i}}(0)}+\sum_{\mathrm{iif}}^{\mathrm{dLR}} \\
& =\mathrm{v}_{\mathrm{d}} \mathrm{Y}^{\mathrm{d}(0)}+\sum_{i \mathrm{iiA}}^{q L R}+\mathrm{v}_{\mathrm{d}} \tan (\beta) \mathrm{Y}^{\mathrm{d}(0)} \varepsilon_{\mathrm{d}_{\mathrm{i}}}
\end{aligned}
$$

$$
\longrightarrow Y^{d_{i}(0)}=\frac{m_{d_{i}}-\Sigma_{\| A}^{q L R}}{v_{d}\left(1+\tan (\beta) \varepsilon_{\mathrm{i}}^{d}\right)}
$$

- $\tan (\beta)$ is automatically resummed to all orders

Renormalization II

- Flavour-changing corrections
important two-loop corrections
A.C. Jennifer Girrbach 2010

Renormalization III

- Renormalization of the CKM matrix:
$V^{(0)}=U^{u L} V U^{d L \dagger}$
- Decomposition of the rotation matrices $U^{q L}=U_{\text {CKM }}^{q L} U_{C K M}^{q L}$
- Corrections independent of the CKM matrix $\tilde{V}=U_{\text {CKT }}^{u L_{i}^{t}} V^{(0)} U_{\text {CKK }}^{d L}$
- CKM dependent corrections

$$
U_{C K M}^{u L \dagger} \tilde{V} U_{C K M}^{d L}
$$

$$
V_{13,23}^{(0)}=\frac{\tilde{V}_{13,23}}{1+\varepsilon_{F C}}
$$

Effective gaugino and higgsino vertices

- No enhanced genuine vertex corrections.
- Calculate $\varepsilon_{\mathrm{d}_{\mathrm{i}}}, \varepsilon_{\mathrm{FC}}^{\mathrm{d}}, \Sigma_{\mathrm{ii}}^{\mathrm{q}} \mathrm{y}_{\mathrm{i}}, \Sigma_{\mathrm{ii}}^{\mathrm{q}, ~ c k \pi}$
- Determine the bare Yukawas and bare CKM matrix
- Insert the bare quantities for the vertices.
- Apply rotations $U_{\mathrm{f}}^{q L, R}$ to the external quark fields.
- Similar procedure for leptons (up-quarks)

Chiral enhancement

$$
\Sigma_{\mathrm{fi}}^{\mathrm{dLR}} \approx \frac{1}{50} \frac{\Delta_{\mathrm{fi}}^{\mathrm{qLR}}}{\mathrm{M}_{\mathrm{SUSY}}}=\frac{-\mathrm{v}_{\mathrm{d}}}{50}\left(\tan (\beta) \mathrm{Y}_{\mathrm{i}}^{\mathrm{d}(0)} \delta_{\mathrm{ij}}+\frac{\mathrm{A}_{\mathrm{ij}}^{\mathrm{d}}}{\mathrm{M}_{\mathrm{SUSY}}}\right)
$$

- For the bottom quark only the term proportional to

$$
\begin{aligned}
\Sigma_{33 \mathrm{Y}}^{\mathrm{dLR}}= & \frac{-1}{100} \mathrm{~V}_{\mathrm{d}} \tan (\beta) \mathrm{Y}^{\mathrm{b}(0)} \sim \mathrm{m}_{\mathrm{b}} \\
& \mathrm{O}\left(\frac{\tan (\beta)}{100}\right)
\end{aligned}
$$ $\tan (\beta)$ is important.

$\longrightarrow \tan (\beta)$ enhancement Blazek, Raby, Pokorski, hep-ph/9504364

- For the light quarks also the part proportional to the A-term is relevant.

$$
\begin{aligned}
& \Sigma_{22 \mathrm{~A}}^{\mathrm{dLR}}=\mathrm{O}(1) \xlongequal[=]{\wedge} \mathrm{A}_{22}^{\mathrm{d}} \approx \mathrm{M}_{\mathrm{SUSY}} \\
& \Sigma_{11 \mathrm{~A}}^{\mathrm{dR}}=\mathrm{O}(1) \xlongequal{=} \mathrm{A}_{11}^{\mathrm{d}} \approx \frac{1}{50} \mathrm{M}_{\mathrm{SUSY}}
\end{aligned}
$$

Flavor-changing corrections

$$
\begin{aligned}
& \frac{\sum_{\mathrm{i}}^{\mathrm{q}}}{\mathrm{~m}_{\mathrm{qm}(\mathrm{R}}} \sim \mathrm{V}_{\mathrm{i}}^{\mathrm{CKM}} \\
& \mathrm{~V}_{\mathrm{cb}}^{\mathrm{cKM}}: \mathrm{A}_{23}^{q} \approx \mathrm{M}_{\mathrm{susy}} \\
& \mathrm{~V}_{\text {vb }}^{\mathrm{ckM}}: \mathrm{A}_{13}^{9} \approx \mathrm{M}_{\text {susy }} \times 10^{-1} \\
& \mathrm{~V}_{\mathrm{ts}}^{\mathrm{ckM}}: \mathrm{A}_{12}^{9} \approx \mathrm{M}_{\text {susy }} \times 10^{-1}
\end{aligned}
$$

- Flavor-changing A-term can easily lead to order one correction.

Chirally enhanced Corrections to FCNC processes

AC, Ulrich Nierste, arXiv:0908.4404

Improvement of FCNC analysis necessary if A-terms are big:

Self energies can be of $O(1)$ in the flavor conserving case, and have to be resummed.
M.S.Carena, D.Garcia, U.Nierste and C.E.M.Wagner, [arXiv:hep-ph/9912516].

They are still of $O(1)$ in the flavor violating case, when the mixing angle is divided out.

Two- or even three-loop processes can be of the same order as the LO process!

Inclusion of the self-energies

- We treat all diagrams in which no flavor appears twice on an external leg as one particle irreducible.
- Use of the MS-bar scheme allows for a direct relation between the parameters in the squark mass matrices and observables.
- Computations are easiest if one includes the chirally enhanced self-energies into a renormalized quark-squark-gluino vertex:

$\mathrm{b} \rightarrow \mathbf{s y}$

Two-loop effects enter only if also $m_{b} \mu \tan (\beta)$ is large.

Behavior of the branching ratio for $\delta_{23}^{\mathrm{dLR}}$

Constraints on δ_{23} from b \rightarrow SY

$\tan (\beta)=50$

$\mathrm{m}_{\tilde{\mathrm{g}}}$	$=2000 \mathrm{GeV}$
$\mathrm{m}_{\tilde{\mathrm{g}}}$	$=1500 \mathrm{GeV}$
$\mathrm{m}_{\tilde{\mathrm{g}}}$	$=1000 \mathrm{GeV}$
$\square \mathrm{m}_{\tilde{\mathrm{g}}}$	$=500 \mathrm{GeV}$

Effective Higgs vertices
 AC, arXiv:1012.4840

Higgs vertices in the EFT I

 M. Spira et al artiv:030510』

Higgs vertices in the EFT II

$$
L_{\mathrm{Y}}^{\mathrm{eff}}=\overline{\mathrm{Q}}_{\mathrm{fL}}^{\mathrm{a}}\left(\left(\mathrm{Y}_{\mathrm{i}}^{\mathrm{d}} \delta_{\mathrm{fi}}+\mathrm{E}_{\mathrm{fi}}^{\mathrm{d}}\right) \varepsilon_{\mathrm{ba}} H_{\mathrm{d}}^{\mathrm{b}}+\mathrm{E}_{\mathrm{fi}}^{\prime \mathrm{d}} \mathrm{H}_{\mathrm{u}}^{\mathrm{a}^{*}}\right) \mathrm{d}_{\mathrm{iR}}
$$

- Non-holomorphic corrections $E_{f i}^{\prime d}=\sum_{f i Y}^{d L R} / v_{u}$
- Holomorphic corrections $\mathrm{E}_{\mathrm{fi}}^{\mathrm{d}}=\sum_{\mathrm{fi}}^{\mathrm{d} A R} / \mathrm{v}_{\mathrm{d}}$
- The quark mass matrix $m_{f i}^{d}=v_{d}\left(Y^{d_{i}} \delta_{f i}+E_{f i}^{d}\right)+v_{u} E_{f i}^{\prime d}$ is no longer diagonal in the same basis as the Yukawa coupling

Flavor-changing neutral Higgs couplings

Effective Yukawa couplings

- Final result: $Y_{i j}^{d e f f}=\frac{1}{v_{d}}\left(m_{d} \delta_{\mathrm{ij}}-\tilde{\Sigma}_{\mathrm{ijY}}^{\mathrm{dR}}\right)$ with
$\tilde{\Sigma}_{\mathrm{j} k Y}^{\mathrm{dLR}}=\mathrm{U}_{\mathrm{jf}}^{\mathrm{d} L^{*}} \sum_{\mathrm{j} k \mathrm{Y}}^{\mathrm{d} L \mathrm{R}} \mathrm{U}_{\mathrm{ki}}^{\mathrm{dR}}$

Diagrammatic explanation in the full theory:

Higgs vertices in the full theory

- Cancellation incomplete since $v_{d} Y^{d_{3}} \neq m_{d_{3}}$

Part proportional to $\Sigma_{33 Y}^{d L R}$ is left over.
\longrightarrow A-terms generate flavor-changing Higgs couplings

Radiative generation of light quark masses and mixing angels

AC, Ulrich Nierste, arXiv:0908.4404
AC, Jennifer Girrbach, Ulrich Nierste, arXiv:1010.4485
AC, Ulrich Nierste, Lars Hofer, Dominik Scherer arXiv:1105.2818

Radiative flavor-violation

SU(2)³ flavor-symmetry in the MSSM superpotential:

- CKM matrix is the unit matrix.
- Only the third generation Yukawa coupling is different from zero.

$$
\mathrm{V}_{\mathrm{CKM}}^{(0)}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$$
\mathrm{Y}^{\mathrm{q}}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \mathrm{Y}^{\mathrm{q}_{3}}
\end{array}\right)
$$

All other elements are generated radiatively using the trilinear A-terms!

Features of the model

- Additional flavor symmetries in the superpotential.
- Explains small masses and mixing angles via a loopsuppression.
- Deviations from MFV if the third generation is involved.
- Solves the SUSY CP problem via a mandatory phase alignment. (Phase of μ enters only at two loops)
Borzumati, Farrar, Polonsky, Thomas 1999.
- The SUSY flavor problem reduces to the elements $\delta_{32}^{q L R}, \delta_{31}^{q L R}$
- Can explain the B_{s} mixing phase

CKM generation in the down-sector:

$$
\begin{aligned}
& \Sigma_{13}^{\mathrm{dLR}} \stackrel{!}{=} \mathrm{m}_{\mathrm{b}} \mathrm{~V}_{\mathrm{ub}} \\
& \Sigma_{23}^{\mathrm{dLR}} \stackrel{!}{=} \mathrm{m}_{\mathrm{b}} \mathrm{~V}_{\mathrm{cb}}
\end{aligned}
$$

- Allowed regions from $b \rightarrow s y$.
Chirally enhanced corrections must be taken into account.
A.C., Ulrich Nierste 2009

$$
\mathrm{m}_{\mathrm{b}} \mu \tan (\beta)=0.12 \mathrm{TeV}^{2}
$$

$m_{\mathrm{b}} \mu \tan (\beta)=0 \mathrm{TeV}$

$$
\mathrm{m}_{\mathrm{b}} \mu \tan (\beta)=0.12 \mathrm{TeV}^{2}
$$

Non-decoupling effects

- Non-holomorphic selfenergies induce flavourchanging neutral Higgs couplings.

$$
\varepsilon_{\mathrm{b}}=\frac{\sum_{33 \mathrm{Y}}^{\mathrm{dLR}}}{\mathrm{v}_{\mathrm{u}} \mathrm{Y}^{\mathrm{b}}} \approx \frac{\alpha_{\mathrm{s}}}{3 \pi} \frac{\mathrm{~m}_{\tilde{\mathrm{g}}} \mu}{\max \left(\mathrm{~m}_{\tilde{\mathrm{q}}}^{2}, \mathrm{~m}_{\tilde{\mathrm{g}}}^{2}\right)}
$$

- Effect proportional to ε_{b}

Higgs effects: $\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}$

- Constructive contribution due to $\Sigma_{23}^{d L R}=m_{b} V_{c b}$
\square

$$
\begin{aligned}
& \varepsilon_{b}=0.005 \\
& \varepsilon_{b}=0.01
\end{aligned}
$$

\square

\square

$$
\varepsilon_{\mathrm{b}}=-0.01
$$

Higgs effects: B_{s} mixing

- Contribution only if

$$
V_{23}^{R}=\frac{\sum_{23}^{d R L}}{m_{b}} \neq 0
$$

due to Peccei-Quinn symmetry
$\tan (\beta)=11$
$\tan (\beta)=14$
$\tan (\beta)=17$
$\square \quad \tan (\beta)=20$

Correlations between B_{s} mixing and $\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}$

- $\operatorname{Br}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right] \times 10^{-9}$
excluded by
$\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}$

Allowed from
B_{s} mixing
for $\tan (\beta)=11$
(20.3

CKM generation in the up-sector:

$$
\begin{aligned}
& \Sigma_{13}^{\mathrm{uLR}} \stackrel{!}{=} \mathrm{m}_{\mathrm{t}} \mathrm{~V}_{\mathrm{td}}^{*} \\
& \Sigma_{23}^{\mathrm{uLR}} \stackrel{\mathrm{~m}_{\mathrm{t}}}{ } \mathrm{~V}_{\mathrm{cb}}^{*}
\end{aligned}
$$

- Constraints from Kaon mixing.
- $\delta_{31}^{\mathrm{uLR}}, \delta_{32}^{\mathrm{uLR}}$ unconstrained from FCNC processes.
- $\delta_{31}^{u L R}$ can induce a sizable right-handed W coupling.

$\mathrm{M}_{2}=400 \mathrm{GeV}$
\square

$\mathrm{M}_{2}=800 \mathrm{GeV}$
- Effects in $\mathrm{K} \rightarrow$ TVV

- Verifiable predictions for NA62

A right-handed W coupling in the MSSM

Effects on the determination of V_{ub} and V_{cb}

AC, arXiv:0907.2461

Motivation for a right-handed W coupling

- 2.2 o discrepancy between the inclusive and exclusive determination of V_{cb}
- 2.5-2.7 σ deviation from the SM expectation in $\mathrm{B} \rightarrow \mathrm{TV}$
- Tree-level processes. Commonly believed to be free of NP. (Charged Higgs contribution to $B \rightarrow T V$ is destructive.)

Notoriously difficult to explain the deviations from the SM

Effective field theory

$$
\mathrm{L}=\mathrm{L}_{\mathrm{SM}}+\frac{1}{\Lambda} \sum_{\mathrm{i}} \mathrm{C}_{\mathrm{i}} \mathrm{Q}_{\mathrm{i}}^{(5)}+\frac{1}{\Lambda^{2}} \sum_{\mathrm{i}} \mathrm{C}_{\mathrm{i}} \mathrm{Q}_{\mathrm{i}}^{(6)}+\mathrm{O}\left(\frac{1}{\Lambda^{3}}\right)
$$

Buchmüller, Wyler Nucl. Phys. B268 (1986)

- $O^{(5)}$ gives rise to neutrino masses
- Focus on the dimension 6 operator

$$
\mathrm{Q}_{\mathrm{RR}}=\overline{\mathrm{u}}_{\mathrm{f}} \gamma^{\mu} \mathrm{P}_{\mathrm{R}} \mathrm{~d}_{\mathrm{i}}\left(\tilde{\phi}^{\dagger} \mathrm{i} \mathrm{D}_{\mu} \phi\right)
$$

which generates the anomalous W couplings
$-i \frac{g_{W}}{\sqrt{2}} \gamma^{\mu}\left(P_{L} V_{f i}^{L}+P_{R} V_{f i}^{R}\right)$

Possible size of VR

- $\mathrm{V}_{\mathrm{tb}}^{\mathrm{R}}$ strongly constrained from $\mathrm{b} \rightarrow \mathrm{sy}$ Misiak et. al. 0802.1413
- $\mathrm{V}_{\mathrm{ts}}^{\mathrm{R}}\left(\mathrm{V}_{\mathrm{td}}^{\mathrm{R}}\right)$ also constrained from $\mathrm{b} \rightarrow \mathrm{sy}(\mathrm{b} \rightarrow \mathrm{dy})$ A.C. Lorenzo Mercolli arXiv:1106.5499
- No large effect for the first two generations possible because the CKM elements are big and the chirality violation is small.
- Sizable effects possible in $\mathrm{V}_{\mathrm{ub}}^{\mathrm{R}}$ and $\mathrm{V}_{\mathrm{cb}}^{\mathrm{R}}$

Genuine Vertexcorrection

$\left.-i \Lambda_{u_{f} d_{i}}^{W \tilde{g}}=\frac{g_{2}}{\sqrt{2}} \frac{i \alpha_{s}}{3 \pi} \gamma^{\mu} \sum_{s, t=1}^{6} \sum_{j, k=1}^{3}+W_{f+3, s}^{\tilde{u}} W_{k s}^{\tilde{u}} W_{k j}^{\tilde{u}^{*}} V_{k j}^{C K M} W_{j t}^{\tilde{d}} W_{i+3, t} W_{i k}^{\tilde{d}}{ }^{\tilde{d}}{ }^{*} P_{R}\right) C_{2}\left(m_{\tilde{u}_{s}}, m_{\tilde{d}_{t}}, m_{\tilde{g}}\right)$

- Corsections to the lefthainded coupling suppressed because the hernitlan part of the $\operatorname{M} /$ FR cancels with the genulse veriex corsection.
- Right-handed coupling not suppressed!

Where are SUSY effects possible?

- $\delta_{\mathrm{fi}}^{\mathrm{dLR} / R L}$ strongly constrained from FCNC processes.
- $\delta_{13,23}^{\mathrm{uLR}}$ less constrained from FCNC but constrained from the CKM renormalization.
$\delta_{12,21}^{u L R, L L, R R}$ constrained from D mixing
- $\delta_{13,23}^{u \mathrm{RL}}$ nearly unconstrained from FCNCs and not involved in the CKM renormalization.
- Large $\delta_{33}^{\mathrm{dLR}}$ possible if A^{b} or $\tan (\beta)$ is large.
- $\mathrm{V}_{\mathrm{ud}}, \mathrm{V}_{\mathrm{us},}, \mathrm{V}_{\mathrm{cd}}, \mathrm{V}_{\mathrm{cs}}$ are to large for observable effects
\longrightarrow Only $\mathrm{V}_{\mathrm{ub}}, \mathrm{V}_{\mathrm{cb}}$ can be affected by SUSY effects.

Right-handed W coupling in exclusive and inclusive B decays

V = measured CKM element

- Exclusive leptonic B decays: $\sim\left|\gamma^{\mu} v^{5}\right|^{2}$ $\longrightarrow \mathrm{V}=\mathrm{V}+\mathrm{VR}$
- Exclusive semi-leptonic B decays to pseudo-scalar mesons $\sim\left|\gamma^{\mu}\right|^{2}$ $\longrightarrow \mathrm{V}=\mathrm{V}-\mathrm{V}$ R
- Exclusive semi-leptonic B decays to vector mesons $\sim\left|\gamma^{\mu} V^{5}\right|^{2}$ at $\omega=1$
- Inclusive $B \rightarrow$ u decay $\sim\left|1+\gamma^{\mu} Y^{5}\right|^{2}+\left|1-\gamma^{\mu} Y^{5}\right|^{2}$
$\longrightarrow V L \approx V$
- Inclusive $B \rightarrow c$ decay receive correction proportional to m_{c} / m_{b} Dassinger, Feger, Mannel: Complete Michel Parameter Analysis of inclusive semileptonic $b \rightarrow c$ transition
$\longrightarrow \mathrm{V}=\mathrm{V}+0.56 \mathrm{~V}$ R

Effects of a right-handed Wcoupling on V_{ub}

Connection to Single Top Production

\uparrow
Feynman diagrams contributing to Single Top production

Integrated luminosity necessary to discover Single Tops

Plehn, Rauch, Spannowski: 0906.1803

Constraints on the mass splitting between lefthanded squarks from D and K mixing

AC, Momchil Davidkov, arXiv:1002.2653

K and D mixing

- Mass difference is small:

$$
\begin{aligned}
& \Delta m_{K} / m_{K}=(7.01 \pm 0.01) \times 10^{-15} \\
& \Delta m_{D} / m_{D}=(8.6 \pm 2.1) \times 10^{-15}
\end{aligned}
$$

- CP violation is tiny

$$
\begin{aligned}
& \varepsilon_{K}=(2.23 \pm 0.01) \times 10^{-3} \\
& A_{\mathrm{T}}=(1.2 \pm 2.5) \times 10^{-3}
\end{aligned}
$$

Constrains FCNCs between the first two generations in a stringent way.

SUYS Contributions

- $\operatorname{SU}(2)_{\mathrm{L}}$ relation: $\mathrm{m}_{\mathrm{LL}}^{\bar{i} 2}=\mathrm{V}^{\dagger} \mathrm{m}_{\mathrm{LL}}^{\mathrm{i} 2} V$

SUSY contributions to D and Kaon mixing can only be simultaneously avoided if $\mathrm{m}_{\mathrm{LL}}^{\mathrm{in}_{2}}$ is proportional to the unit matrix.
$\delta_{12}^{q L L}$ elements are induced if the lefthanded squarks of the first two generations are not degenerate.

Electroweak contributions are important for

In non-minimal flavor violation the main focus is on the gluino contributions, however:

- The gluino contributions suffer from cancellations between the crossed and uncrossed boxes for $\mathrm{m}_{\tilde{\mathrm{q}}}=1.5 \mathrm{~m}_{\tilde{\mathrm{g}}}$
- Chargino diagrams do not suffer from such a cancellation.
- Winos couple directly to left-handed squarks with g_{2}. $\delta_{\mathrm{ij}}^{\mathrm{qL}}$ can contribute without small LR or gaugino mixing.
- The wino mass is often assumed to be much lighter than the gluino mass. In most GUT scenarios: $\mathrm{M}_{2} \approx \mathrm{~m}_{\tilde{\mathrm{g}}} \alpha_{2} / \alpha_{\mathrm{s}}$

Relative importance of the contributions to C_{1}

normalized to the chargino contribution:

Allowed mass splitting

- Non-degenerate squark masses are allowed.
- More space for models with abelian flavor symmetries.
- Interesting for LHC benchmark scenarios.
\square

Maximally allowed mass-splitting

Alignment to Y^{d}
Alignment to Y^{u}
Minimally allowed mass-splitting

Conclusions

- Self-energies in the MSSM can be of order one.
- Chirally enhanced corrections must be taken into account in FCNC processes.
- A-terms generate flavor-changing neutral Higgs couplings.
- Radiative generations of light fermion masses and mixing angles solves the SUSY flavor and the SUSY CP problem. It can explain B_{s} mixing and enhance $B_{s} \rightarrow \mu^{+} \mu^{-}$.
- The first two generations of left-handed squarks can be non-degenerate.
- The MSSM can generate a sizeable right-handed W-coupling. Tree-level processes are not necessarily free of NP!

Finite renormalization

(general formalism)

Decomposition of the self-energies:
$\Sigma_{\mathrm{fi}}^{\mathrm{q}}(\mathrm{p})=\Sigma_{\mathrm{fi}}^{\mathrm{LLR}}\left(\mathrm{p}^{2}\right) \mathrm{P}_{\mathrm{R}}+\Sigma_{\mathrm{fi}}^{q R L}\left(\mathrm{p}^{2}\right) \mathrm{P}_{\mathrm{L}}+\not p\left(\sum_{\mathrm{fi}}^{\mathrm{RR}}\left(\mathrm{p}^{2}\right) \mathrm{P}_{\mathrm{R}}+\Sigma_{\mathrm{fi}}^{\mathrm{qLL}}\left(\mathrm{p}^{2}\right) \mathrm{P}_{\mathrm{L}}\right)$

Corrections to the Mass:
$\mathrm{m}_{\mathrm{q}_{\mathrm{i}}}^{(0)} \rightarrow \mathrm{m}_{\mathrm{q}_{\mathrm{i}}}^{(0)}+\sum_{\mathrm{ii}}^{\mathrm{qLR}}\left(\mathrm{m}_{\mathrm{q}_{\mathrm{i}}}^{2}\right)+\frac{1}{2} \mathrm{~m}_{\mathrm{q}_{\mathrm{i}}}\left(\sum_{\mathrm{ii}}^{\mathrm{qLL}}\left(\mathrm{m}_{\mathrm{q}_{\mathrm{i}}}^{2}\right)+\sum_{\mathrm{ii}}^{\mathrm{qRR}}\left(\mathrm{m}_{\mathrm{q}_{\mathrm{i}}}^{2}\right)\right)+\delta_{\mathrm{q}_{\mathrm{i}}}^{\mathrm{m}}=\mathrm{m}_{\mathrm{q}_{\mathrm{i}}}^{\text {phys }}$
Flavor valued wave-function corrections:
$U_{f i}^{L(0)} \rightarrow U_{f i}^{L(0)}+\sum_{j=1}^{3} U_{f i}^{L(0)} \Delta U_{j i}^{q L}$
with

$\Delta U_{f i}^{q L}=\frac{1}{m_{q_{i}}{ }^{2}-m_{q_{f}}{ }^{2}}\left(m_{q_{i}}{ }^{2} \Sigma_{f i}^{d L L}\left(m_{q_{f}}^{2}\right)+m_{q_{i}} m_{q_{f}} \Sigma_{f i}^{d R R}\left(m_{q_{f}}^{2}\right)+m_{q_{i}} \Sigma_{f i}^{d L R}\left(m_{q_{f}}^{2}\right)+m_{q_{f}} \Sigma_{f i}^{d R L}\left(m_{q_{f}}^{2}\right)\right), \quad f \neq i$
$\Delta U_{i i}^{q L}=\frac{1}{2} \operatorname{Re}\left[\Sigma_{i i}^{q L L}\left(m_{q_{i}}^{2}\right)+2 m_{q_{i}} \Sigma_{i i}^{q L R^{\prime}}\left(m_{q_{i}}^{2}\right)+m_{q_{i}}^{2}\left(\Sigma_{i i}^{q L L^{\prime}}\left(m_{q_{i}}^{2}\right)+\Sigma_{i i}^{q R R^{\prime}}\left(m_{q_{i}}^{2}\right)\right)\right]$

Fine-tuning constraints

't Hooft's naturalness argument:

- A small parameter is natural if a symmetry is gained if parameter is put to zero
- Large accidental cancellations, not enforced by a symmetry are unnatural

The SUSY corrections to the masses and

Emixing angels should not exceed the measured values.

Constrains from fermion masses l:

16.05.11

Constrains from the CKM matrix:

Example: $\mathrm{V}_{\text {ub }}$

Constraints on $\delta_{13}^{\mathrm{dLL}}$ from V_{ub}

For large helicity flipping elements, for example $m_{b} \mu \tan (\beta)$, also $\delta_{\mathrm{f}}^{q \mathrm{LL}}$ can be constrained. Strongest for $\delta_{13}^{\mathrm{LLL}}$:

Constrains from fermion masses II:

$\mathrm{m}_{\text {SUSY }}=500 \mathrm{GeV}$
$\mathrm{m}_{\text {SUSY }}=1000 \mathrm{GeV}$
$\square \mathrm{m}_{\text {SUSY }}=1500 \mathrm{GeV}$
$\mathrm{m}_{\text {SUSY }}=2000 \mathrm{GeV}$

Existing results:

FCNC bounds (decoupling):
-M. Ciuchini et al. [arXiv:hep-ph/9808328]
-F. Borzumati, C.Greub, T.Hurth and D.Wyler [arXiv:hep-ph/9911245]
-D. Becirevic et al. [arXiv:hep-ph/0112303]
-M. Ciuchini et al. [arXiv:hep-ph/0703204]
-...

Vacuum stability bounds (non-decoupling):
J.A.Casas and S.Dimopoulos,

Stability bounds on flavor-violating trilinear soft terms in the MSSM, Phys. Lett. B387 (1996) 107 [arXiv:hep-ph/9606237]

Results and comparison

quantity	our bound	bound from FCNC		bound from vacuum stability
$\delta_{12}^{\mathrm{dLR}}$	0.0011	0.006,	K mixing	0.00015
$\delta_{13}^{\mathrm{dLR}}$	0.001	0.15,	$\mathrm{~B}_{\mathrm{d}}$ mixing	0.005
$\delta_{23}^{\mathrm{dLR}}$	0.01	0.06,	$\mathrm{~b} \rightarrow \mathrm{~s} \gamma$	0.05
$\delta_{13}^{\mathrm{dLL}}$	0.032	0.5,	$\mathrm{~B}_{\mathrm{d}}$ mixing	--
$\delta_{12}^{\mathrm{uLR}}$	0.0047	0.016,	D mixing	0.0012
$\delta_{13}^{\mathrm{uLR}}$	0.027	- --		
$\delta_{23}^{\mathrm{uLR}}$	0.27	--		

Bounds calculated with $m_{\text {squark }}=m_{\text {gluino }}=1000 \mathrm{GeV}$

Allowed range for $N P$ in $\mathbf{\Delta F}=2$ processes

Results taken for: UTfit Collaboration: www.utfit.org

Example: B_{s} mixing

$$
\mathrm{C}_{\mathrm{B}_{\mathrm{s}}} \mathrm{e}^{2 i \mathrm{idx}_{\mathrm{s}}}=\frac{\left\langle\mathrm{B}_{\mathrm{s}}\right| H_{\mathrm{eff}}^{\mathrm{fulf}}\left|\overline{\mathrm{~B}}_{\mathrm{s}}\right\rangle}{\left\langle\mathrm{B}_{\mathrm{s}}\right| \mathrm{H}_{\mathrm{eff}}^{\mathrm{SM}}\left|\overline{\mathrm{~B}}_{\mathrm{s}}\right\rangle}
$$

Effect of including the selfenergies in $\Delta F=2$ processes

$\frac{\Delta M_{\text {Bren }}}{\Delta M_{B}}$ for $m_{\tilde{g}}=1000 \mathrm{GeV}$

Constraints on $\left(\delta_{\mathrm{LR}}\right)_{23}$ from B_{s} mixing

$\mathrm{M}_{1,2 \mathrm{~L} / \mathrm{R}}^{\overline{\mathrm{q}}}=2 \mathrm{M}_{3 \mathrm{~L} / \mathrm{R}}^{\tilde{\mathrm{q}}}=1 \mathrm{TeV}$
$\square \mathrm{m}_{\tilde{\mathrm{g}}}=2000 \mathrm{GeV}$
$\square m_{\tilde{\mathrm{g}}}=1500 \mathrm{GeV}$
$m_{\overline{\mathrm{g}}}=1000 \mathrm{GeV}$
$\square \quad \mathrm{m}_{\tilde{\mathrm{g}}}=500 \mathrm{GeV}$

Constraints on $\delta_{L R}$ from D, B, and K mixing

16.05.11

Constraints

 on δ_{23} from b $\rightarrow \mathbf{S Y}$$\tan (\beta)=50$
\square

$$
m_{\tilde{\mathrm{g}}}=2000 \mathrm{GeV}
$$

\square $m_{\tilde{\mathrm{g}}}=1500 \mathrm{GeV}$
$m_{\tilde{\sim}}=1000 \mathrm{GeV}$
\square

$$
m_{\tilde{\mathrm{g}}}=500 \mathrm{GeV}
$$

experimentally allowed range
 $\mathrm{m}_{\mathrm{b}} \mu \tan (\beta)=0 \mathrm{TeV}$
 $m_{b} \mu \tan (\beta)=-30 \mathrm{TeV}$
 $\square \mathrm{m}_{\mathrm{b}} \mu \tan (\beta)=30 \mathrm{TeV}$

Effects of a right-handed W-coupling on \mathbf{V}_{cb}

