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Higgs production at the LHC

* The Higgs boson is the missing particle of the SM
* Its discovery is the main reason the LHC has been built for
03 SM Higgs production
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* The main production channel is gluon-gluon fusion via a quark loop



QCD corrections

* The cross-section can be computed in perturbative QCD
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* NLO corrections turn out to be huge ( ~ 100 %)  [Spira et al. 1995]

* The next order is needed to asses the convergence of the series

* The full calculation is beyond the current reach (diagrams with up to 3 loops
and massive internal lines)



The heavy top approximation

* EW precision data tell us that the SM Higgs mass should be <300 GeV
e This is well below the two top threshold: 7 > 1

* We can integrate out the top quark and work 1n an effective theory (EFT)
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* but also NNLO  [Anastasiou and Melnikov, 2002;
Harlander and Kilgore, 2002;
Ravindran, Smith and van Neerven, 2003]



How good 1s 1t ?

* The top mass dependence 1s usually kept at LO, while higher orders are
computed in the EFT:
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* When tested against exact NLO the EFT is accurate at the percent level for
mp< 2 m,

* Surprisingly the agreement 1s of order 10 % also for my ~ 1 TeV !

What 1s the reason for this spectacular agreement ?



Dominant contributions

* The hadronic cross-section 1s dominated by soft and virtual terms (delta and plus)
* These contributions are almost insensitive to the top mass

* For instance the NLO coefhicient function in the gg channel is:
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e This should remain true at NNLO as well

* Can we make a more quantitative statement ?
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* We can compute top mass suppressed contributions to the NNLO cross-section



Asymptotic expansion

* FFull NNLO calculation with top mass not currently feasible
* One can perform an asymptotic expansions of the Feynman diagrams

[e.g. Smirnov 2002]

* The cross-section can be written as
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e The first term 1s the EFT one

* Top mass suppressed corrections to NLO known for a long time
[Dawson, Kauffman 1993]

* Now also computed at NNLO by two different groups
[Harlander, Ozeren 2009
Pak, Rogal, Steinhauser 2009]

* Tools exist to automatize the calculation (not going into the details)

... however ...



Problems at large §

* The asymptotic expansion assumes
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* Clearly at the LHGC the partonic c.o.m. energy can reach values far beyond m,
* The expansion breaks down in the high-energy region
* This breakdown manifests itself in inverse powers of
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So far...

* In order to compute finite top mass corrections at NNLO we can use
asymptotic expansion

* This is OK 1n the region below threshold, where the top mass is the largest
scale 1n the process

* This region dominates the cross-section after convolution with parton
luminosity

* We need a different method to compute the hard tail of the partonic
coethicient functions at NNLO



So far...

* In order to compute finite top mass corrections at NNLO we can use
asymptotic expansion

* This is OK 1n the region below threshold, where the top mass is the largest
scale 1n the process

* This region dominates the cross-section after convolution with parton
luminosity

* We need a different method to compute the hard tail of the partonic
coethicient functions at NNLO

* We can use kT—factorization



QCD factorizations

* Hard processes : collinear factorization Q > AQC D
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QCD factorizations

* Hard processes : collinear factorization Q > AQC D
dx dz T ’
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High-energy factorization

*  We consider Mellin moments of the off-shell cross section:
1 o0 o0
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e So that the formula factorizes
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e To make contact with usual collinear factorization we have introduced the
Mellin moments of the integrated PDF's



QCD evolution equations

DGLAP: Q? evolution for N moments of the parton density
d

d1In(Q?/p?)

BFKL: small-x evolution for M moments of the parton density
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Duality relations

* At high energy and large Q? both BFKL and DGLAP are valid

* They admit the same leading twist solution

Fyo(N) Fo(M)
(N, M) M — ~(as, N) N — x(ag, M)
DGLAP and BFKL

* 'The kernels satisfy (consistency) duality relations
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Coefficient functions at high energy

* We define the impact factor in the following way:
©.@) o
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* the explicit N dependence is sub-leading, hence we set N=0

* the high energy behaviour is found by inverting the M-Mellin transforms using
the pole condition from the evolution equations:
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What has been computed so far

Originally used for heavy flavour production
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Catani, Ciafaloni, Hautmann Nucl.Phys.B366:135-188,1991.
Ball, Ellis JHEP 0105:053,2001.

DIS and DY are more delicate because collinear singularities

(due to massless quarks) must be consistently factorized
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Catani, Hautmann Nucl.Phys.B427:475-524,1994.
SM, Ball Nucl.Phys.B814:246-264,2009

Direct photon: final state singularities

Diana, Nucl.Phys.B824:154-167,2010.



Rapidity distributions

k —factorization had been applied until recently only to inclusive cross-
sections (although Monte Carlo programs exist)

"The formalism which enables one to resum inclusive coefficient functions
can be applied to rapidity distributions as well

Caola, Forte, SM

The recipe 1s a relatively simple generalisation of the method discussed
before

One needs to compute the rapidity distribution at LO for the process one 1s
interested 1n, keeping the incoming gluon(s) off-shell

Then as usual one computes Mellin moment wrt x and the gluon oft-
shellness
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Rapidity distributions (IT)

* In order to extract the dominant terms at high-energy, it 1s useful to
consider Fourier moments wrt the rapidity

~

F(b) = / e £ (y)dy

* We have found that in Fourier-Mellin space the high-energy poles are
shifted by /2
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* The resummed rapidity distribution is then given by a simple generalization
of the formula for the inclusive case
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Higgs production via gluon gluon
fusion 1n k-factorization



The heavy top computation

We compute the LO off-shell cross section for
g (&) g7(&) — H, with m — o
The impact factor is

1
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If N = 0 the integral diverges for every My, M>
The position of the (Mi, M») singularities depends on N
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Finite top mass case

* We compute the LLO off-shell cross section for

97 (&) g (&) —H
* The impact factor is
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* The form factor ensures that the Mellin integrals have finite radius of convergence
when N =0
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Partonic results

* We numerically evaluate the coefficient of the leading logarithm at small-x in
the gg channel

* We then compute the small-x behaviour of the other channels using colour

charge relations C 2
_br s
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* We checked the NLO coefhicients against the full result.



Matching procedure

« We construct an approximation to the exact cross-section by matching
the 1/m, expansion to the small-x limit (with the full m, dependence)

* Schematically

i ( Zc<” a7 ) + O(wo — @) |Clhy,(@im) = lim D O (2377 %)
(8%
asymptotic expansion result k factorization result n=1,2.
NLO, NNLO

* In practice a bit more complicated because the result by Harlander
and Ozeren 1s given as a series in x = |



Hadronic results (NLO)

* In order to test this procedure we first study the NLO case
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* The convergence of the approximate result toward the exact one is excellent
* We apply the same procedure to the next order



Hadronic results (NNLO)

* At NNLO we compute ratios of the our approximation to the EFT results
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* Finite top mass effects at NNLO are below 1% both at the Tevatron and LHC
* The EFT approach 1s fully justified to NNLO (for the inclusive cross-section)



Rapidity distribution
* We have computed the high-energy behaviour of the Higgs rapidity

distribution, both 1n the finite top mass approximation and for finite m,

* We have checked the our result reproduces the known NLO analytic one from
the EFT

* As 1n the inclusive case we have constructed an approximate distribution by
matching large- and low- x behaviour

* We have limited our analysis to NLO because no analytic expression exist for

NNLO

* The hard tail of the NNLO distribution has a very small contribution in the
whole rapidity range (< 2 %)



Rapidity distribution (NLO)

* We show the ratio of the approximated rapidity distribution over the EFT result

* Effects are very small for central rapidities and only reach 5 % in the forward
region for pp collision at 14 TeV

* This confirms the analysis of Anastasiou, Bucherer and Kunszt: finite top mass
effects on the rapidity distribution are below 5 %
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Beyond the SM Higgs

* Supersymmetric theories generally predicts a richer Higgs sector than the SM
* In the MSSM for instance one introduces two complex Higgs doublets

* They originate five physical Higgs bosons: two neutral scalars, two charged
scalars a neutral CGP-odd state

* The phenomenology of the pseudoscalar Higgs 1s much richer than the case of
the SM Higgs

* [ts coupling to the up-type quarks decreases with tan 3, while the one to down-
type quarks increases

* The coupling to the b-quark becomes important and eventually dominates the
top contribution for tan > 10

* The use of the EFT is less justified



Pseudoscalar Higgs

* We are working on computing finite fermion mass corrections

* We have performed the calculation in k- factorization with top and bottom
quarks 1n the loop

* The analytic expression of the results 1s simpler than the scalar case

Qg
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* We have checked the NLO results by comparing to the full NLO calculation by
Spira et al.

* No plots to be shown yet as we are currently finalizing the matching to the
effective theory result



Conclusions

* | have presented a studies for Higgs production in g-g fusion to NNLO

* The small-x limit has been computed using k-factorization and then matched
to the 1/m, expansion

* Finite top mass eftects at NNLO are below 1% both at the Tevatron and LHC
* The EFT approach 1s tully justified to NNLO (for the inclusive cross-section)

* We have performed a similar studies for the rapidity distribution and effects are
found to be below 5%

* Work in progress for the pseudoscalar case (and the Karlsruhe group 1s working
on the asymptotic expansion)

* These studies are an example of a fruitful interplay between fixed-order and
resummation techniques !



Other interests

* Higgs physics is not my only field of interest
* | also work on

* Small — x resummation for Drell Yan processes

* Soft resummation for new variables related to the Z transverse momentum
distribution

* Jet vetoes

* Jet shapes as a tool for new physics searches



Thank you !



