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NB: Conformal symmetry is an old subject!

[see e.g. H.Kastrup, arXiv:0808.2730 for an historical survey and references]



Mass Generation and Hierarchy

• Fact: Standard Model (= SM) of elementary par-
ticle physics is conformally invariant at tree level
except for explicit mass term m2Φ†Φ in potential
→ masses for vector bosons, quarks and leptons.

• Why m2 < 0 rather than m2 > 0 ?

• Quantum corrections δm2 ∼ Λ2 ⇒ why mH � MPl ?
(with UV cutoff Λ = scale of ‘new physics’)

– stabilization/explanation of hierarchy?

• Most popular proposal: SM −→ MSSM or NMSSM:
use supersymmetry to control quantum corrections
via cancellation of quadratic divergences ⇒

δm2 ∼ Λ2
SUSY ln(Λ2/Λ2

SUSY )



Landau Poles

Large scalar self-coupling ↔ Landau pole (A > 0)

µ
dy

dµ
= Ay2 =⇒ y(µ) =

y0

1 − Ay0ln(µ/µ0)

Thus we are left with two possibilities:

• Theory strongly coupled for ln(µ/µ0) ∼ (Ay0)
−1

• Or: theory does not exist (rigorously as a QFT)

General features of RG evolution of couplings in SM:

• Coupled RG equations (linking αs to other cou-
plings) also give rise to infrared (IR) Landau poles

• With SM-like bosonic and fermionic matter, UV
and IR Landau poles are (generically) unavoidable.



The demise of relativistic quantum field theory
Or: Why we need quantum gravity!

• Breakdown of any extension of the standard model
(supersymmetric or not) that stays within the frame-
work of relativistic quantum field theory is probably
unavoidable [as it appears to be for λφ4

4].

• Therefore the main challenge is to delay breakdown
until MPl where a proper theory of quantum gravity
is expected to replace quantum field theory.

• How the MSSM achieves this: scalar self-couplings
tied to gauge coupling λ ∝ g2 by supersymmetry,
and thus controlled by gauge coupling evolution.

⇒ mH ≤
√

2mZ in (non-exotic variants of) MSSM.



Conformal invariance and the Standard Model

Can classically unbroken conformal symmetry stabilize
the weak scale w.r.t. the Planck scale? Claim: Yes, if

• there are no intermediate mass scales between
mW and MPl (‘grand desert scenario’); and

• the RG evolved couplings exhibit neither Landau
poles nor instabilities (of the effective potential)
over this whole range of energies.

Thus: is it possible to explain all mass scales from a
single scale v via the quantum mechanical breaking of
conformal invariance (i.e. via conformal anomaly)

→ Hierarchy ‘natural’ in the sense of ’t Hooft?

[See also: W. Bardeen, FERMILAB-CONF-95-391-T, FERMILAB-CONF-95-377-T]



Evidence for large scales other than MPl?

• (SUSY?) Grand Unification: mX ≥ O(1015 GeV)?

– But: proton refuses to decay (so far, at least!)

– SUSY GUTs: unification of gauge couplings at ≥ O(1016 GeV)

• Light neutrinos (mν ≤ O(1 eV)) and heavy neutrinos

→ most popular (and most plausible) explanation
of observed mass patterns via seesaw mechanism:

m(1)
ν ∼ m2

D

M
, mD = O(mW ) ⇒ m(2)

ν ∼ M ≥ O(1012 GeV)?

• Resolution of strong CP problem ⇒ need axion a(x).

Limits e.g. from axion cooling in stars ⇒

L =
1

4fa
aF µνF̃µν with fa ≥ O(1010 GeV)

NB: axion is (still) an attractive CDM candidate.



Coleman-Weinberg Mechanism (1973)

• Idea: spontaneous symmetry breaking by radiative
corrections =⇒ can small mass scales be explained
via conformal anomaly and effective potential ?

V (ϕ) =
λ

4
ϕ4 → Veff(ϕ) =

λ

4
ϕ4 +

9λ2ϕ4

64π2

[

ln

(

ϕ2

µ2

)

+ C0

]

• But: when can we trust one-loop approximation?

– Radiative breaking spurious for pure ϕ4 theory

– Scalar electrodynamics: consistent for λ ∼ e4

[See e.g.: Sher, Phys.Rep.179(1989)273; Ford,Jones,Stephenson,Einhorn, Nucl.Phys.B395(1993)17;

Chishtie,Elias,Mann,McKeon,Steele, NPB743(2006)104]

• And: can this be made to work for real world (=SM)?

– mH > 115 GeV and mtop = 174 GeV



Regularization and Renormalization

• Conformal invariance must be broken explicitly for
computation of quantum corrections via regulator
mass scale with any regularization.

• Most convenient: dimensional regularization
∫

d4k

(2π)4
→ v2ε

∫

d4−2εk

(2π)4−2ε

• Renormalize by requiring exact conformal invari-
ance of the local part of the effective action ⇒ pre-
serve anomalous Ward identity T µ

µ(φ) = β(λ)O4(φ)

• (Renormalized) effective action to any order:

– no mass terms (∝ v2) in divergent or finite parts

– conformal symmetry broken only by logarithmic
terms containing L ≡ ln(φ2/v2) (to any order!)



RG improved effective potential

One (real) scalar field ϕ coupled to non-scalar fields

Weff ≡ Weff(ϕ, g, v) = ϕ4f(L, g) for L ≡ ln(ϕ2/v2)

Improved effective potential must obey RG equation


v
∂

∂v
+

∑

j

βj(g)
∂

∂gj
+ γ(g)ϕ

∂

∂ϕ



Weff(ϕ, g, v) = 0

Therefore [see also: Curtright,Ghandour, Ann.Phys.112(1978)237]



−2
∂

∂L
+

∑

j

β̃j(g)
∂

∂gj
+ 4γ̃(g)



 f(L, g) = 0

with β̃(g) ≡ β(g)/(1 − γ(g)) and γ̃(g) ≡ γ(g)/(1 − γ(g)) ⇒
Running couplings ĝj(L) from 2(dĝj(L)/dL) = β̃j(ĝ).



• General solution (with arbitrary function F )

f(L, g) ≡ F (ĝ1(L), ĝ2(L), . . . ) exp

[

2

∫ L

0

γ̃(ĝ(t))dt

]

The choice F (L, g) = ĝ1(L) (g1 = scalar self-coupling)
yields correct ~ → 0 limit.

• The textbook example: pure (massless) φ4 theory

Weff(ϕ) =
1

4
λ̂(L)ϕ4 =

λ

4
· ϕ4

1 − (9λ/16π2)L
= Veff(ϕ) +O(λ3L2)

captures leading log contributions to all orders.

• Explains spuriousness of symmetry breaking for Veff

via restoration of convexity by RG improvement
⇒ Weff(ϕ) has only trivial minimum at 〈ϕ〉 = 0!



An almost realistic example

QCD coupled to colorless real scalar field φ

L = −1

4
Tr FµνF

µν + iq̄γµDµq +
1

2
∂µφ∂µφ + gY φq̄q − g

4
φ4

Cancellations in β-functions

2
dŷ

dL
= a1ŷ

2+a2x̂ŷ−a3x̂
2 , 2

dx̂

dL
= b1x̂

2−b2x̂ẑ , 2
dẑ

dL
= −2cẑ2

with

x ≡ g2
Y

4π2
, y ≡ g

4π2
, z ≡ g2

s

4π2
≡ αs

π

Explicit closed form solutions of one-loop β-function
equations available for general coefficients ai, bi, c
[Faivre,Branchina, PR D72 (2005) 065017; Chishtie et al., hep-ph/0701148; MN, arXiv:0809.1338]

Our general formula for Weff allows more detailed study
of range of validity of one-loop CW potential.
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The scalar self-coupling λ̂(L)

• λ̂(L) remains small over large range of values for L

in spite of large logarithms (for λ̂(0)L)

• Landau pole at L > 200 and IR barrier ΛIR > 0

• Approximation can be trusted for λ̂(L) small
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The RG improved effective potential Weff(ϕ).

• Convex function, unlike unimproved potential Veff.

• ΛIR > 0 ⇒ enforces symmetry breaking 〈ϕ〉 6= 0

• Minimum safely within perturbative range

• Cancellations in β-functions are crucial



A Minimalistic Proposal

• Minimal extension of SM with classical conformal
symmetry (i.e. no tree level mass terms) and:

– right-chiral neutrinos

– enlarged scalar sector: Φ and φ

• No large intermediate scales (‘grand desert’)

⇒ no grand unification, no low energy SUSY
[also: M. Shaposhnikov, arXiv:0708.3550[hep-th]; R. Foot et al., arXiv:0709.2750[hep-ph]]

• All mass scales from effective (CW) potential:

– no new scales required to explain mν < 1 eV if
Yukawa couplings vary over Y ∼ O(1) – O(10−5)

– no new scales required to explain fa ≥ O(1012 GeV)



Minimally Extended Standard Model

• Start from conformally invariant (and therefore renor-
malizable) Lagrangian L = Lkin + L′ with:

L′ :=
(

L̄iΦY E
ij Ej + Q̄iεΦ∗Y D

ij Dj + Q̄iεΦ∗Y U
ij U j +

+L̄iεΦ∗Y ν
ijν

j
R + φνiT

R CY M
ij νj

R + h.c.
)

−

−λ1

4
(Φ†Φ)2−λ2

2
(φ†φ)(Φ†Φ) − λ3

4
(φ†φ)2

[See also Shaposhnikov, Tkachev, PLB639(2006)104: the ‘νMSM’]

• Besides usual SU(2) doublet Φ: new scalar field φ(x)

φ(x) = ϕ(x) exp

(

ia(x)√
2µ

)

• No mass terms, all coupling constants dimensionless

• Y U
ij , Y E

ij , Y M
ij real and diagonal

Y D
ij , Y ν

ij complex → parametrize family mixing (CKM)



Effective potential at one loop

Veff(H, ϕ) =
λ1H

4

4
+

λ2H
2ϕ2

2
+

λ3ϕ
4

4
+

9

16π2
α2

wH4 ln

[

H2

v2

]

+
3

256π2
(λ1H

2 + λ2ϕ
2)2ln

[

λ1H
2 + λ2ϕ

2

v2

]

+
1

256π2
(λ2H

2 + λ3ϕ
2)2ln

[

λ2H
2 + λ3ϕ

2

v2

]

+
1

64π2
F 2

+ln

[

F+

v2

]

+
1

64π2
F 2
−ln

[

F−
v2

]

− 6

32π2
g4

t H
4 ln

[

H2

v2

]

− 1

32π2
Y 4

Mϕ4 ln

[

ϕ2

v2

]

with H2 ≡ Φ†Φ and ϕ2 ≡ φ†φ

F±(H, ϕ) ≡ 3λ1 + λ2

4
H2 +

3λ3 + λ2

4
ϕ2 ±

√

[

3λ1 − λ2

4
H2 − 3λ3 − λ2

4
ϕ2

]2

+ λ2

2
ϕ2H2



Numerical analysis

Choice of parameters strongly constrained by experi-
mental data and RGE analysis → ‘trial and error’ →

λ1 = 3.77 , λ2 = 3.72 , λ3 = 3.73 , gt = 1 , Y 2
M = 0.4

Minimum lies at

〈H〉 = 2.74 · 10−5 v , 〈ϕ〉 = 1.51 · 10−4 v

Normalize this by setting 〈H〉 = 174 GeV ⇒
H ′ = H cos β + ϕ sin β , ϕ′ = −H sin β + ϕ cos β

mH ′ = 207 GeV, mϕ′ = 477 GeV; sin β = 0.179

‘Higgs mixing’: only the components along H of the
mass eigenstates couple to the usual SM particles.

Neutrino mass eigenvalues: with |Yν| < 10−5 we get

m(1)
ν =

(Yν〈H〉)2
YM〈ϕ〉 < 1 eV , m(2)

ν = YM〈ϕ〉 ∼ 440 GeV



Renormalization Group Equations

With

y1 =
λeff

1

4π2
, y2 =

λeff
2

4π2
, y3 =

λeff
3

4π2
, x =

g2
t

4π2
, u =

Y 2
M

4π2
, z3 =

αs

π
, z2 =

αw

π

we get

µ
dy1

dµ
=

3

2
y2

1 +
1

8
y2

2 − 6x2 +
9

8
z2

2 ,

µ
dy2

dµ
=

3

8
y2

(

2y1 + y3 +
4

3
y2

)

,

µ
dy3

dµ
=

9

8
y2

3 +
1

2
y2

2 − u2, µ
du

dµ
=

3

4
u2

µ
dx

dµ
=

9

4
x2 − 4xz3, µ

dz3

dµ
= −7

2
z2

3, µ
dz2

dµ
= −19

12
z2

2

Start running at µ0 for which λeff ∼ λ(µ0) ↔ µ0 ∼ 〈H〉.



RG Evolution of Coupling Constants
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Discussion

• All couplings stay bounded up to O(1020 GeV)

• No instabilities up to O(1020 GeV)

• Thus: model may remain viable up to Planck scale

• Caveats: Numerics? Higher order corrections?
Expect better estimates from RG improvement
→ requires study of multi-field case

• Can we arrange ΛIR ∼ O(1 GeV) with 〈H〉 ∼ O(200 GeV)?

• Key question: do the observed values of couplings
for (minimally extended) SM conspire to make this
work? Could become an experimental question....



An unmistakable signature?

New scalar ϕ = ‘fat twin brother’ of SM Higgs!

H

b Z0

b̄ Z0

H ϕ H

b Z0

b̄ Z0

a) b)

Resonant production for mH ′ > 2mZ and mϕ′ > 2mZ

Identical branching ratios: ‘shadow Higgs’

Decay widths ΓH ′ ∝ cos2 β and Γϕ′ ∝ sin2 β ⇒
for large mϕ′ second resonance narrow if β small.

Thus: ‘twin peaks’ at unusual mass values > 200 GeV!

Cf.: ‘Veltman’s window’ for SM: mH ∼ O(190GeV) ; MSSM: mH < O(135GeV)



Neutrinos and Axions

There are two global U(1) symmetries, baryon number
and (modified) lepton number symmetry with

J µ
L =

∑

i=1,2,3

ēiγµei +
∑

i=1,2,3

ν̄iγµνi − 2iφ† ↔
∂µ φ

With µ = 〈ϕ〉 6= 0 the ‘leakage term’ is ∝ ∂µa + . . . and
a(x) becomes a (pseudo-)Goldstone boson = ‘Majoron’.

If we identify axion = Majoron we get (at two loops)

fa =
2π2m2

W

αwαemmνYM
∼ O(1015 GeV)

and analogous result for gluonic couplings of a(x).

⇒ Smallness of axionic couplings to SM particles ex-
plained by neutrino mixing and smallness of mν.
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Conformal invariance from gravity?

Here not from scale (Weyl) invariant gravity, but:

N = 4 supergravity 1[2] ⊕ 4[3
2
] ⊕ 6[1] ⊕ 4[1

2
] ⊕ 2[0]

coupled to n vector multiplets n × {1[1] ⊕ 4[12] ⊕ 6[0]}
Gauged N = 4 SUGRA: [Bergshoeff,Koh,Sezgin; de Roo,Wagemans (1985)]

• Scalars φ(x) = exp(LI
AT I

A) ∈ SO(6, n)/SO(6) × SO(n)

• YM gauge group GYM ⊂ SO(6, n) with dim GYM = n + 6

[Example inspired by ‘Groningen derivation’ of conformal M2

brane (‘Bagger-Lambert’) theories from gauged D = 3 SUGRAs]

Although this theory is not conformally invariant, the
conformally invariant N = 4 SUSY YM theory nev-
ertheless emerges as a κ → 0 limit, which ‘flattens’
spacetime (with gµν = ηµν + κhµν) and coset space

SO(6, n)/((SO(6) × SO(n)) −→ R
6n 3 φ[ij] a(x)



Exemplify this claim for scalar potential: with

Cai
j = κ2fabcφ[ik]

bφ[jk] c + O(κ3) , Cij = κ3fabcφ[ik]
aφb [kl]φ[lj]

c + O(κ4)

potential of gauged theory is (m, n = 1, . . . , 6; κ|z| < 1)

V (φ) =
1

κ4

(1 − κz)(1 − κz∗)

1 − κ2zz∗

(

Cai
jCai

j −
4

9
C ijCij

)

= Tr [Xm, Xn]
2 + O(κ)

Idem for all other terms in Lagrangian! Unfortunately

• N = 4 SYM is quantum mechanically conformal theory

→ no conformal anomaly → no symmetry breaking!

• Thus need non-supersymmetric vacuum with Λ = 0

Finiteness of quantum (super)gravity →
Can gravity serve as a universal regulator?

Conformal anomaly as a finite ‘remnant’ of

quantum gravity ∼ κs
∫ 1/κ

(...) = O(1)?



Outlook

• Scheme is consistent with all available data and
seems more economical than MSSM-type models

• New features (for classically conformal theories):
– restoration of convexity via RG improvement

– an unsuspected link between weak scale and ΛQCD

– symmetry breaking becomes mandatory for ΛIR > 0

• Conformal invariance may still be the ‘best’ expla-
nation why we live in D = 4 space-time dimensions.

• Main role of SUSY might be at MPl in rendering
quantum gravity (perturbatively) consistent.

• Emergence of conformally invariant theory from
gravity (which is not conformally invariant)?

• ‘Grand desert’ may possibly provide us with an
unobstructed view of Planck scale physics!


