AUTOMATION OF NLO

COMPUTATIONS USING THE FKS SUBTRACTION METHOD

Rikkert Frederix

University of Zurich
in collaboration with
Stefano Frixione, Fabio Maltoni es Tim Stelzer JHEP 0910 (2009) 003 [arXiv:0908.4272 [hep-ph]]

PSI, Villigen, April 15, 2010

CONTENTS

龇 Motivation
业 Example in single top production
蝶 The FKS subtraction
蛙Automated in MadFKS
教 Some results for MadFKS standalone （i．e．without virtual corrections）

龂 Results in collaboration with BlackHat and Rocket： $\mathrm{e}^{+} \mathrm{e}^{-}->2$ 2， 3 ， 4 and 5 jets at NLO

WHY NLO?

㭗 Theoretical predictions are crucial in the search for signals events in large backgrounds samples

OBSERVATION AT THE TEVATRON!

糍 CDF $\mathrm{m}_{\mathrm{t}}=175 \mathrm{GeV}$

DØ

$$
\mathrm{m}_{\mathrm{t}}=170 \mathrm{GeV}
$$

CDF Run II Preliminary, $L=3.2 \mathrm{fb}^{-1}$

arXiv: 0903.0885

arXiv: 0903.0850

Reliable predictions are crucial!

DISCREPANCY?

CDF note 9716

s-channel

靿Statistical fluctuation?
数 Mistake in the (theoretical) predictions?

NLO CORRECTIONS

絜 NLO （in QCD）corrections are needed for a good theoretical understanding of processes at（hadron） colliders

They improve the theory predictions for
蝶 Absolute normalization；corrections can be very large
数 Reduce the renormalization scale dependence

数Shapes of distributions

$W+n$ jets	LO	NLO
$n=1$	16%	7%
$n=2$	30%	10%
$n=3$	42%	12%

T-CHANNEL SINGLE TOP

粼 t -channel single top production has a (heavy) bottom quark in the initial state

㩧 There is an equivalent description with a gluon splitting to a bottom quark pair

T-CHANNEL SINGLE TOP

蝶 t-channel single top production has a (heavy) bottom quark in the initial state

粼 There is an equivalent description with a gluon splitting to a bottom quark pair

WHICH IS＇BETTER＇？

缐 Equivalent at all orders，but differences arise when perturbative series is truncated

橴 Differences at fixed order are due to large logarithms associated to spectator b quark：resummed in PDF for $2 \rightarrow 2$ ， but explicit（including other non－log contributions）in $2 \rightarrow 3$

兟 Uses $2 \rightarrow 2$ when interested in total rate，use $2 \rightarrow 3$ when spectator b quark is important． 5F（2 $\rightarrow 2$ ）APPROACH

䗱 At LO，no final state b quark

榡 At NLO，effects related to the spectator b only enter at this order and not well described by corresponding MC implementations

㪸＂Effective NLO approximation＂：separate regions according to $\mathrm{p}_{\mathrm{T}}(\mathrm{b})$ and use (N) LO $5 \mathrm{~F}(2 \rightarrow 2)+$ shower below and LO 4F $(2 \rightarrow 3)$ above

桠 Ad hoc matching well motivated，but theoretically unappealing

FOUR－FLAVOR SCHEME

糕 Use the 4－flavor $(2 \rightarrow 3)$ process as the Born and calculate NLO

彞 Much harder calculation due to extra mass and extra parton

綦 Spectator b for the first time at NLO
褝 Compare to $5 \mathrm{~F}(2 \rightarrow 2)$ to asses logarithms and applicability

Campbell，RF，Maltoni ©3 Tramontano
PRL 102 （2009） 182003 ［arXiv：0903．0005［hep－ph］］；
JHEP 0910 （2009） 042 ［arXiv：0907．3933［hep－ph］］

The NLO calculations are in agreement for the total rate:

$\sigma_{\mathrm{t}-\mathrm{ch}}^{\mathrm{NLO}}(t+\bar{t})$	$2 \rightarrow 2(\mathrm{pb})$				$2 \rightarrow 3(\mathrm{pb})$			
Tevatron Run II	$1.96{ }_{-0.01}^{+0.05}$		${ }_{-0.06}^{+0.06}$	${ }_{-0.05}^{+0.05}$	$1.87{ }_{-0.21}^{+0.16}$		${ }_{-0.06}^{+0.06}$	${ }_{-0.04}^{+0.04}$
LHC (10 TeV)	$130{ }_{-2}^{+2}$			+2	$124{ }_{-5}^{+4}$			
LHC (14 TeV)	$244{ }_{-4}^{+5}$			${ }_{-4}^{+4}$	$234{ }_{-9}^{+7}$			

The NLO calculations are in agreement for the total rate：

$\sigma_{\mathrm{t}-\mathrm{ch}}^{\mathrm{NLO}}(t+\bar{t})$	$2 \rightarrow 2(\mathrm{pb})$			$2 \rightarrow 3(\mathrm{pb})$		
Tevatron Run II	$1.96_{-0.0}^{+0.05}$	${ }_{-0.16}^{+0.20}$	${ }_{-0.06}^{+0.06}$	${ }_{-0.05}^{+0.05}$	$1.87_{-0.21}^{+0.16}$	${ }_{-0.15}^{+0.18}$
LHC $(10 \mathrm{TeV})$	$130{ }_{-2}^{+2}$	${ }_{-3}^{+3}$	${ }_{-2}^{+2}$	${ }_{-2}^{+2}$	124_{-5}^{+4}	${ }_{-3}^{+2}$
${ }_{-0.04}^{+0.04}$	${ }_{-2}^{+2}$	${ }_{-2}^{+2}$				
LHC $(14 \mathrm{TeV})$	244_{-4}^{+5}	${ }_{-6}^{+5}$	${ }_{-3}^{+3}$	${ }_{-4}^{+4}$	234_{-9}^{+7}	${ }_{-5}^{+5}$
${ }_{-2}^{+3}$	${ }_{-3}^{+3}$	${ }_{-4}^{+4}$				

眾 Already at NLO the two schemes are in agreement龉 Also distributions for top and light jet are very similar

镙 $2 \rightarrow 3$ contains much more＇information’．．．

敖... however the acceptance of the spectator bottom quark changes significantly:

Effectively LO	Calculation	Acceptance
	$2 \rightarrow 2$ "@ NLO"	$19.7+7.1-4.5 \%$
	$2 \rightarrow 3$ @ NLO	$29.9+1.0-2.0 \%$
	CDF (as input)	17.6%
	DØ (as input)	31.6%

"Acceptance" is defined as the ratio of events with a hard central spectator b quark over the inclusive cross section:

$$
\frac{\sigma\left(|\eta(b)|<2.5, p_{T}(b)>20 \mathrm{GeV}\right)}{\sigma_{\text {inclusive }}}
$$

CONSEQUENCES FOR SINGLE TOP OBSERVATION？

数 Difficult to say a priori．．．
䗱 Naively：
䌊 No change in total cross section（ $\mathrm{s}+\mathrm{t}$ channel）
㖤 Measured t channel goes up，s channel goes down
龉 More events that were considered s channel before are in fact t channel，because more t channel events have also a spectator b quark

S AND T CHANNEL SEPARATION AT CDF

数This explains (part of) this 2 sigma deviation

漛 We are in contact with CDF single top group to address this issue

CDF note 9716

WHY AUTOMATE？

綦 To save time
NLO calculations can take a long time．It would be nice to spend this time doing phenomenology instead．

綦 To reduce the number of bugs in the calculation Having a code that does everything automatically will be without bugs once the internal algorithms have been checked properly．

傫 To have all processes within one framework
To learn how to use a new code for each process is not something all our（experimental）colleagues are willing to do．

THE NLO
 CONTRIBUTIONS

$$
\begin{gathered}
\sigma^{\mathrm{NLO}}=\int_{m+1} \mathrm{~d}^{(d)} \sigma^{R}+\int_{m} \mathbf{d}^{(d)} \sigma^{V}+\int_{m} \mathbf{d}^{(4)} \sigma^{B} \\
\text { 'Real emission' } \\
\text { NLO corrections } \\
\text { 'Virtual' or 'one-loop' } \\
\text { NLO corrections }
\end{gathered}
$$

AUTOMATION OF VIRTUAL CORRECTIONS

酳 BlackHat
Berger，Bern，Dixon，Febres Cordero，Forde，Ita，Kosower ẻ Maitre
䇣 Rocket
Ellis，Melnikor，Schulze e3 Zanderighi
㯦 Cuttools（in Helac－1Loop）
Ossola，Papadopoulos e’ Pittau（e）Van Hameren）
政 Golem
Binoth，Guffanti，Guillet，Heinrich，Karg，Kauer，Pilon，Reiter ẻ Sanguinetti綦 and many others．．．

Lazopoulous，Kilian，Kleinschmidt，Winter，Kunszt，Giele，Denner，Dittmaier．．．

IR DIVERGENCE
 （OF THE REAL EMISSION）

$\sigma^{\mathrm{NLO}}=\int_{m+1} \mathrm{~d}^{(d)} \sigma^{R}+\int_{m} \mathrm{~d}^{(d)} \sigma^{V}+\int_{m} \mathrm{~d}^{(4)} \sigma^{B}$
彞 Real emission－＞IR divergent
暽（UV－renormalized）virtual corrections
－＞IR divergent
瞨 After integration，the sum of all contributions is finite（for infrared－safe observables）

期 To see this cancellation the integration is done in a non－integer number of dimensions：
Not possible with a Monte－Carlo integration

SUBTRACTION TERMS $\sigma^{\mathrm{NLO}}=\int_{m+1} \mathrm{~d}^{(d)} \sigma^{R}+\int_{m} \mathrm{~d}^{(d)} \sigma^{V}+\int_{m} \mathrm{~d}^{(4)} \sigma^{B}$

SUBTRACTION TERMS

$$
\sigma^{\mathrm{NLO}}=\int_{m+1} \mathrm{~d}^{(d)} \sigma^{R}+\int_{m} \mathrm{~d}^{(d)} \sigma^{V}+\int_{m} \mathrm{~d}^{(4)} \sigma^{B}
$$

$$
\sigma^{\mathrm{NLO}}=\int_{m+1}\left[d^{(4)} \sigma^{R}-d^{(4)} \sigma^{A}\right]+\int_{m}\left[d^{(4)} \sigma^{B}+\int_{\mathrm{loop}} d^{(d)} \sigma^{V}+\int_{1} d^{(d)} \sigma^{A}\right]_{\epsilon=0}
$$

数 Include subtraction terms to make real emission and virtual contributions separately finite

䁖 All can be integrated numerically

SUBTRACTION SCHEMES

塐 Catani－Seymour dipole subtraction Catani ỏ Seymour 1997；Catani， Dittmaier，Seymour © P Trocsanyi 2002.

糕 implemented by various groups Seymour ẻ Tevlin；RF，Gehrmann e ${ }^{3}$ Greiner；Hasegawa，Moch ẻ Uwer；Gleisberg ẻ Krauds；Czakon，Papadopoulos ẻ Worek

歯 Nagy－Soper dipoles Nagy ${ }^{3}$ B Soper 2007；
糍 implementation in progress Robens 3^{3} Chung．
䗉 FKS subtraction Frixione，Kunzt ẻ3 Signer 1996.
粈 implemented in MadFKS RF，Frixione，Maltoni e；Stelzer and the POWHEG BOX Alioli，Nason，Oleari ${ }^{\text {e }}$ Re．

缐 No automation available for other methods（such as Antenna subtraction）

FKS SUBTRACTION

楽 FKS subtraction：Frixione，Kunszt \＆Signer 1996. Standard subtraction method in MC＠NLO and POWHEG，but can also be used for＇normal＇ NLO computations

蝶 Also known as＂residue subtraction＂
粈 Based on using plus－distributions to regulate the infrared divergences of the real emission matrix elements

FKS FOR BEGINNERS

桠 Easiest to understand by starting from real emission：
$d \sigma^{R}=\left|M^{n+1}\right|^{2} d \phi_{n+1}$
傫 $\left|M^{n+1}\right|^{2}$ blows up like $\frac{1}{\xi_{i}^{2}} \frac{1}{1-y_{i j}}$ with $\begin{aligned} & \xi_{i}=E_{i} / \sqrt{\hat{s}} \\ & y_{i j}=\cos \theta_{i j}\end{aligned}$
蜘P Partition the phase space in such a way that each partition has at most one soft and one collinear singularity

$$
d \sigma^{R}=\sum_{i j} S_{i j}\left|M^{n+1}\right|^{2} d \phi_{n+1} \quad \sum_{i j} S_{i j}=1
$$

粈Use plus distributions to regulate the singularities

$$
d \tilde{\sigma}^{R}=\sum_{i j}\left(\frac{1}{\xi_{i}}\right)_{+}\left(\frac{1}{1-y_{i j}}\right)_{+} \xi_{i}\left(1-y_{i j}\right) S_{i j}\left|M^{n+1}\right|^{2} d \phi_{n+1}
$$

FKS FOR BEGINNERS

$$
d \tilde{\sigma}^{R}=\sum_{i j}\left(\frac{1}{\xi_{i}}\right)_{+}\left(\frac{1}{1-y_{i j}}\right)_{+} \xi_{i}\left(1-y_{i j}\right) S_{i j}\left|M^{n+1}\right|^{2} d \phi_{n+1}
$$

数Definition plus distribution

$$
\int d \xi\left(\frac{1}{\xi}\right)_{+} f(\xi)=\int d \xi \frac{f(\xi)-f(0)}{\xi}
$$

One event has maximally three counter events：
歯Soft：$\quad \xi_{i} \rightarrow 0$
兟Collinear：$\quad y_{i j} \rightarrow 1$
靿Soft－collinear：$\quad \xi_{i} \rightarrow 0 \quad y_{i j} \rightarrow 1$

FKS FOR BEGINNERS

$$
d \tilde{\sigma}^{R}=\sum_{i j}\left(\frac{1}{\xi_{i}}\right)_{\xi_{c u t}}\left(\frac{1}{1-y_{i j}}\right)_{\delta_{O}} \xi_{i}\left(1-y_{i j}\right) S_{i j}\left|M^{n+1}\right|^{2} d \phi_{n+1}
$$

龉Definition plus distribution

$$
\int d \xi\left(\frac{1}{\xi}\right)_{\xi_{c u t}} f(\xi)=\int d \xi \frac{f(\xi)-f(0) \Theta\left(\xi_{c u t}-\xi\right)}{\xi}
$$

One event has maximally three counter events：
粼Soft：$\quad \xi_{i} \rightarrow 0$
兟 Collinear：$\quad y_{i j} \rightarrow 1$
龂Soft－collinear：$\quad \xi_{i} \rightarrow 0 \quad y_{i j} \rightarrow 1$

SUBTRACTION TERMS

$$
\sigma^{\mathrm{NLO}}=\int_{m+1}\left[d^{(4)} \sigma^{R}-d^{(4)} \sigma^{A}\right]+\int_{m}\left[d^{(4)} \sigma^{B}+\int_{\text {loop }} d^{(d)} \sigma^{V}+\int_{1} d^{(d)} \sigma^{A}\right]_{\epsilon=0}
$$

龂This defines the subtraction terms for the reals
絜 They need to be integrated over the one－parton phase space（analytically）and added to the virtual corrections

数 these are process－independent terms proportional to the（color－linked）Borns

諩 All formulae can be found in the MadFKS paper，arXiv：0908．4247

MADFKS

蝶 Automatic FKS subtraction within the MadGraph／ MadEvent framework

龂 Given the $(\mathrm{n}+1)$ process，it generates the real，all the subtraction terms and the Born processes

彞 For a NLO computation，only the finite parts of the virtual corrections are needed from the user

龂 Phase－space integration deals with the（ n ）and（ $\mathrm{n}+1$ ） body processes at the same time，or separately

絭 Phase－space generation for the（n）－body is the same as in standard MG．It has been heavily adapted to generate $(\mathrm{n}+1)$－body emission events at the same time

MADFKS

数 Color－linked Borns generated by MadDipole RF，Gehrmann ©̉ Greiner

㽪 Any physics model：massive particles have only soft singularities，which are spin independent：MadFKS works also for BSM physics，e．g．squarks，gluinos

酸 Interface to link with the virtual corrections following the proposal for the Binoth－Les Houches Accord

傫 Standardized way to link to other virtual corrections

OPTIMIZATION

䗰 Each phase space partition can be run completely independently of all the others $->$ genuine parallelization

业 MadFKS uses the symmetry of the matrix elements to reduce the number of phase space partitions：

龂 adding multiple gluons does not increase the complexity of the subtraction structure

綦 Within each phase space partition：usual MadGraph＇Single diagram enhanced multi－channel＇phase space integration，using the Born diagrams

缐 Born amplitudes are computed only once for each event，and used for the Born and collinear，soft and soft－collinear （integrated）counter events and for the multi－channel enhancement

Table 1: Cross section (in pb) and Monte Carlo integration errors for the ($n+1$)-body process $e^{+} e^{-} \rightarrow Z \rightarrow u \bar{u} g g g$. See the text for details.
Rikkert Frederix, April 15, 2010

Six-fold increase of the statistics:

	1.0	3.6196 ± 0.0142	3.6012 ± 0.0139	3.5888 ± 0.0142	3.5833 ± 0.0130	
0.6	1.5	3.5941 ± 0.0123	3.6012 ± 0.0139	3.6009 ± 0.0138	3.6047 ± 0.0114	
	2.0	200 ± 0.01	3.6111 ± 0.0117	3.6053 ± 0.0110	3.5950 ± 0.0150	
	1.0	3.6350 ± 0.0151	$.5927 \pm 0.0145$	3.5813 ± 0.0128	3.5811 ± 0.0146	
0.2	1.5	6.500 ± 0011	6086 ± 0		3.5993 ± 0.0119	
	2.0	3.5815 ± 0.0140	3.59	3.6007 ± 0.0053	3.6079 ± 0.0125	
	1.0	3.6053 ± 0.0202	3.5998			3.6088 ± 0.0165
0.06	1.5	3.6144 ± 0.0161	3.5986 ± 0.0		3.5884 ± 0.0126	
	2.0	3.5990 ± 0.0166	3.6016 ± 0.0158	3.6014 ± 0.0147	3.6191 ± 0.0133	

	useenergy=.false.				
	1.0	3.6078 ± 0.0164	3.6149 ± 0.0162	3.6145 ± 0.0158	3.6085 ± 0.0140
2	1.5	3.5695 ± 0.0156	3.5841 ± 0.0180	3.5975 ± 0.0165	3.5986 ± 0.0142
	2.0	3.5921 ± 0.0125	3.6260 ± 0.0211	3.6034 ± 0.0134	3.6007 ± 0.0149
	1.0	3.5891 ± 0.0199	3.5786 ± 0.0164	3.6084 ± 0.0232	3.5956 ± 0.0151
0.6	1.5	$3.6083 \pm 0.0152 \sim 3.0944 \pm$ O.O10 $\quad 3.6040 \pm 0.0123$			3.6018 ± 0.0147
	2.0	$3.5838 \pm 0.014 \quad 3.5633 \pm 0.015$			3.5920 ± 0.0158
	1.0	3.5976 ± 0.0171	-0	$702 \pm$	
0.2	1.5	3.5804 ± 0.0163	3.5925 ± 0.0136	3.6086 ± 0.0051	
	2.0	3.5978 ± 0.0148	3.5749 ± 0.0144		
	1.0	3.6122 ± 0.0170	3.5942 ± 0.0158	3.5743 ± 0.01	
0.06	1.5	3.6064 ± 0.0198	3.5977 ± 0.0136	3.6047 ± 0.0115	3.5886 ± 0.0123
	2.0	3.5971 ± 0.0169	3.6018 ± 0.0136	3.5991 ± 0.0148	3.6040 ± 0.0148

Table 1: Cross section (in pb) and Monte Carlo integration errors for the $(n+1)$-body process $e^{+} e^{-} \rightarrow Z \rightarrow u \bar{u} g g g$. See the text for details.
Rikkert Frederix, April 15, 2010

$(n+1)$-body process	cross section	\bar{N}_{FKS}	iterations \times points	N_{ch}	
$e^{+} e^{-} \rightarrow Z \rightarrow u \bar{u} g g$	$(0.4144 \pm 0.0006(0.15 \%)) \times 10^{2}$	3	$10 \times 50 \mathrm{k}$	6	0.536
$e^{+} e^{-} \rightarrow Z \rightarrow u \bar{u} g g g$	$(0.3601 \pm 0.0014(0.38 \%)) \times 10^{1}$	3	$10 \times 50 \mathrm{k}$	18	0.167
$e^{+} e^{-} \rightarrow Z \rightarrow u \bar{u} g g g g$	$(0.8869 \pm 0.0054(0.61 \%)) \times 10^{-1}$	3	$10 \times 350 \mathrm{k}$	52	0.031
$e^{+} e^{-} \rightarrow \gamma^{*} / Z \rightarrow j j j j$	$(0.1801 \pm 0.0002(0.12 \%)) \times 10^{3}$	14	$10 \times 50 \mathrm{k}$	56	0.520
$e^{+} e^{-} \rightarrow \gamma^{*} / Z \rightarrow j j j j j$	$(0.1529 \pm 0.0004(0.26 \%)) \times 10^{2}$	30	$10 \times 50 \mathrm{k}$	328	0.171
$e^{+} e^{-} \rightarrow \gamma^{*} / Z \rightarrow j j j j j j$	$(0.3954 \pm 0.0015(0.38 \%)) \times 10^{0}$	55	$10 \times 350 \mathrm{k}$	2450	0.033
$e^{+} e^{-} \rightarrow Z \rightarrow t \bar{t} g g$	$(0.1219 \pm 0.0003(0.24 \%)) \times 10^{-1}$	3	$10 \times 10 \mathrm{k}$	6	0.899
$e^{+} e^{-} \rightarrow Z \rightarrow t \bar{t} g g g$	$(0.1521 \pm 0.0013(0.83 \%)) \times 10^{-2}$	3	$10 \times 10 \mathrm{k}$	18	0.708
$e^{+} e^{-} \rightarrow Z \rightarrow t \bar{t} g g g g$	$(0.1108 \pm 0.0031(2.76 \%)) \times 10^{-3}$	3	$10 \times 20 \mathrm{k}$	52	0.427
$e^{+} e^{-} \rightarrow Z \rightarrow t \bar{t} b \bar{b} g$	$(0.1972 \pm 0.0024(1.23 \%)) \times 10^{-4}$	4	$10 \times 10 \mathrm{k}$	16	1.000
$e^{+} e^{-} \rightarrow Z \rightarrow t \bar{t} b \bar{b} g g$	$(0.2157 \pm 0.0029(1.34 \%)) \times 10^{-4}$	5	$10 \times 10 \mathrm{k}$	120	0.824
$e^{+} e^{-} \rightarrow Z \rightarrow \tilde{t}, \overline{\bar{t}} g g g$	$(0.3712 \pm 0.0037(1.00 \%)) \times 10^{-8}$	3	$10 \times 10 \mathrm{k}$	18	0.764
$e^{+} e^{-} \rightarrow Z \rightarrow \tilde{g} \tilde{g} g g g$	$(0.1584 \pm 0.0020(1.23 \%)) \times 10^{-1}$	2	$10 \times 10 \mathrm{k}$	9	0.753
$\mu^{+} \mu^{-} \rightarrow H \rightarrow g g g g$	$(0.1404 \pm 0.0005(0.34 \%)) \times 10^{-7}$	1	$10 \times 50 \mathrm{k}$	2	0.559
$\mu^{+} \mu^{-} \rightarrow H \rightarrow g g g g g$	$(0.2575 \pm 0.0018(0.69 \%)) \times 10^{-8}$	1	$10 \times 50 \mathrm{k}$	4	0.165
$\mu^{+} \mu^{-} \rightarrow H \rightarrow g g g g g g$	$(0.1186 \pm 0.0008(0.70 \%)) \times 10^{-9}$	1	$10 \times 350 \mathrm{k}$	9	0.031

齢Compared to the Born, the error is only 1.9-4.5 times larger with the same statistics*

FURTHER OPTIMIZATION

 （NOT YET USED）鲜 The results presented here do not use possible optimization related to

静 using the Monte Carlo to sum over the helicities of the external particles：
－simple to implement with explicit sum of the two FKS partons
－r also possible with MC sum over FKS partons，but slightly more complicated

蚛 Diagram information is only used for defining the integration channels：use recursive relations for the rest？

Sqrt（s）$=100 \mathrm{GeV}$
䇣 ren．\＆fac．scales equal to Z mass kt jet clustering with $\mathrm{Y}_{\text {cut }}=(10$ $\mathrm{GeV})^{2}$
Finite part of virtual correction not included

静 Same runs as in the table：no＇smoothing＇of the plots
糕 fine binning，and smooth results

FULL NLO

Of course，to get the total NLO results the finite parts of the virtual corrections should be included as well

歯 Binoth Les Houches interface available
傫 Working interfaces to BLACKHAT and ROCKET for the finite part of the virtual corrections

齢Many thanks to Daniel Maitre and Giulia Zanderighi

Binoth-Les Houches ACCORD

"Dedicated to the memory of, and in tribute to, Thomas Binoth, who led the effort to develop this proposal for Les Houches 2009"

彞 Initialization phase

MC code communicates basic information about the process to the OLP. OLP answers if it can provide the loop corrections.

漛 Run-time phase
MC code queries the OLP for the value of the oneloop contributions for each phase-space point.

MADFKS + ROCKET

数 Inclusive angle between jets and electron direction and Thrust distribution

MADFKS + BLACKHAT

政 C and D parameters for 3 and 4 partons at LO respectively

PRELIMINARY RESULT

TO CONCLUDE

糕 NLO corrections are needed for precision phenomenology and to understand all features of the experimental data

峔 For any QCD NLO computation（SM \＆BSM）MadFKS takes care of：

絭 Generating the Born，real emission，subtraction terms， phase－space integration and overall management of symmetry factors，subprocess combination etc．

糍 External program（s）needed for the（finite part of the）loop contributions（so far working with BlackHat and Rocket）

龉 Other codes／programs／groups more than welcome！
齿 With the shower subtraction terms，interface to showers to generate automatically unweighted events at NLO is in testing phase

