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Large energy symmetry breaking

—+

e — Z — hadrons

e

We restrict our attention to the case when Z-boson is the intermediate state in the
processes ete™ — hadrons.

do (T)

dcos L*Y (ne) Hyy (T, mr)

Leptonic tensor:

1 * . _ . _
L”VZZ Z <Ovv|e+ef> <O[]“|e+e >, ]“:Weyﬂ(gve_gae%)qf@

e_ ey

Hadronic tensor:

H*Y :Z<X’JV‘O>* <X|]"‘O>® (TQ Z ‘pi 'nT|) ) JH = l/_/qyﬂ (qu *gquS) Yy,
X ieX

Y Ipi-nr| :mr111x2|p,'-n|7 where  n’=n%=1

icX icX
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Large energy symmetry breaking

Tensor structures

Leptonic tensor:

LM (n,) = (ggl +g%1> [*gﬁv (ne)] —2gugua*” (n,),

Hadronic tensor can be parameterized as follows

H*Y = (g\%q +g3q) {F(T) [_gﬁv (nT)} +G(T)8Huv (nT)} _2qugaqK(T) [a,uv (nT)]*>

n*nY Jrn"n’jL

g =gt
n-ny

1
uv _ Hn v v
8 —Z(””*’H)(" —nY),
a“vzii £”V‘xﬁnanﬁ.

n-ny +
wv=1, an=(,—u), n.=(lu).

H"Y (n+ny), =0
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Large energy symmetry breaking

Angular distribution

Let us assume, for the sake of simplicity, that g,; = g, = 1.

=0 (1-9)ve.
Therefore Z-boson is produced in the state |J,J;) =|1,—1), so that n; = n,.

Thus we obtain the following angular distribution

do (T)
dcos6

(&2 +g%) [F(T) <1 +cos? 97) +G (1) sin® 07| +2g,84K (1) 2cos b7,

where cos 07 = n7 - n,.
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y symmetry breaking

Large energy symmetry

do

2
dcos 6 ~ ‘

+ (gv _ga)z }d}ﬁl

2
(v +ga)2 }dll.fl‘

i [(gv+ga)2 (1+c0s6,)> + (g0 — ga)2 (1 —coseq)z]
- % [(g% +g§) <1 +cos? 91/) + (28v84) 2 cos Gq] .

do (T ]
dco(se) ~(gr+8z) [F(T) <l +cos? 9’/') +G (1) sin’ 91} +2gv84K (T)2cos 07,
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Why symmetry?

Operators

_ n*nY +n"nﬁl_

A _HV Y
g=g¢ =g"
n-ny
1
A UV uvop
a=a = t NN g.
n-ny *"+B

Rotation U (1)

U = gcos¢ +asing = gexp(ad)
{7 = gcos¢ —asing = gexp(—ao)

Large ene mmetry breaking
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Symmetry breaki

Gluon radiation

(a), (b): mainly contribute to G(7) and slightly violates the relation F(7) = G(1)

(c): can be, in principle, excluded from the analysis. To do this requires a
simultaneous tagging of B and B mesons. If not, it does not contribute to K(7)
and gives a leading contribution to F(7). The contribution to G(7) is negligible.

mmetry breaking



We will restrict our attention to the topologies (a), (b) such
that |6, — 65| ~ 7 in the T — 0 limit.

Therefore, we will consider the corrections to G(7).
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Mechanisms of symmetry breaking

Old-fashioned perturbative theory provides a clear physical explanation.

We can (to some extent arbitrary) single out two mechanisms.

13t Additional partons are radiated off the primary gg-pair after the Z-boson decay:

k k
P
P p1
4 § f D2 N&;ﬂE&W P2
(@) (b)

Breaking is of kinematic nature: 6, — 67 misfit

27 A virtual hadronic state appears before the Z-boson decay.
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Large energy symmetry breaking

P

The sum of the quark and gluon momenta:

H i
n n
pH = ph + k- :(P'")%+(P'"+)7a
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Large energy symmetry breaking

The sum of the quark and gluon momenta:

H i
n n
Pr=ph R = (o) S+ (o) s
Splitting of the propagator into two parts:

b _ 1L A -1 A
p2+i0  Eg—E +i0 2 ' Ey—E,—i0?2

Z-boson disappears being absorbed by the intermediate antiquark from dé‘_l (6r)

mmetry breaking
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The method of expanding by regions Av imple integral
Thrust distribution in perturbation theory
Factorization in SCET

A very simple integral

The exponential integral function

Expansion in the A < a limit:

o p—X/a o X oo AN e X
/0 x+ldx_/o x+l/adx7é§’0<_a> /0 de

One can not ignore the region x ~ A.

Large en
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Separation of the regions
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@ Dimensional regularization dx — (%) dx




The method of expanding by regions

et T TG T
ion in SCET

Separation of the regions

. . o X
@ Dimensional regularization dx — (— dx

o Integrand expansion in the soft region:

—x/a = ] —x\"
I(x):;_ﬁ soft (X) Z;(i) ,

Soft region




The method of expanding by regions A very simple integral
Tt stribution in perturbation theory
Factorization in SCET

Separation of the regions

. . o X
@ Dimensional regularization dx — (— dx

o Integrand expansion in the soft region:

e~x/a 1

“xea =07

I(x)

@ Subtraction of the soft region:

mmetry breaking



The method of expanding by regions A very simple integral
Tt stribution in perturbation theory
Factorization in SCET

Separation of the regions

. . o X
@ Dimensional regularization dx — (— dx

o Integrand expansion in the soft region:

—x/a 1 x| RN "
_°¢ - — L Soft region

@ Subtraction of the soft region:

IR (ﬁ)gdh |1 =L ) (ﬁ)gm [ o9 (ﬁ)dx

@ Integrand expansion in the hard region:

e—x/a < 1/ \"
Ihard(x):I(x)_Isoft(x):x+l _x+ Z; (7> .
Hard region
—>i A et X~a
n—0 X X
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Integration over regions

@ In fact,the contributions are separated out
o0 X & oo < l)n
I(x)| —) dx= ——
/0 ® (.U) ng’O a
a\® [ m) ANE =)
n n
G0 [ aass () [ o]

metry breaking



The method of expanding by regions A very simple integral
Tt stribution in perturbation theory
Factorization in SCET

Integration over regions

@ In fact,the contributions are separated out
o0 X £ oo l n
Ix)| — ) dx= ——
f () e=5 (%)
{( ) / Ih:rd xfdr+ ( ) /) Is:tt x d"}

@ Each of which can be easily evaluated

T fdi= [ 4 v =T (e —n)
0 haIdxx B o x1+nx B E—n

J 10 adr= L [T g T

n!'Jo x+1 n!sinwe
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The method of expanding by regions A very simple integral
1 perturbation theory
Factorization in SCET

Integration over regions

@ In fact,the contributions are separated out
o0 X £ oo l n
Ix)| — ) dx= ——
INCIHESC)
{ ( ) / hard edx+ ( > / Isoft gdx}

@ The singularities with respect to € and the p-dependence drop out of the sum of the
all contributions

Fie= 50w () raesn ()]
—i<a> [y m+n).

n=0
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The method of expanding by regions
fistribution in perturbation theory
on in SCET

Quantum field theory

@ Itis (usually) difficult to calculate multiloop Feynman integrals as exact
function of external kinematic parameters.

o Expansion is sometimes sufficient (smooth fields).
@ In general case, one can not expand the integrand before the integration.

o In general case, there is no regular multiple Taylor series (nonanalytic
behaviour: Ing, \/¢2).

nmetry breaking
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on in SCET

The strategy of expanding by regions

@ One has to analyze all scales in a problem and single out the field
modes with momentum components is of order of one of the scales
(power counting rules).

nmetry breaking
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in SCET

The strategy of expanding by regions

@ One has to analyze all scales in a problem and single out the field
modes with momentum components is of order of one of the scales
(power counting rules).

The most nontrivial step. The scales can be hidden:

b n
a<<b<<c:>a<> <a
c

Usually the region appears near poles of the propagators (poten-
tial, soft, collinear etc.).

Large ene mmetry breaking
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The strategy of expanding by regions

@ One has to analyze all scales in a problem and single out the field
modes with momentum components is of order of one of the scales
(power counting rules).

@ Separation of the regions. It implies regularization with the help of
intermediate scales (a < U} < b < U < ¢) such that the integration
convergent in the definite region (can be implicit) and expansion of the
integrand in the regions.
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n in perturbation theory
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The strategy of expanding by regions

@ One has to analyze all scales in a problem and single out the field
modes with momentum components is of order of one of the scales
(power counting rules).

@ Separation of the regions. It implies regularization with the help of
intermediate scales (a < U} < b < U < ¢) such that the integration
convergent in the definite region (can be implicit) and expansion of the
integrand in the regions.

Dimensional regularization is not always enough (sometimes with
analytic regularization). Pauli-Villards is OK, but additional inter-
mediate regions appear.
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The strategy of expanding by regions

@ One has to analyze all scales in a problem and single out the field
modes with momentum components is of order of one of the scales
(power counting rules).

@ Separation of the regions. It implies regularization with the help of
intermediate scales (a < U} < b < U < ¢) such that the integration
convergent in the definite region (can be implicit) and expansion of the
integrand in the regions.

o Integration of every expansion over the whole integration domain.
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The strategy of expanding by regions

@ One has to analyze all scales in a problem and single out the field
modes with momentum components is of order of one of the scales
(power counting rules).

@ Separation of the regions. It implies regularization with the help of
intermediate scales (a < U} < b < U < ¢) such that the integration
convergent in the definite region (can be implicit) and expansion of the
integrand in the regions.

o Integration of every expansion over the whole integration domain.

Some artifacts appear: log ﬁ s% etc.
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The strategy of expanding by regions

@ One has to analyze all scales in a problem and single out the field
modes with momentum components is of order of one of the scales
(power counting rules).

@ Separation of the regions. It implies regularization with the help of
intermediate scales (a < U} < b < U < ¢) such that the integration
convergent in the definite region (can be implicit) and expansion of the
integrand in the regions.

o Integration of every expansion over the whole integration domain.

@ Sum all the contributions.

All artifacts should disappear

Large ene mmetry breaking



The method of expanding by regions
Thrust distribution in perturbation theory
Factorization in SCET

Outline

The method of expanding by regions
p g by reg

@ Thrust distribution in perturbation theory

Large en



The method of expanding by regions tegral
bution in perturbation theory
in SCET

Thrust distribution

Let us demonstrate how to apply this method to the perturbative calculation
of the thrust distribution

1
F(t)= 7/dce+€_4>h® TQ-Y |pi-nr |,
6o ich

in the region where T=1—-T < 1.

We introduce a small parameter A such that T ~ A2

Large ene mmetry breaking



The method of expanding by regions A very simple integral

Power counting rules

Region Scale  Power counting Q! (k-n,k, ,k-n.)
Hard 0? (1,1,1)

Right collinear Q> (1 , l,lz)

Left collinear 70? (lz, A, 1)

Soft (10)* (A2,22,22)

mmetry breaking



The method of expanding by regions

Integrations

Hard regions gives the usual on-shell QCD Sudakov form factor:

_ asCr <QZ>_8{ 4 6 T2

Fhard(f) 4” ‘LLQ 7?757164’74’0(8)

nmetry breaking



The method of expanding by regions

Integrations

Hard regions gives the usual on-shell QCD Sudakov form factor:
Fhad (7) = asCe (Q\ [ 4 6 16+7l+0( e
 4m \u? e & 3
Expansion in the collinear region gives the DGLAP kernel:

j/z 2

Fcol.R(T)_Eg:;i/oQ rﬁ( )9/2 2/d @/2 ) "

ymmetry breaking



The method of expanding by regions y oral
distribution in perturbation theory
on in SCET

Integrations

Hard regions gives the usual on-shell QCD Sudakov form factor:

, asCe (0*\ ] 4 6 T2
phad(py - 227 (2 )7 2 164 —— .
(1) An <,u2> P + 3 +0(¢g)

Expansion in the collinear region gives the DGLAP kernel:

. osCr (TO*\ “[4 3
FCOI'L(T):FOI'R(T): an (/J,z) ?+E*E2+7+0(8) )

ymmetry breaking



The method of expanding by regions

Integrations

Hard regions gives the usual on-shell QCD Sudakov form factor:

—&
hard asCr [ Q? 4 6 T2
=27 (= —_—— == =164+ —
F'* (1) An <,u2> { P + 3 +0(¢g)|.

Expansion in the collinear region gives the DGLAP kernel:

2
FLL (1) = IR (1) = O‘j? (Tqu) [ +§77r +7+0(e )]

Soft regions corresponds the soft radiation off two-parton antenna:

2
! C
FSOft Z/dpsoftG(k n—k- n+) (TQ k- I’l+) 7: F<n n- )




The method of expanding by regions y oral
distribution in perturbation theory
on in SCET

Integrations

Hard regions gives the usual on-shell QCD Sudakov form factor:

, asCe (0*\ ] 4 6 T2
phad(py - 227 (2 )7 2 164 —— .
(1) An <,u2> P + 3 +0(¢g)

Expansion in the collinear region gives the DGLAP kernel:

. osCr (TO*\ “[4 3
FCOI'L(T):FOI'R(T): an (/J,z) ?+E*E2+7+0(8) )

Soft regions corresponds the soft radiation off two-parton antenna:

FSOft(‘L') _ asCg <7:2Q2>—g {_4 . 71'2] |

4 u? e 3




The method of expanding by regions

Integrations

Fhard (‘L') _ asCr <QZ)8

4 6 17
————— 16+ — +0(¢)]| .
4w\ u? { e € + + <8)}

osCr (10
4w\ u?

FSOft(’L') _ 06_9CF (12Q2>e |:_4+7'C2:| |

Fcol.L (T) _ Fcol.R (T) —

+§—7t +7+0(¢)
w) [ |

4n u? e 3

The singularities with respect to € and the ?-dependence drop out of the sum
of the all contributions, that occurs always if one correctly uses the method
of expanding by regions.

2
F=1+3cp(-4mm? 7+6ln7—2+l
4w 3
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The method of expanding by regions

I can see them

GQuarks, Nevkrines, fMlegong, Al hoge
domvn parkicles you can't gee. Thek'
vihek drove me ko drink. Buk now T
can e khem!

“Qumm. Ny, Wesous. ALL Tose Damw) pRTCIES
Oy CAN'T See . TIRTS WHAT DROVE ME To DRNK.
BUT oW | cavt SEE Frem /0
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The method of expanding b;
ion in perturbation theory
Factorization in SCET

Soft collinear effective theory

Effective theory amplitude can be understood as an expansion of the full QCD ampli-
tude in a certain region

breaking



The method of expanding by regions
rturbation theory
I‘dCl()rW |l|on in SCET

Soft collinear effective theory

y=éin, e=llry gy

4
L =y(i D+ie)y,
L =E®x)in- Dﬁ (x)-i—iv/iods [’g‘_iY)LW] (x) {W"'i Dl%q (x+sny),

#' is equivalent to .# and identical to that of QCD in the infinite momentum frame
(Kogut, Soper...1970) or light-cone quantization (Brodsky, Pauli, Pinsky... 1998).

mmetry breaking



The method of expanding by regions

Factorization in $

Soft collinear effective theory

y=E+n, £= v, n=
L=y D+ie)y
Sit

L' =Ex)in- D— (x)-i—iv/iods [’g‘_iY)LW] (x) {W‘z Dl — ﬁ+

(x+sn+),

|0>7 ﬁﬁ“r ( )|0 ﬁ“r ﬁ / dp ﬁ ln+ peflp(x ‘>.

T T
(0[TE (x O[Ty (x 27;22p +i0

Large energy symmetry breaking



The method of expanding by regions
rturbation theory
I‘dCl()rW |l|on in SCET

Soft collinear effective theory

y=éin, e=llry gy

4
L =y(i D+ie)y,
L =E®x)in- Dﬁ (x)-i—iv/iods [’g‘_iY)LW] (x) {W"'i Dl%q (x+sny),

If one counts as “collinear field” the modes with (ny-p,p,n-p) ~ (l,l,lz), S0

that d*p ~ A% then

§~l7 71”/12

mmetry breaking



The method of expanding by regions

Soft collinear effective theory

w=E+n, ézﬁf+% n=ﬁ;ﬁ%
gz‘/_/(lp—HS)W:
L' =E&(x)in D% ( )+i'/i°ds [ét,DLW]( ){W‘z D1 ﬁ+ (x+sny),

Hierarchy of modes

E~A, n~AR
niAe~1,  Ag~A, n-Ac~AZ% f> f) fz)
gs ~ A3, Ay~ A2 éq Zéq + %+

ymmetry breaking



The method of expanding by regions
rturbation theory

Factorization formula for thrust

Integration over the hard region is the matching of the QCD operator (weak current)
on the SCET one B
0y =&, W, Y, TY,W,&,.

ni
Bauer, Fleming, Lee, and Sterman (2008) — factorization formula for angularities
(a = 0 — thrust, a = 1 — broadening)
1 _ 1— [
e(X)= o Y e Init a)‘pﬂi)‘

ieX
F(@)=H (Q12) [ dpaphars (pF.12) (phow?) 7 (ko) © (03— —ph - OK).
It is claimed that

@ factorization of the complete set of hadronic final states is not needed.

@ any logarithmic accuracy can be achieved (LL, NLL, NNLL...)

mmetry breaking



The method of expanding by regions
rturbation theory
I‘dCl()rW ation in SCET

Objects

e H (Q27 /.Lz) is the hard function, that is the square of the usual on-shell QCD
Sudakov form factor

J (pz,,uz) is the jet function

1(2a2) = s g |1 [t v (o[t {g w0 w0050} o).

that is, up to a factor, the imaginary part of the QCD quark propagator in the
light-cone gauge

@ The soft factor St (k, u?) is defined as follows:

s (kow?) = X (x]n

>‘25(k_n'PXL — N4 Pxg) -

mmetry breaking



The method of expanding by regions
perturbation theory

Evolution equations

It is convenient to take the Laplace transform
j(st,uz) = / dp267Vp2J <p2,,uz> , ST <sQ7u2) = / dke Veksy (k,uz) ,
JO JO

where we use the notation s = 1/ (szeVE) ~ 7, so that the thrust distribution takes

the form:
Ft)=5 /. (242 (s0%m2) 1 (s0.02).

mmetry breaking



The method of expanding by regions

Evolution equations

dlnp?

NLL accuracy: 2-loop T'cusp, 2-loop o (pz), 1-loop ¥, initial conditions up to
0(065)‘




The method of expanding by regions

rturbation theory

CTTW approach

@ Correct description of soft radiation implies color coherence, which results in
the angular ordering constraints (Ermolaev and Fadin, Miiller 1981)

@ Ordering + two-loop DGLAP splitting kernels + proper normalization of
coupling constant = branching algorithm

@ Catani, Trentadue, Turnock, Webber (1993)
F(e) = [arfapqsC™ (P,0%) STV (PR, Q%) @ (QPe— PR - FR).
where the Laplace transform of JTTW (P2) is found to be

1njCTTW (V’Qz) _ ln/o dy e~ P2V JCTTW (PZ,Q2>

0 (um i) [ o Lo (67)] s )

mmetry breaking



The method of expanding by regions very le al
n in perturbation theory
Factorization in SCET

Antenna pattern

Ignoring the angular ordering does not necessarily lead to an incorrect result for an
inclusive quantity.

If event shape is not sensitive to the structure of gluon subjets, then one can assemble
final partons into the gluon subjets radiated off the primary gg line and consider this
radiation as a sequence of QED-type soft independent emissions (Parisi, Petronzio,
1979)

Large en



The method of expanding by regions
rturbation theory

Antenna pattern

d _
0= /C ZE‘;V exp[vOT+2% (v,0)],

@ 0y should be used in the so-called Monte-Carlo scheme
@ some part of collinear radiation has to be taken into account a posteriori

(rescaling with r = exp (3/4))
0 dB [Qda (aﬁ)
Cr /1 /

%(V7Q):_ () T

This approach is used in calculations of such event shape variables as the three-jet
aplanarity or the D-parameter (Banfi, Dokshitzer, Marchesini, Zanderighi, 2001)

mmetry breaking



The method of expanding b;

ion in perturbation theory
Factorization in SCET

Inter- and intra-jet radiation

Antenna approach is not without merit
because, in contrast to the angular-ordered
branchings of partons, which can be
referred as an intra-jet radiation, it claims
to be the correct description of a coherent
inter-jet radiation, which plays a crucial
role for the aplanarity or D-parameter
distributions

breaking



The method of expanding by regions
rturbation theory

Interpretation of SCET

In fact, SCET carefully separates intra- and inter-jet radiation
F(e)=H (0%u2) / dptdpraes (pR,u2)J (pkon?) St (k.u?) © (0% — pf — pk — OK).

Pi:(PL+kL)2:pE+Qn~kL+O(A3),

therefore

P24+P} :pﬁ+p2R+kQ+0()L3), where k= n-kp +n. - kg.

o If /.12 =s20% ~ 120% ~ kQ, we exclude soft region
JFCTTW (v Qz) — /2 (Qz s2Q2>]<sQ2.s2Q2>
o Ifu?= $Q? ~10% ~ pf ~ p2R, we exclude collinear region

Z(vQ.,0) = %lnH (QZ,SQ2> sy (sQZ,sQZ)

mmetry breaking



Symmetry breaking in SCET

Tree-level local operator

k k
P
P1 + p1 -
Z P Ps
?—{ 2 ﬁg&%"‘wﬁiﬂy , B

— (- 05 (- S

k-n+i0 qnt...

(B= ) [ V1) + V8 | an

A04+A1

) b UpV 4 kY M
9 ke [ra(@ (4G () — ;O (v KR A kRE
/d xe B (TAM (ACK 0)) "2+ (g kn+io )’

ymmetry breaking



Symmetry breaking in SCET

Tree-level local operator

k k
P
P1 + p1 -
Z P Ps
?—{ 2 ﬁg&%"‘wﬁiﬂy , B

2gst? v KtnY +kVnM
(5= B[+ ], == 0255 [ (0 -2

In LC gauge the effective vertex takes a pamcular simple form:

qn+...

A o 5 2gs
Lo M no_
Ver =V + Vi) = jz“y’j,

mmetry breaking



Symmetry breaking in SCET

Tree-level local operator

k k
P
P1 + p1 -
Z P Ps
?—{ 2 ﬁg&%"‘wﬁiﬂy , B

2gst? v KtnY +kVnM
(5= B[+ ], == 0255 [ (0 -2

In LC gauge the effective vertex takes a pamcular simple form:

qn+...

A o 5 2gs
Lo M no_
Ver =V + Vi) = jz“y’j,

Contributions to the thrust distribution:

dps s
GO (¢ / . / Avga P2 —p B e,
() 2N IPR |‘1mr L‘In’ dP}% F p T

mmetry breaking



Symmetry breaking in SCET

Tree-level local operator

k k
p
b1 + D1 -
Z D2 VA P2 7
2gst” kMnY +kVnH
u g — e
(8= B [V + V) ], = (= B =5 e vt

In LC gauge the effective vertex takes a pamcular simple form:
A ~ A 2g
T u _ =8s
Ver =V + Vi) = jz“y’j,

The main feature of the effective vertex is that it is local and therefore the ex-
panded amplitude can be considered as a matrix element of a local operator with two
r-collinear and one /-collinear particles in the final state.

mmetry breaking



Symmetry breaking in SCET

Beyond tree level

Large energy symmetry breaking



Symmetry b ng in SCET

Beyond tree level

@ r-collinear—r-collinear or [-collinear—/-collinear

@ r-collinear—I-collinear

breaking



Beyond tree level

@ r-collinear—r-collinear or [-collinear—/-collinear

@ r-collinear—I-collinear

@ collinear-soft

l:fahctc e (ksoft) - 114 + e e (ksoft) - 114 — b € (ksoft) N4

ksoft 1+ ksoft 14 ksoft 14

2
asCr [ n ny
P =ty x BEE ([
P =t x B (2 )




Symmetry breaking in SCET

Local operator in SCET
O3 = Osg+ O3,
O3g =2g5&1, ALy, En, O3, =2gsEn, Ay y&n, P
Arbitrary gauge (Beneke, Feldman (2003), Bauer et al. (2002)):
E—YW'E,  gA =Y (W*iD’lCW—iaL) YT,
Wilson lines:
Wy, (x) =Pexp {igs/ dsn-Al (x+sn)] , Y,, (x) =Pexp {igg/ dsn- Al (x+sn)]
0 0

SCET operator:
O3 = 24€'S§_r/z+ FAJ_,n+ W, Yzl Y, W; ér/l + 2855_;1+ Wa, Y;L Yy WnAL7n€é7
where .
A=A —Lw [al,WT] .
8s
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Symmetry breaking in SCET

Local operator in SCET

We are under the conditions of: Bauer, Fleming, Lee, and Sterman (2008)

G(v) =2t (Q*p%) [ dpfdphak

xZ| (mz«uz) 7 (Pi7ﬂ2) Sr (k7u2) e (er —pi—PR— Qk)
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Symmetry breaking in SCET

Local operator in SCET

We are under the conditions of: Bauer, Fleming, Lee, and Sterman (2008)

G(v) =2t (Q*p%) [ dpfdphak

xZ| (mz«uz) 7 (Pi7ﬂ2) Sr (k7u2) e (er —pi—PR— Qk)

@ where St (k,u?) is the same soft factor
°oJ (p%,/.tz) is the jet function

@ Hj is the square of the hard matching coefficient of the QCD operator
(n—n4 )" j, /2 onto SCET operator 0.
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Symmetry breaking in SCET

Local operator in SCET

We are under the conditions of: Bauer, Fleming, Lee, and Sterman (2008)
G(v) =2t (Q*p%) [ dpfdphak
xZ| (mzwtz) 7 (piuz) Sr (k7u2) e <Q2r —Pi—PR— Qk)

New object:

X <P27u2> = (p'i’ngch

cpm i fa%ser (ofr{ (& AL, W) 0] (W A ) 0} o).

as () ce (3 P (@-2))2/2-1
20 (ph.u7) = 21 F<pR> (2-2)|2/2-1]|

4mQ? 4mru? 22|
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Symmetry breaking in SCET

Fixed order: Hard coefficient

Do Py

Po

Py
Po




Symmetry breaking in SCET

Fixed order: Transverse self energy

<D 4
o0 > Lo

Large energy symmetry breaking



Symmetry breaking in SCET

Master in main topology

JLLLLL LT = = -1 cos53ba (0

_\Id/2|\d/2—1||i lnt 1 T o ( d=2,d=2,d/2—1 |,
ld—1][(d—2) Zld+n—1] |*"*\ 2d—4,d+n—1

dj2—1 d—2,d-2,d/2 |,
d+n—1>2%\ 2d—4,d+n ’

87 [\|27d/2|\d/271|\3 nd (1,1,d/2—1 ‘1)

+

where d = 2 —2 and ||x|| =T (x).
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Perturbative corrections

i (02) =1+ 21 (0242), / 4t d (pFm2) =14 22 1) (7. 0%),

=0 (phon?) == (phont?) [1+ oz (phoss?) ] /OdkS(k,u) + 2 s (%),




Symmetry breaking in SCET

Perturbative corrections

2\ € 2 2
H) (Qz,uz):(ﬁz) {ZCF {—S%Jr (3—%)-&-%4—17—16“3)}

1
e
+ Ca E <2T”274> 716+23i2+16§(3)} +0(£)}.

2\ ¢ 2 2
2 1222 9\ 57 85
=V (p§7H2>: (Z‘g) {ZCF {FZJFE(T_E)_T_I”Z@G)}

1 /23 22\ 503 2 19
wonlg (5-5)+ 55 -] o (4 3) o}




Symmetry breaking in SCET

Correction to distribution

G(7) =G (v) (1+ %St 6 (q),

where G(!) (1) can be presented as follows:

. 1 sz PN 5
G (7) = *% +Hy (0% ) i [/0 = (phou?) dpk

Q? Q)" )
n /0 0 (pz,,u2>dp2+/0 st (pz,uz)dpz}
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Symmetry breaking in SCET

Correction to distribution

G(7) =G (v) (1+ %St 6 (q),

where G(!) (1) can be presented as follows:

1 1 47? 23 2m? 4
M (1) = —4Cpln® - +1n— = 14 =2 ) TN,
G (‘L') CFnT+nT Cg 3 +Cap 3 3 3Ff

+Cr {—% + 12@(3)} +Ca {% _ 6C(3)} _ %Tpr,
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Symmetry breaking in SCET

Correction to distribution

G(7) =G (v) (1+ %St 6 (q),

where G(!) (1) can be presented as follows:

1 1 47? 23 2m? 4
M (1) = —4Cpln® - +1n— = 14 =2 ) TN,
G (‘L') CFnT+nT Cg 3 +Cap 3 3 3Ff

+Cr {—% + 12@(3)} +Ca {% _ 6C(3)} _ %Tpr,

o 1 1 212
F=1+35¢cp(-4n? = +6In-—2+ 2.
4w T T 3
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Symmetry breaking in SCET

Correction to distribution

G(7) =G (v) (1+ %St 6 (q),

where G(!) (1) can be presented as follows:

1 1 47? 23 2m? 4
M (1) = —4Cpln® - +1n— —14 — ) = ZTeNg
G (1) CpnT+nT Cr 3 +Ca 3 3 3 TEN

+Cr {—% + 12@(3)} +Ca {% _ 6C(3)} _ %Tpr,

o 1 1 272
Fe1+4%cp(—4m2= 46In-—24+ 7).
4r T T 3

272
1——<0.
9
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Symmetry breaking in SCET

Correction to distribution

G(7) =G (v) (1+ %St 6 (q),

where G(!) (1) can be presented as follows:

1 1 4n? 23 27\ 4
G () = ~4Cgln —+1In— {Cp (i - 14) +Ca (— - l) - 7TFNf]

3 3 3 3
31 353 50
+Cp |:—7+12g<3):| + Ca K —6C(3) —ETFNf,

o 1 1 272
Fe1+4+5cp(—4m2 = 46In-—24+ 7).
4r T T 3

272
1-—<0.
9

31 353 50 272
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Symmetry breaking in SCET

Resummation of large logs

G(7) =2H; (02412 2m/— L (50212) (502, 12) 57 (s0.142).

ymmetry breaking



Resummation of large logs

G(1)=2H; <Q27ﬂ2) ZLm CdVVEL <SQ27I~12>j <SQ27H2> ST (SQ,IJ2> .

We put u? = tQ%:

£, <sQ2,’EQ2> = ./Ooodszefvl’zR Z(f> (sz,TQ2>

_Ots(’EQz)CF 1
T 2zt ve?

1+ s (02)].




Resummation of large logs

G(1)=2H; (Q2 uz) L[dvs (sQ u) (sQ M )w(sQ,uz)-

21 cv

We put u? = tQ%:

£, (s0%00%) = [ aphe = (ph.70%)

OCS (’EQZ) Crg 1

2t vQ? [H%O‘S (Q ﬂ

2
G(1)=[1+ (G +€) as] o (ri ) Cr

<13 (050%) g7 [ yaga 7 (s0.70%).




Symmetry breaking in SCET

Resummation of large logs

G(1)~ H; (QZKL'QZ) L / divsr (SQ7TQ2) )

27i Jo V2 Q2
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Symmetry breaking in SCET

Resummation of large logs

G(1)~ H; (QZKL'QZ) L / divsr (SQ7TQ2) )

27i Jo V2 Q2

1 exp{Zu, (L, as) +Fs (L, s) }
L(2—-7(L o)) 7
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Symmetry breaking in SCET

Resummation of large logs

G(1)~ H; (QZKL'QZ) L / divsr (SQ7TQ2) )

27i Jo V2 Q2

. exp{Zu, (L, as) +Fs (L, s) }

G0~ re—yLos)

~ exp{yﬂz (Lv 065) + s (Lv aS)}

k(@) Tl —y(L o)

Large energy symmetry breaking



Symmetry breaking in SCET

Resummation of large logs

G(1)~ H; (QZKL'QZ) L / divsr (SQ7TQ2) )

27i Jo V2 Q2

. exp{Zu, (L, as) +Fs (L, s) }

G0~ re—yLos)

~ exp{yﬂz (Lv 065) + s (Lv aS)}

k(@) Tl —y(L o)

G(1) exp{Tm (L,0s) — T, (L, 0s)}
F(7) 1=v(L, o) '

Large energy symmetry breaking



Symmetry breaking in SCET

Ratio of the distributions

where
o(7) = Wln(l—m—lnu —7(W)+as (%) (6~ %),
2
Y(A) = % [In(1—2A)—In(1—-1)], A= BOO‘iiiQ)ln%

Large energy symmetry breaking



Symmetry breaking in SCET

Ratio of the distributions

06
04l

02}
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Forward-backward asymmetry

Experimental result

Alpr is measured by LEP2

| J3?dow(8) — [F,dow ()
7 = 7 a0w (o)
:é 28a18vi 2gaqqu
4 (g2+80) (83, +8%)

(0)

Martinez et al. (1999)

A’(bb)

A’ measured

ALEPH lept “o— 0.0965 £ 0.0044 +£0.0026
ALEPH jc —o— 0.0992 £ 0.0084 £0.0046
DELPHI lept —0—0.1049 £ 0.0076 +£0.0038
DELPHI je —o— 0.0990 £ 0.0072 £0.0038
L3 lept —— 0.0947 £ 0.0063 +£0.0039

L3jc — o i 0.0855 + 0.0118 +0.0056

OPAL lept —o- 0.0892 + 0.0044 +0.0020
OPAL je o 0.0994 + 0.0052 +0.0044
LEP 0.0983 + 0.0024

0.07 0.10 0.13
A’(bb)
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Forward-backward asymmetry

Experimental result

Alpr is measured by LEP2

o Jo7dew ()~ [F,d0w(6)

AL, =
s JFaow(6)
_ é 28418 2gaqqu 1Aca]
4 (g§l+g%l) (ggl] +g\2/£]) 015}
(0) 010
% ~5.6
dsin2 Oeff 005l
* S’nzﬂs"

0.225 0.230 0.235 0.240 0.245 0.250
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backward asymmetry

Experimental result

Alpr is measured by LEP2

2
L0 Jo "0 (6) — [, d0w(6)
" JFa6w (o)
:é 28a18vi 2gaqqu
4 (g2, +8m) (834 +8%)

(0)
% ~5.6
dsin2 Oeff
s 2
c 6,
M —1.8%x1073

sin? Octf

Martinez et al. (1999)

0.23102+0.00056
0.232280+0.00081
0.23243+0.00093
0.23236+0.00043
0.2314+0.00111
0.232200+0.00100

0.23055+0.00041

X/dof=12.5/6

0.231524£0.00023




Forward-backward asymmetry

Tree level

The experimental cuts bias the theoretical corrections (Abbaneo et al. (1997) e.g.
momentum cut in lepton tagging). The event shape can also been used to select the
events (Djouadi et al. (1990))

_ K(7)
A(T)iA(O)F(r)nLG(r)’
. A(1) F(1)—K(1)+G(1)
CO=1-20 =~ Flo+60
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Forward-backward asymmetry

Tree level

The experimental cuts bias the theoretical corrections (Abbaneo et al. (1997) e.g.
momentum cut in lepton tagging). The event shape can also been used to select the
events (Djouadi et al. (1990))

_ .0 K(0)
Alr) =4 F(1)+G(t1)’
_,_ Al _F)-K()+G(1)
c@=1-"w - F(1)+G(r)
Firee () = Kiree (7) = %Srcp {23”2 +2 (12T2:_1ZT_45) + (g - 81n2741:7212>

xIn(1-27)+27(t+2)Int+8In(1 —7)[InT—In(1 —27) + 6]+ 8[Liy(7) —Li (27— 1)]}

72—1)
1

Gm(r):%cp{r—4{ +21n(1—z)]}
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Forward-backward asymmetry

Tree level

The experimental cuts bias the theoretical corrections (Abbaneo et al. (1997) e.g.
momentum cut in lepton tagging). The event shape can also been used to select the
events (Djouadi et al. (1990))

_ K(7)
A(T)iA(O)F(r)nLG(r)’
. A(1) F(1)—K(1)+G(1)
CO=1-20 =~ Flo+60
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Forward-backward asymmetry

Tree level

The experimental cuts bias the theoretical corrections (Abbaneo et al. (1997) e.g.
momentum cut in lepton tagging). The event shape can also been used to select the
events (Djouadi et al. (1990))

_ K(7)
A(T)iA(O)F(r)nLG(r)’
. A(1) F(1)—K(1)+G(1)
CO=1-20 =~ Flo+60

/()-+()-<(3) as

o T~ 9 23 2 37 . (1
=BT 22 4 24m2)2 - 3 —2Lis (2 )| ~ 2089
ﬂCF{6 g Iy FCFI2) =3 -2l | 3 P
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Forward-backward asymmetry

Tree level

The experimental cuts bias the theoretical corrections (Abbaneo et al. (1997) e.g.
momentum cut in lepton tagging). The event shape can also been used to select the

events (Djouadi et al. (1990))
7 Cyree/s

0.8
0.6
0.4

0.2
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Forward-backward asymmetry

Tree level

In the region 0.03 < 7 <0.07,0.2 < D%Ctree (1) < 0.4, thereby simulating the real
experimental cuts.

A(obs) :A(corr) [l _ C(‘L‘)] .

1-C ree
Al (7) = g (1) ﬁ mag? (1) {1469 (1) [ —1]}.

mmetry breaking



backward asymmetry

Tree level

In the region 0.03 < 7 <0.07,0.2 < D%Ctree (1) < 0.4, thereby simulating the real
experimental cuts.

103G Qe @-1)
0.35

0.30
0.25
0.20
0.15
0.10

0.05




Conclusion

Conclusion

@ If the angular distributions 1+ cos? 0, sin% 6 and cos 6 are measured
independently, one finds “jets”” with different internal structure.

@ SCET is the relevant framework to establish factorization formulae and perform
resummation

@ If one takes into account tree-level distributions correctly, the effect of
resummation is absolutely negligible to the present level of experimental
accuracy.

metry breaking
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