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Outline 

•  SM Higgs production at the LHC
–  The heavy top approximation

•  Top mass effects at NNLO

–   Asymptotic expansion
–   Problems at small-x

•  High-energy limit and kT-factorization

•  Matched cross-section and rapidity distribution
•  Beyond the Standard Model: pseudoscalar Higgs

•  Conclusions



•  The Higgs boson is the missing particle of  the SM
•  Its discovery is the main reason the LHC has been built for 

•   The main production channel is gluon-gluon fusion via a quark loop

Higgs production at the LHC 
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QCD corrections 
•  The cross-section can be computed in perturbative QCD

•   NLO corrections turn out to be huge ( ~ 100 %) [Spira et al. 1995]
•   The next order is needed to asses the convergence of  the series
•   The full calculation is beyond the current reach (diagrams with up to 3 loops 
    and massive internal lines)
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•  EW precision data tell us that the SM Higgs mass should be   300 GeV
• This is well below the two top threshold:  
• We can integrate out the top quark and work in an effective theory (EFT)

•  Major benefit: one less loop

•  NLO                     [Spira et al. 1991; Dawson, 1991] 
•  but also NNLO     [Anastasiou and Melnikov, 2002; 
                                 Harlander and Kilgore, 2002;
                                 Ravindran, Smith and van Neerven, 2003]

The heavy top approximation 
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How good is it ? 

•  The top mass dependence is usually kept at LO, while higher orders are 
computed in the EFT:

•  When tested against exact NLO the EFT is accurate at the percent level for 
   mH< 2 mt

•  Surprisingly the agreement is of  order 10 % also for mH ~ 1 TeV ! 

What is the reason for this spectacular agreement ?
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•  The hadronic cross-section is dominated by soft and virtual terms (delta and plus)
•  These contributions are almost insensitive to the top mass
•  For instance the NLO coefficient function in the gg channel is:

•  This should remain true at NNLO as well
•  Can we make a more quantitative statement ?
•  We can compute top mass suppressed contributions to the NNLO cross-section

Dominant contributions 
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Asymptotic expansion 
•  Full NNLO calculation with top mass not currently feasible
•  One can perform an asymptotic expansions of  the Feynman diagrams 

         [e.g. Smirnov 2002]
•  The cross-section can be written as 

•  The first term is the EFT one

•  Top mass suppressed corrections to NLO known for a long time 
         [Dawson, Kauffman 1993]

•   Now also computed at NNLO by two different groups
         [Harlander, Ozeren 2009
         Pak, Rogal, Steinhauser 2009]

•  Tools exist to automatize the calculation (not going into the details)

           … however …
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Problems at large ŝ 
•  The asymptotic expansion assumes

•  Clearly at the LHC the partonic c.o.m. energy can reach values far beyond mt
•  The expansion breaks down in the high-energy region 
•  This breakdown manifests itself  in inverse powers of

•  Spurious power-like growth at small-x
   appears disastrous !
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•  In order to compute finite top mass corrections at NNLO we can use   
   asymptotic expansion

•  This is OK in the region below threshold, where the top mass is the largest   
   scale in the process

•  This region dominates the cross-section after convolution with parton      
   luminosity

•  We need a different method to compute the hard tail of  the partonic   
   coefficient functions at NNLO

So far… 



•  In order to compute finite top mass corrections at NNLO we can use   
   asymptotic expansion

•  This is OK in the region below threshold, where the top mass is the largest   
   scale in the process

•  This region dominates the cross-section after convolution with parton      
   luminosity

•  We need a different method to compute the hard tail of  the partonic   
   coefficient functions at NNLO

•  We can use kT-factorization 

So far… 



QCD factorizations  

•  Hard processes : collinear factorization Q2 � Λ2
QCD
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QCD factorizations 

•  Hard processes : collinear factorization

•  High energy processes: kT-factorization

Q2 � Λ2
QCD

S � Q2 � Λ2
QCD

unintegrated parton densities

transverse momenta of  the off-shell 
incoming partons
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High-energy factorization  

•  We consider Mellin moments of  the off-shell cross section:

•  So that the formula factorizes

•  To make contact with usual collinear factorization we have introduced the 
Mellin moments of  the integrated PDFs
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QCD evolution equations 

DGLAP: Q2 evolution for N moments of  the parton density

BFKL: small-x evolution for M moments of  the parton density

lnk 1
x
↔ 1

Nk+1

lnk Q2

µ2
↔ 1

Mk+1Mellin moments:

logs↔ poles

d

d ln(Q2/µ2)
F (N, Q2) = γ(N, αs)F (N, Q2)

d

d ln(1/x)
F (x, M) = χ(M,αs)F (x, M)



Duality relations 

•  At high energy and large Q2  both BFKL and DGLAP are valid

•  They admit the same leading twist solution

•  The kernels satisfy (consistency) duality relations

χ(γ(N, αs), αs) = N
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F (N, M) =
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M − γ(αs, N)
=
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•  We define the impact factor in the following way:

•  the explicit N dependence is sub-leading, hence we set N=0

•  the high energy behaviour is found by inverting the M-Mellin transforms using  
  the pole condition from the evolution equations:

•  one obtains:

Coefficient functions at high energy 
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•  Originally used for heavy flavour production 

•  DIS and DY are more delicate because collinear singularities 

     (due to massless quarks) must be consistently factorized

•  Direct photon: final state singularities

What has been computed so far 

Catani, Ciafaloni, Hautmann  Nucl.Phys.B366:135-188,1991. 
Ball, Ellis   JHEP 0105:053,2001.  

Catani,  Hautmann Nucl.Phys.B427:475-524,1994. 
SM, Ball Nucl.Phys.B814:246-264,2009 

Diana, Nucl.Phys.B824:154-167,2010.  



Rapidity distributions 

•  kT – factorization had been applied until recently only to inclusive cross-
sections (although Monte Carlo programs exist)

•  The formalism which enables one to resum inclusive coefficient functions 
can be applied to rapidity distributions as well
               Caola, Forte, SM

•  The recipe is a relatively simple generalisation of  the method discussed 
before

•  One needs to compute the rapidity distribution at LO for the process one is 
interested in, keeping the incoming gluon(s) off-shell

•  Then as usual one computes Mellin moment wrt x and the gluon off-
shellness
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f̃(b) =
�

eibyf(y)dy

•  In order to extract the dominant terms at high-energy, it is useful to 
consider Fourier moments wrt the rapidity

•  We have found that in Fourier-Mellin space the high-energy poles are 
shifted by ib/2

•  The resummed rapidity distribution is then given by a simple generalization 
of  the formula for the inclusive case

Rapidity distributions (II) 
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Higgs production via gluon gluon 
fusion in kt-factorization 



Higgs at hadron colliders High energy factorization Leading logarithmic behaviour of gg → H Improvement of the fixed-order result Conclusions

The mt → ∞ computation

• We compute the LO off-shell cross section for

g∗(ξ1) g∗(ξ2) → H , with mt → ∞

• The impact factor is
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Finite top mass case 
•  We compute the LO off-shell cross section for 

•  The impact factor is 

•  The form factor ensures that the Mellin integrals have finite radius of  convergence 
  when N = 0

•  Only single poles ( ie single logs) when we identify 
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Partonic results 
•  We numerically evaluate the coefficient of  the leading logarithm at small-x in 
  the gg channel
•  We then compute the small-x behaviour of  the other channels using colour 
  charge relations

•   We obtain

•  We checked the NLO coefficients against the full result.
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Matching procedure 

•   We construct an approximation to the exact cross-section by matching 
the 1/mt   expansion to the small-x limit (with the full mt dependence)

•  Schematically

•  In practice a bit more complicated because the result by Harlander 
and Ozeren is given as a series in x = 1
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•  In order to test this procedure we first study the NLO case 

•  The convergence of  the approximate result toward the exact one is excellent
•  We apply the same procedure to the next order
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Hadronic results (NLO) 



Hadronic results (NNLO) 
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•  At NNLO we compute ratios of  the our approximation to the EFT results

•  Finite top mass effects at NNLO are below 1% both at the Tevatron and LHC
•  The EFT approach is fully justified to NNLO (for the inclusive cross-section)



Rapidity distribution 
•  We have computed the high-energy behaviour of  the Higgs rapidity 
distribution, both in the finite top mass approximation and for finite mt

•  We have checked the our result reproduces the known NLO analytic one from 
the EFT

•  As in the inclusive case we have constructed an approximate distribution by 
matching large- and low- x behaviour

•  We have limited our analysis to NLO because no analytic expression exist for 
NNLO

•  The hard tail of  the NNLO distribution has a very small contribution in the 
whole rapidity range (< 2 %)
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Rapidity distribution (NLO) 
•  We show the ratio of  the approximated rapidity distribution over the EFT result

•  Effects are very small for central rapidities and only reach 5 % in the forward 
region for pp collision at 14 TeV

•  This confirms the analysis of  Anastasiou, Bucherer and Kunszt: finite top mass 
effects on the rapidity distribution are below 5 %

7 TeV 14 TeV



Beyond the SM Higgs 
•  Supersymmetric theories generally predicts a richer Higgs sector than the SM 

•  In the MSSM for instance one introduces two complex Higgs doublets

•  They originate five physical Higgs bosons: two neutral scalars, two charged 
scalars a neutral CP-odd state 

•  The phenomenology of  the pseudoscalar Higgs is much richer than the case of  
the SM Higgs

•  Its coupling to the up-type quarks decreases with tan β, while the one to down-
type quarks increases

•  The coupling to the b-quark becomes important and eventually dominates the 
top contribution for tan β > 10

•  The use of  the EFT is less justified



Pseudoscalar Higgs 
•  We are working on computing finite fermion mass corrections

•  We have performed the calculation in kt- factorization with top and bottom   
  quarks in the loop

•  The analytic expression of  the results is simpler than the scalar case

•  We have  checked the NLO results by comparing to the full NLO calculation by 
Spira et al.

•  No plots to be shown yet as we are currently finalizing the matching to the 
effective theory result
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Conclusions 
•  I have presented a studies for Higgs production in g-g fusion to NNLO

•  The small-x limit has been computed using kT-factorization and then matched 
  to the 1/mt expansion

•  Finite top mass effects at NNLO are below 1% both at the Tevatron and LHC

•  The EFT approach is fully justified to NNLO (for the inclusive cross-section)

•  We have performed a similar studies for the rapidity distribution and effects are    
  found to be below 5%

•  Work in progress for the pseudoscalar case (and the Karlsruhe group is working  
   on the asymptotic expansion)

•  These studies are an example of  a fruitful interplay between fixed-order and 
  resummation techniques !



Other interests 

•  Higgs physics is not my only field of  interest

•  I also work on

•  Small – x resummation for Drell Yan processes
•  Soft resummation for new variables related to the Z transverse momentum   
   distribution
•  Jet vetoes
•  Jet shapes as a tool for new physics searches



Thank you ! 


