Dynamical Parton Distribution Functions

Pedro Jimenez-Delgado (now ITP Zurich)

[with E. Reya and M. Glück]

PSI Particle Theory Seminar

25 February 2010

A next step in the adventure of Physics:

LHC: 14 TeV p-p collider:

No Higgs? Higgs? Grand Unification? Supersymmetry? Extra dimensions? Mini black holes? Strings?

...? ... starting soon!

$$\sigma(P_1, P_2) = \sum_{i,j} \int dx_1 \, dx_2 \, \hat{\sigma}_{ij} \big(x_1, x_2, \ln \frac{M^2}{\mu^2}, a_s(\mu^2) \big) f_i(x_1, \mu^2) f_j(x_2, \mu^2)$$

Introduction: Global QCD analysis

Overview of perturbative QCD Factorization and the parton picture Global QCD analysis Estimation of uncertainties The dynamical/radiative model

The dynamical distributions

History of the dynamical distributions Comparison with GRV98 Dynamical vs standard distributions: gluon Determination of $\alpha_s(M_Z^2)$ Dynamical vs standard distributions: sea Extremely small-*x*: astrophysical relevance Comparison with other groups: CTEQ

The dynamical determination of strange PDFs Dimuon production Fitting the data The strangeness asymmetry The gluon distribution and F_L DIS "reduced" cross-section The perturbative stability of F_L Confronting results with data

The treatment of heavy quarks Heavy-quark contributions: FFNS Effective heavy-quark PDFs: VFNS Examples: *W* and Higgs production Comments on GM-VFNS

 $\begin{array}{l} \mbox{Predictions for hadron colliders} \\ \mbox{Weak gauge boson production rates} \\ \mbox{Higgs boson production at LHC} \\ \mbox{Higgs boson production at Tevatron} \\ \mbox{Higgs production via } b\bar{b} \mbox{ fusion} \end{array}$

Lepton asymmetry and the new D0 data (preliminary)

Overview of perturbative QCD

Renormalization: $\alpha_s(Q^2)$ small for large Q^2 (*asymptotic freedom*)

\longrightarrow perturbative expansions

Factorization: (universal) **parton distribution functions** *Universality* + *experiment*:

Input PDFs $xf(x, Q_0^2) \xrightarrow{\text{DGLAP}} xf(x, Q^2)$

Infrared safety: inclusive σ 's, BR, jet production, event shapes, ...

(Models for) *hadronization* \rightarrow comparisons to experiment

Predictions + experiment \rightarrow Further development: SM, new physics ...

Overview of perturbative QCD

Renormalization: $\alpha_s(Q^2)$ small for large Q^2 (*asymptotic freedom*)

 \longrightarrow perturbative expansions

Factorization: (universal) **parton distribution functions** *Universality* + *experiment*:

Input PDFs
$$xf(x, Q_0^2) \xrightarrow{\text{DGLAP}} xf(x, Q^2)$$

Infrared safety: inclusive σ 's, BR, jet production, event shapes, ...

(Models for) *hadronization* \rightarrow comparisons to experiment

Predictions + experiment \rightarrow Further development: SM, new physics ...

Overview of perturbative QCD

Renormalization: $\alpha_s(Q^2)$ small for large Q^2 (*asymptotic freedom*)

 \longrightarrow perturbative expansions

Factorization: (universal) **parton distribution functions** *Universality* + *experiment*:

Input PDFs
$$xf(x, Q_0^2) \xrightarrow{\text{DGLAP}} xf(x, Q^2)$$

Infrared safety: inclusive σ 's, BR, jet production, event shapes, ...

(Models for) *hadronization* \rightarrow comparisons to experiment

Predictions + experiment \rightarrow Further development: SM, new physics ...

(QCD improved) parton picture of hadrons \equiv cloud of partons being emited and absorved constantly by one another

Proving with a "wavelength" μ^{-1} a parton is ("resolved") if:

 $\frac{t_{\rm form}}{t_{\rm hadr}} \propto \frac{\mu^2}{k_T^2} \ll 1, \qquad \mu \gtrsim M \equiv m_{\rm const} \approx m_{\rm hadr} \approx \text{ some hundred MeV}$ [Dokshitzer et al.'s book]

Collinear $(k_T \rightarrow 0, m=0)$ phase-space regions? (NP physics) "absorved" in the hadron structure \longrightarrow **Factorization**

$$q(x,\mu^2) \equiv q^{\text{bare}}(x) + \Delta q(x,\mu^2)$$

Logarithmic dependence:

$$\frac{\mu^2}{k_T^2} \frac{dk_T^2}{k_T^2} \alpha_s \to \alpha_s \ln \mu^2 \longrightarrow \text{Evolution equations}$$

$$(RGE \equiv DGLAP)$$

Universality: Collinear/mass singularities independent of the hard process

(QCD improved) parton picture of hadrons \equiv cloud of partons being emited and absorved constantly by one another

Proving with a "wavelength" μ^{-1} a parton is ("resolved") if:

 $\frac{t_{\rm form}}{t_{\rm hadr}} \propto \frac{\mu^2}{k_T^2} \ll 1, \qquad \mu \gtrsim M \equiv m_{\rm const} \approx m_{\rm hadr} \approx \text{ some hundred MeV}$ [Dokshitzer et al.'s book]

Collinear $(k_T \rightarrow 0, m=0)$ phase-space regions? (NP physics) "absorved" in the hadron structure \longrightarrow **Factorization**

$$q(x,\mu^2) \equiv q^{\text{bare}}(x) + \Delta q(x,\mu^2)$$

Logarithmic dependence:

$$\int^{\mu^2} \frac{dk_T^2}{k_T^2} \alpha_s \to \alpha_s \ln \mu^2 \longrightarrow \text{Evolution equations}$$

$$(RGE \equiv DGLAP)$$

Universality: Collinear/mass singularities independent of the hard process

(QCD improved) parton picture of hadrons \equiv cloud of partons being emited and absorved constantly by one another

Proving with a "wavelength" μ^{-1} a parton is ("resolved") if:

 $\frac{t_{\rm form}}{t_{\rm hadr}} \propto \frac{\mu^2}{k_T^2} \ll 1, \qquad \mu \gtrsim M \equiv m_{\rm const} \approx m_{\rm hadr} \approx \text{ some hundred MeV}$ [Dokshitzer et al.'s book]

Collinear $(k_T \rightarrow 0, m=0)$ phase-space regions? (NP physics) "absorved" in the hadron structure \longrightarrow **Factorization**

$$q(x,\mu^2) \equiv q^{\text{bare}}(x) + \Delta q(x,\mu^2)$$

Logarithmic dependence: $\int^{\mu^2} \frac{dk_T^2}{k_T^2} \alpha_s \to \alpha_s \ln \mu^2 \longrightarrow \text{Evolution equations}$ $(RGE \equiv DGLAP)$

Universality: Collinear/mass singularities independent of the hard process

(QCD improved) parton picture of hadrons \equiv cloud of partons being emited and absorved constantly by one another

Proving with a "wavelength" μ^{-1} a parton is ("resolved") if:

 $\frac{t_{\rm form}}{t_{\rm hadr}} \propto \frac{\mu^2}{k_T^2} \ll 1, \qquad \mu \gtrsim M \equiv m_{\rm const} \approx m_{\rm hadr} \approx \text{ some hundred MeV}$ [Dokshitzer et al.'s book]

Collinear $(k_T \rightarrow 0, m=0)$ phase-space regions? (NP physics) "absorved" in the hadron structure \longrightarrow **Factorization**

$$q(x,\mu^2) \equiv q^{\text{bare}}(x) + \Delta q(x,\mu^2)$$

Logarithmic dependence: $\int^{\mu^2} \frac{dk_T^2}{k_T^2} \alpha_s \to \alpha_s \ln \mu^2 \longrightarrow \text{Evolution equations}$ $(RGE \equiv DGLAP)$

Universality: Collinear/mass singularities independent of the hard process

Global QCD analysis

Determination of NP information: input distributions $xf(x, Q_0^2)$

for light quarks + gluon: $f = u, d, \bar{u}, \bar{d}, \bar{s}$ and g (*no heavy-quark PDFs*!)

Selected **experimental** information + **parametrizations** (BIAS) Nucleon structure Functions

```
Jets from Tevatron (up to NLO)
```

Drell-Yan pp + pn (or neutrino DIS) data needed for $\bar{d} \neq \bar{u}$

Strange symmetric input $s \equiv \bar{s} = 0$ (or asymmetric, discussed later)

Chi-square method:
$$\chi^{2}(p) \equiv \sum_{i=1}^{N} \left(\frac{\operatorname{data}(i) - \operatorname{theory}(i,p)}{\operatorname{error}(i)} \right)^{2}$$

Estimation of uncertainties

Propagation of experimental errors (only!) into the PDFs

Hessian method: quadratic expansion around the global minimum

$$\Delta \chi^2 = \chi^2 - \chi_0^2 \simeq \frac{1}{2} \sum_{i,j=1}^d H_{ij}(a_i - a_i^0)(a_j - a_j^0) \le T^2$$

Tolerance parameter: $T^2 = T_{1\sigma}^2 = \sqrt{2N}/(1.65)^2 \Rightarrow \mathbf{T} \simeq \mathbf{5}$

diagonalization of $H_{ij} \longrightarrow$ (rescaled) eigenvector matrix M_{ij}

"Eigenvector sets":
$$a_i^{\pm j} = a_i^0 \pm T M_{ij}$$

Calculation of a quantity $X \pm \Delta X$:

$$X = X(a^{0}), \qquad \Delta X = \frac{1}{2} \sum_{j=1}^{d} \sqrt{\left(X(a^{+j}) - X(a^{-j})\right)^{2}}$$

Estimation of uncertainties

Propagation of experimental errors (only!) into the PDFs

Hessian method: quadratic expansion around the global minimum

$$\Delta \chi^2 = \chi^2 - \chi_0^2 \simeq \frac{1}{2} \sum_{i,j=1}^d H_{ij}(a_i - a_i^0)(a_j - a_j^0) \le T^2$$

Tolerance parameter: $T^2 = T_{1\sigma}^2 = \sqrt{2N}/(1.65)^2 \Rightarrow \mathbf{T} \simeq \mathbf{5}$

diagonalization of $H_{ij} \longrightarrow$ (rescaled) eigenvector matrix M_{ij}

"Eigenvector sets":
$$a_i^{\pm j} = a_i^0 \pm TM_{ij}$$

Calculation of a quantity $X \pm \Delta X$:

$$X = X(a^{0}), \qquad \Delta X = \frac{1}{2} \sum_{j=1}^{d} \sqrt{\left(X(a^{+j}) - X(a^{-j})\right)^{2}}$$

Idea: at low-enough Q^2 only "valence" partons would be "resolved"

 \longrightarrow structure at higher Q^2 appears radiatively (i.e. due to QCD dynamics)

 $xf(x,Q_0^2) = Nx^{\mathbf{a}}(1-x)^b(1+A\sqrt{x}+Bx)$

DYNAMICAL:

 $\mathbf{a} > 0$ "valence"-like

 $Q_0^2 < 1 \,\mathrm{GeV}^2$ optimally *determined*

Positive definite input distributions QCD predictions for $x \lesssim 10^{-2}$ More restrictive, less uncertainties "STANDARD":

Unrestricted parameters

 $Q_0^2 = 2 \,\mathrm{GeV}^2$ arbitrarily *fixed*

Arbitrary fine tunning (g < 0!) Extrapolations to unmeasured region Less restrictive, marginally smaller χ^2

Idea: at low-enough Q^2 only "valence" partons would be "resolved"

 \longrightarrow structure at higher Q^2 appears radiatively (i.e. due to QCD dynamics)

$$xf(x,Q_0^2) = Nx^a(1-x)^b(1+A\sqrt{x}+Bx)$$

DYNAMICAL:

 $\mathbf{a} > 0$ "valence"-like

 \bigwedge

"STANDARD":

Unrestricted parameters

 $Q_0^2 = 2 \,\mathrm{GeV}^2$ arbitrarily *fixed*

Positive definite input distributions QCD predictions for $x \lesssim 10^{-2}$ More restrictive, less uncertainties

 $Q_0^2 < 1 \,\mathrm{GeV}^2$ optimally *determined*

Arbitrary fine tunning (g < 0!) *Extrapolations* to unmeasured region Less restrictive, *marginally smaller* χ

Idea: at low-enough Q^2 only "valence" partons would be "resolved"

 \longrightarrow structure at higher Q^2 appears radiatively (i.e. due to QCD dynamics)

$$xf(x,Q_0^2) = Nx^{\mathbf{a}}(1-x)^b(1+A\sqrt{x}+Bx)$$

DYNAMICAL:

 $\mathbf{a} > 0$ "valence"-like

 \bigwedge

"STANDARD":

Unrestricted parameters

 $Q_0^2 < 1 \,\mathrm{GeV}^2$ optimally *determined*

Positive definite input distributions

QCD *predictions* for $x \lesssim 10^{-2}$

More restrictive, less uncertainties

Arbitrary fine tunning (g < 0!)

 $Q_0^2 = 2 \,\mathrm{GeV}^2$ arbitrarily *fixed*

Extrapolations to unmeasured region

Less restrictive, marginally smaller χ^2

Idea: at low-enough Q^2 only "valence" partons would be "resolved"

 \longrightarrow structure at higher Q^2 appears radiatively (i.e. due to QCD dynamics)

$$xf(x,Q_0^2) = Nx^{\mathbf{a}}(1-x)^b(1+A\sqrt{x}+Bx)$$

DYNAMICAL:

a>0 "valence"-like

$$\bigwedge$$

"STANDARD":

Unrestricted parameters

 $Q_0^2 < 1 \,\mathrm{GeV}^2$ optimally *determined*

Positive definite input distributions QCD predictions for $x \lesssim 10^{-2}$

More restrictive, less uncertainties

 $Q_0^2 = 2 \,\mathrm{GeV}^2$ arbitrarily *fixed*

Arbitrary fine tunning (g < 0!)*Extrapolations* to unmeasured region

Less restrictive, marginally smaller χ^2

Idea: at low-enough Q^2 only "valence" partons would be "resolved"

 \longrightarrow structure at higher Q^2 appears radiatively (i.e. due to QCD dynamics)

$$xf(x,Q_0^2) = Nx^a(1-x)^b(1+A\sqrt{x}+Bx)$$

DYNAMICAL:

a>0 "valence"-like

 \bigwedge

"STANDARD":

Unrestricted parameters

 $Q_0^2 < 1 \,\mathrm{GeV}^2$ optimally *determined*

Positive definite input distributions QCD predictions for $x \leq 10^{-2}$ More restrictive, *less uncertainties* $Q_0^2 = 2 \,\mathrm{GeV}^2$ arbitrarily *fixed*

Arbitrary fine tunning (g < 0!)Extrapolations to unmeasured region Less restrictive, marginally smaller χ^2

Idea: at low-enough Q^2 only "valence" partons would be "resolved"

 \longrightarrow structure at higher Q^2 appears radiatively (i.e. due to QCD dynamics)

$$xf(x,Q_0^2) = Nx^a(1-x)^b(1+A\sqrt{x}+Bx)$$

DYNAMICAL:

a>0 "valence"-like

$$\bigwedge$$

"STANDARD":

Unrestricted parameters

 $Q_0^2 < 1 \,\mathrm{GeV}^2$ optimally *determined* Q_0^2

Positive definite input distributions QCD predictions for $x \leq 10^{-2}$ More restrictive, *less uncertainties* $Q_0^2 = 2 \,\mathrm{GeV}^2$ arbitrarily *fixed*

Arbitrary fine tunning (g < 0!)*Extrapolations* to unmeasured region Less restrictive, *marginally smaller* χ^2

Introduction: Global QCD analysis Overview of perturbative QCD Factorization and the parton picture Global QCD analysis Estimation of uncertainties The dynamical/radiative model

The dynamical distributions

History of the dynamical distributions Comparison with GRV98 Dynamical vs standard distributions: gluon Determination of $\alpha_s(M_Z^2)$ Dynamical vs standard distributions: sea Extremely small-*x*: astrophysical relevance Comparison with other groups: CTEQ

The dynamical determination of strange PDFs Dimuon production Fitting the data The strangeness asymmetry The gluon distribution and F_L DIS "reduced" cross-section The perturbative stability of F_L Confronting results with data

The treatment of heavy quarks Heavy-quark contributions: FFNS Effective heavy-quark PDFs: VFNS Examples: W and Higgs production Comments on GM-VFNS

redictions for hadron colliders Weak gauge boson production rates Higgs boson production at LHC Higgs boson production at Tevatron Higgs production via $b\bar{b}$ fusion

Lepton asymmetry and the new D0 data (preliminary)

History of the dynamical distributions

Dynamical assumption [Altarelli, Cabibbo, Maiani, Petronzio 74], [Parisi, Petronzio 76], [Novikov 76], [Glück, Reya 77] in connexion with the *constituent quark model*: only valence quarks

First dynamical determination of parton distributions [Glück, Reya 77]

Used in the 80's: e.g. for the discovery of W and Z bosons (SPS, CERN)

Extended to include *light sea* [Glück, Reya, Vogt 90] and *gluon* [Glück, Reya, Vogt 92] **valence-like input** \longrightarrow steep gluon and sea at small-*x*

Confirmed by first HERA $F_2(x, Q^2)$ data [H1, ZEUS 93]

GRV95 and GRV98 contributed greatly in the 90's and beginning of the 00's

New improved generation (GJR08, JR09): $\int_{0^{-4}}^{y_{0^{-4}}} \int_{0^{-3}}^{y_{0^{-4}}} \int_{0^{-2}}^{y_{0^{-4}}} \int_{0^{-2}}^{y$

Comparison with GRV98

Very similar to the previous dynamical (input) distributios GRV98 [up to NLO]

All quark distributions within error estimates [note the flat sea (for later)]

Similar gluon as well: peaks at slightly different x but within 2σ

Stable after evolution, less than 10-20% of "acceptable" (1 σ) difference

Dynamical vs standard distributions: gluon

Uncertainties decrease as Q^2 increase: pQCD evolution

Valence-like input, i.e., *larger evolution* distance \Rightarrow **less uncertainties**

Determination of $\alpha_s(M_Z^2)$

Only free parameter (besides masses) in QCD: acceptable agreement

However "dispersion" > uncertainties: global fits (DIS) yield smaller values

technische universit dortmund

Dynamical vs standard distributions: sea

equally increasing down to $x \simeq 10^{-2} \Rightarrow$ marginally smaller errors

technische universität dortmund

Extremely small-*x***: astrophysical relevance**

More sensible for astrophysics: ultrahigh energy $(E_v \simeq 10^{12} \text{GeV})$ v-N scattering \longrightarrow sea dominated as F_2^p for small x

For $x \leq 10^{-2}$ parameter free dynamical predictions $\Rightarrow 10\%$ accuracy Uncertainties on the "standard" extrapolations are twice as large

to technische universität dortmund

Comparison with other groups: CTEQ

CTEQ6 has a valence-like gluon at $Q_0^2 = m_c^2 \simeq 1.7 \,\text{GeV}^2!!$

 Q_0^2 also play another role \Rightarrow standard gluons fall below dynamical Non-valencelike sea \Rightarrow larger uncertainties

technische universität dortmund

Introduction: Global QCD analysis Overview of perturbative QCD Factorization and the parton picture Global QCD analysis Estimation of uncertainties The dynamical/radiative model

The dynamical distributions History of the dynamical distributions Comparison with GRV98 Dynamical vs standard distributions: gluon Determination of $\alpha_s(M_Z^2)$ Dynamical vs standard distributions: sea Extremely small-*x*: astrophysical relevance Comparison with other groups: CTEQ

The dynamical determination of strange PDFs Dimuon production Fitting the data The strangeness asymmetry The gluon distribution and F_L DIS "reduced" cross-section The perturbative stability of F_L Confronting results with data

The treatment of heavy quarks Heavy-quark contributions: FFNS Effective heavy-quark PDFs: VFNS Examples: W and Higgs production Comments on GM-VFNS

redictions for hadron colliders Weak gauge boson production rates Higgs boson production at LHC Higgs boson production at Tevatron Higgs production via $b\bar{b}$ fusion

Lepton asymmetry and the new D0 data (preliminary)

Dimuon production

$$\frac{d\sigma^{+}}{dxdy}(x,y,E_{\nu(\bar{\nu})}) = \frac{G_{F}^{2}ME_{\nu(\bar{\nu})}}{\pi} B_{c} \mathscr{A}(x,y,E_{\nu(\bar{\nu})}) \frac{d\sigma^{\nu(\bar{\nu})}}{dxdy}(x,y,E_{\nu(\bar{\nu})})$$

[NuTeV Coll. PRD64 (2001) 112006]

Signature: Two muons of different sign

Directly related to charged current charm production $\propto s(x, Q^2)$

Sensitive to differences between s and \bar{s}

Fitting the data

Already well described by GJR08: $\chi^2 = 65$ for 90 data points (1 σ)

 \Rightarrow radiatively generated strangeness plausible: $s^+(x, Q_0^2) = 0$

Introducing an asymmetry $(s^{-}(x, Q_0^2) \neq 0) \chi^2$ goes down to 60

Neutrino increases, antineutrino decreases \Rightarrow "positive" asymmetry

technische universität dortmund

The strangeness asymmetry

Compatible with previous determinations but smaller uncertainties

Very small effect, irrelevant for most applications

Important for dedicated experiments (e.g. NuTeV anomaly)

technische universität dortmund

Introduction: Global QCD analysis Overview of perturbative QCD Factorization and the parton picture Global QCD analysis Estimation of uncertainties The dynamical/radiative model

The dynamical distributions History of the dynamical distributions Comparison with GRV98 Dynamical vs standard distributions: glue Determination of $\alpha_s(M_Z^2)$ Dynamical vs standard distributions: sea Extremely small-*x*: astrophysical relevance Comparison with other groups: CTEO

The dynamical determination of strange PDFs Dimuon production Fitting the data The strangeness asymmetry The gluon distribution and F_L DIS "reduced" cross-section The perturbative stability of F_L Confronting results with data

The treatment of heavy quarks Heavy-quark contributions: FFNS Effective heavy-quark PDFs: VFNS Examples: W and Higgs production Comments on GM-VFNS

redictions for hadron colliders Weak gauge boson production rates Higgs boson production at LHC Higgs boson production at Tevatron Higgs production via $b\bar{b}$ fusion

Lepton asymmetry and the new D0 data (preliminary)

DIS "reduced" cross-section

$$\sigma_r^{\rm NC} \equiv \left(\frac{2\pi\alpha^2}{xyQ^2}Y_+\right)^{-1} \frac{d^2\sigma^{\rm NC}}{dxdy} = F_2^{\rm NC} - \frac{y^2}{Y_+}F_L^{\rm NC} \mp \frac{Y_-}{Y_+}xF_3^{\rm NC}$$

gluon dominated in the small-x region \Rightarrow positive gluon (also beyond LO!)

DIS "reduced" cross-section

$$\sigma_r^{\rm NC} \equiv \left(\frac{2\pi\alpha^2}{xyQ^2}Y_+\right)^{-1} \frac{d^2\sigma^{\rm NC}}{dxdy} = F_2^{\rm NC} - \frac{y^2}{Y_+}F_L^{\rm NC} \mp \frac{Y_-}{Y_+}xF_3^{\rm NC}$$

gluon dominated in the small-x region \Rightarrow **positive gluon** (also beyond LO!)

The perturbative stability of F_L

Both dynamical and standard results manifestly positive at all orders

Dynamical predictions **stable** already at $Q^2 \gtrsim 2$ GeV²

Standard differ more but less distinguishable due to the **larger error bands**

The perturbative stability of F_L

Both dynamical *and* standard results manifestly **positive** at all orders **Dynamical** predictions **stable** already at $Q^2 \gtrsim 2 \text{ GeV}^2$

Standard differ more but less distinguishable due to the larger error bands

Observed [M(R)ST(W)] instabilities unphysical: artefact of negative gluons

The perturbative stability of F_L

Both dynamical *and* standard results manifestly **positive** at all orders **Dynamical** predictions **stable** already at $Q^2 \gtrsim 2 \text{ GeV}^2$

Standard differ more but less distinguishable due to the **larger error bands** Observed [M(R)ST(W)] instabilities *unphysical*: **artefact** of negative gluons

Confronting results with data

Positive and in complete agreement with measurements

Dynamical predictions more tightly constrained

Higher-twist effects may contribute for $Q^2 \leq 2 \text{ GeV}^2$

technische universität dortmund

Introduction: Global QCD analysis Overview of perturbative QCD Factorization and the parton picture Global QCD analysis Estimation of uncertainties The dynamical/radiative model

The dynamical distributions History of the dynamical distribution Comparison with GRV98 Dynamical vs standard distributions Determination of $\alpha_s(M_Z^2)$

Extremely small-*x*: astrophysical relevance Comparison with other groups: CTEQ

The dynamical determination of strange PDFs Dimuon production Fitting the data The strangeness asymmetry The gluon distribution and F_L DIS "reduced" cross-section The perturbative stability of F_L Confronting results with data

The treatment of heavy quarks Heavy-quark contributions: FFNS Effective heavy-quark PDFs: VFNS Examples: *W* and Higgs production Comments on GM-VFNS

redictions for hadron colliders Weak gauge boson production rates Higgs boson production at LHC Higgs boson production at Tevatron Higgs production via $b\bar{b}$ fusion

Lepton asymmetry and the new D0 data (preliminary)

Heavy-quark contributions: FFNS

Experiment: No intrinsic heavy-quark (c, b, t) content in the nucleon

HQ generated in hard collisions, not collinearly, short "lifetime" (\neq parton)

FFNS \equiv **FOPT** initiated by gluons and light (*u*,*d*,*s*) quarks

 \longrightarrow final state \equiv extrinsic heavy-quark content

 $\ln \frac{\mu^2}{m^2}$ are **not** (mass) divergences: FFNS gets trough *all* "stability tests"!! Only *drawback*: calculational difficulty

technische universität dortmund

Heavy-quark contributions: FFNS

Experiment: No intrinsic heavy-quark (c,b,t) content in the nucleon

HQ generated in hard collisions, not collinearly, short "lifetime" (\neq parton)

FFNS \equiv **FOPT** initiated by gluons and light (*u*,*d*,*s*) quarks

 \longrightarrow final state \equiv extrinsic heavy-quark content

 $\ln \frac{\mu^2}{m^2}$ are **not** (mass) divergences: FFNS gets trough *all* "stability tests"!! Only *drawback*: calculational difficulty

U technische universität

Effective heavy-quark PDFs: VFNS

Idea: Resum (RGE) the $\ln \frac{\mu^2}{m^2}$ *to gain stability and calculational power*

Asymptotically:

$$H^{Q^2 \gg m^2}(\frac{Q^2}{\mu^2}, \frac{\mu^2}{m^2}) = A(\frac{\mu^2}{m^2}) \otimes C(\frac{Q^2}{\mu^2})$$

A's=massive OME's \rightarrow process independent!! C's=light-parton coefficient functions

Light-parton PDFs $\xrightarrow{A^{*}s}$ effective HQ-PDFs assumed to be correct asymptotically

Ressumation of final-state contributions \neq intrinsic quark content

In practice: **massless evolution** with increasing n_f at unphysical "thresholds" $\mu^2 \simeq m^2$ (not $\hat{s} \ge 4m^2$)

VFNS HQ-PDFs generated from FFNS preserving universality

Effective heavy-quark PDFs: VFNS

Idea: Resum (RGE) the $\ln \frac{\mu^2}{m^2}$ *to gain stability and calculational power*

Asymptotically:

technische universität

$$H^{Q^2 \gg m^2}(\frac{Q^2}{\mu^2}, \frac{\mu^2}{m^2}) = A(\frac{\mu^2}{m^2}) \otimes C(\frac{Q^2}{\mu^2})$$

A's=massive OME's \rightarrow process independent!! C's=light-parton coefficient functions

Light-parton PDFs $\xrightarrow{A^{*}s}$ effective HQ-PDFs assumed to be correct asymptotically

Ressumation of final-state contributions \neq intrinsic quark content

In practice: **massless evolution** with increasing n_f at unphysical "thresholds" $\mu^2 \simeq m^2$ (not $\hat{s} \ge 4m^2$)

Examples: *W* and **Higgs production**

VFNS reliable for large invariant mass of the produced system: $W^2 \gg m^2$ \longrightarrow non-relativistic ($\beta_h \lesssim 0.9$) threshold effects supressed

Input determined always in the FFNS!! (most data in threshold region) Example, *W* production at *LHC*:

$$\sigma^{\text{NLO}}(pp \to W^+ + W^- + X) = \begin{cases} 186.5 \pm 4.9_{\text{pdf}} + \frac{4.8}{-5.5} |_{\text{scale nb}} & (\text{VFNS}) \\ 192.7 \pm 4.7_{\text{pdf}} + \frac{4.8}{-4.8} |_{\text{scale nb}} & (\text{FFNS}) \end{cases}$$

VFNS sufficiently accurate (pprox 10%) for LHC and Tevatron energies.

Examples: *W* and **Higgs production**

VFNS reliable for large invariant mass of the produced system: $W^2 \gg m^2$ \longrightarrow non-relativistic ($\beta_h \lesssim 0.9$) threshold effects supressed

Input determined always in the FFNS!! (most data in threshold region)

Example, *W* production at *LHC*:

$$\sigma^{\rm NLO}(pp \to W^+ + W^- + X) = \begin{cases} 186.5 \pm 4.9_{\rm pdf} \, ^{+4.8}_{-5.5} \mid_{\rm scale} \rm nb \quad (VFNS) \\ 192.7 \pm 4.7_{\rm pdf} \, ^{+3.8}_{-4.8} \mid_{\rm scale} \rm nb \quad (FFNS) \end{cases}$$

VFNS sufficiently accurate ($\approx 10\%$) for LHC and Tevatron energies.

technische universität dortmund

Idea: Interpolation between FFNS and VFNS: reshuffle of mass-dependent terms \rightarrow models [Aivazis, Collins, Olness, Tung], [Buza, Matiounine, Smith, van Neerven], [Roberts, Thorne] + variations

Constructed [as the VFNS] over the FFNS: no new information + new model uncertainties

DIS mass deppendences absorved in PDFs: **process-dependent distributions!** (plausible only for DIS)

What happened with Universality?

Unnecesary for HERA (fits, FFNS) and for Tevatron or LHC (VFNS)

Idea: Interpolation between FFNS and VFNS: reshuffle of mass-dependent terms → models [Aivazis, Collins, Olness, Tung], [Buza, Matiounine, Smith, van Neerven], [Roberts, Thorne] + Variations

Constructed [as the VFNS] over the FFNS: no new information + new model uncertainties

DIS mass deppendences absorved in PDFs: **process-dependent distributions!** (plausible only for DIS)

What happened with Universality?

Unnecesary for HERA (fits, FFNS) and for Tevatron or LHC (VFNS)

Idea: Interpolation between FFNS and VFNS: reshuffle of mass-dependent terms → models [Aivazis, Collins, Olness, Tung], [Buza, Matiounine, Smith, van Neerven], [Roberts, Thorne] + Variations

Constructed [as the VFNS] over the FFNS: no new information + new model uncertainties

DIS mass deppendences absorved in PDFs: **process-dependent distributions!** (plausible only for DIS)

What happened with **Universality**?

Unnecesary for HERA (fits, FFNS) and for Tevatron or LHC (VFNS)

Idea: Interpolation between FFNS and VFNS: reshuffle of mass-dependent terms \rightarrow models [Aivazis, Collins, Olness, Tung], [Buza, Matiounine, Smith, van Neerven], [Roberts, Thorne] + variations

Constructed [as the VFNS] over the FFNS: no new information + new model uncertainties

DIS mass deppendences absorved in PDFs: **process-dependent distributions!** (plausible only for DIS)

What happened with **Universality**?

Unnecesary for HERA (fits, FFNS) and for Tevatron or LHC (VFNS)

Idea: Interpolation between FFNS and VFNS: reshuffle of mass-dependent terms \rightarrow models [Aivazis, Collins, Olness, Tung], [Buza, Matiounine, Smith, van Neerven], [Roberts, Thorne] + variations

Constructed [as the VFNS] over the FFNS: no new information + new model uncertainties

DIS mass deppendences absorved in PDFs: process-dependent distributions! (plausible only for DIS)

What happened with Universality?

Unnecesary for HERA (fits, FFNS) and for Tevatron or LHC (VFNS)

Introduction: Global QCD analysis Overview of perturbative QCD Factorization and the parton picture Global QCD analysis Estimation of uncertainties The dynamical/radiative model

The dynamical distributions History of the dynamical distributions Comparison with GRV98 Dynamical vs standard distributions: gluon Determination of $\alpha_s(M_Z^2)$ Dynamical vs standard distributions: sea Extremely small-*x*: astrophysical relevance Comparison with other groups: CTEQ

The dynamical determination of strange PDFs Dimuon production Fitting the data The strangeness asymmetry The gluon distribution and F_L DIS "reduced" cross-section The perturbative stability of F_L Confronting results with data

The treatment of heavy quarks Heavy-quark contributions: FFNS Effective heavy-quark PDFs: VFNS Examples: W and Higgs production Comments on GM-VFNS

Predictions for hadron colliders

Weak gauge boson production rates Higgs boson production at LHC Higgs boson production at Tevatron Higgs production via $b\bar{b}$ fusion

Lepton asymmetry and the new D0 data (preliminary)

Weak gauge boson production rates

NNLO typically larger but stable; scale uncertainty greatly (%4) reduced Results from different groups within experimental uncertainty NNLO expectations for LHC ($\approx 5\%$ accuracy):

$$\begin{aligned} \sigma(pp \to W^+ + W^- + X) &= 190.2 \pm 5.6_{\text{pdf}} \begin{array}{c} +1.6 \\ -1.2 \\ \text{|scale } nb \\ \sigma(pp \to Z^0 + X) &= 55.7 \pm 1.5_{\text{pdf}} \begin{array}{c} +0.6 \\ -0.3 \\ \text{|scale } nb \\ \end{aligned}$$

Higgs boson production at LHC

NNLO rather (20%) larger than NLO but *total* uncertainty bands overlap Similar (within 10%) to other groups, not *very* dependent on PDFs Total **accuracy at NNLO of about 10%**

technische universität dortmund

Higgs boson production at Tevatron

Similar features

Larger (factor of 2) uncertainty bands

technische universität dortmund

Higgs production via $b\bar{b}$ fusion

Subdominant contribution with rather *different* features:

marginal scale dependence (here the appropriate scale is $\frac{M_H}{4}$) small K-factor: NLO/NNLO almost coincide Correct choice of NNLO PDFs important

technische universität dortmund

Introduction: Global QCD analysis Overview of perturbative QCD Factorization and the parton picture Global QCD analysis Estimation of uncertainties The dynamical/radiative model

The dynamical distributions History of the dynamical distributions Comparison with GRV98 Dynamical vs standard distributions: gluon Determination of $\alpha_s(M_Z^2)$ Dynamical vs standard distributions: sea Extremely small-*x*: astrophysical relevance Comparison with other groups: CTEO

The dynamical determination of strange PDFs Dimuon production Fitting the data The strangeness asymmetry The gluon distribution and F_L DIS "reduced" cross-section The perturbative stability of F_L Confronting results with data

The treatment of heavy quarks Heavy-quark contributions: FFNS Effective heavy-quark PDFs: VFNS Examples: W and Higgs production Comments on GM-VFNS

redictions for hadron colliders Weak gauge boson production rates Higgs boson production at LHC Higgs boson production at Tevatron Higgs production via $b\bar{b}$ fusion

Lepton asymmetry and the new D0 data (preliminary)

D0 lepton asymmetry with MSTW2008

Preliminary

[M. Grazzini et al., arXiv:1002.3115]

PSI Particle Theory Seminar

36/39

D0 lepton asymmetry with ABKM09

Preliminary

[M. Grazzini et al., arXiv:1002.3115]

PSI Particle Theory Seminar

37/39

D0 lepton asymmetry with JR09VFNS

Preliminary

[M. Grazzini et al., arXiv:1002.3115]

PSI Particle Theory Seminar

38/39

The End

Dynamical LO and NLO PDFs **updated**: Compatible with **GRV98** Analyses extended: new data, NNLO, errors ... Dynamical approach: more predictive and smaller uncertainties Strangeness asymmetry **precisely** determined: small and positive **Positive** distributions and cross-sections (F_L) in agreement with all data **FFNS reliable**: no need for resummation (heavy-quark distributions) Effective (VFNS) "heavy" quark distributions reliable for Tevatron and LHC Total accuracy at LHC: $\approx 5\%$ for gauge-boson production rates $\approx 10\%$ for Higgs production.