Electroweak corrections to three-jet production at e⁺e⁻ colliders

Christian Kurz University of Zurich and Paul Scherrer Institut 28.08.2008

Outline

- Einführung in die Teilchenphysik
- QCD at e⁺e⁻ colliders
- Inventory of the calculation
- Results
- Summary and conclusions

Outline

Einführung in die Teilchenphysik

- QCD at e⁺e⁻ colliders
- Inventory of the calculation
- Results
- Summary and conclusions

Fragestellung

- Woraus ist die Materie aufgebaut?
- Was sind die fundamentalen Bausteine?
- Welches sind die Kräfte, die alles zusammenhalten?
- Gibt es eine einheitliche Beschreibung des Ganzen?

Fragestellung

- Woraus ist die Materie aufgebaut?
- Was sind die fundamentalen Bausteine?
- Welches sind die Kräfte, die alles zusammenhalten?
- Gibt es eine einheitliche Beschreibung des Ganzen?

Fragestellung

- Woraus ist die Materie aufgebaut?
- Was sind die fundamentalen Bausteine?
- Welches sind die Kräfte, die alles zusammenhalten?
- Gibt es eine einheitliche Beschreibung des Ganzen?

Methodik

- Empirische Beobachtungen → Experiment
- Mathematische Beschreibung → Theorie

Fragestellung

- Woraus ist die Materie aufgebaut?
- Was sind die fundamentalen Bausteine?
- Welches sind die Kräfte, die alles zusammenhalten?
- Gibt es eine einheitliche Beschreibung des Ganzen?

Methodik

- Empirische Beobachtungen → Experiment
- Mathematische Beschreibung → Theorie

Aufbau der Materie

Aufbau der Materie

Christian Kurz

Aufbau der Materie

Christian Kurz

Elektromagnetische Wechselwirkung

starke Wechselwirkung

schwache Wechselwirkung

Gravitation

Elektromagnetische Wechselwirkung

starke Wechselwirkung

schwache Wechselwirkung

Gravitation

- Zu jeder Wechselwirkung gehört eine Ladung
- Nur Teilchen, die entsprechende Ladung tragen, spüren Kraft

- Zu jeder Wechselwirkung gehört eine Ladung
- Nur Teilchen, die entsprechende Ladung tragen, spüren Kraft
- Kraftübertragung erfolgt über Austausch von Botenteilchen

 aus Botenteilchen können paarweise Teilchen und Antiteilchen entstehen und umgekehrt

Teilchen und ihre Wechselwirkungen

		Austausch teilchen		Masse		Reichweite	rel. Stärke
EM		Photon γ		0		∞	~10-3
schwache Kraft		₩+,₩-, Z		~100 GeV		10 ⁻¹⁸ m	~10-5
starke Kraft		Gluon (8)		0		10 ⁻¹⁵ m	~
					EM	schwac	h stark
Quarks	up	charm	to	P	2/3	I/2	3
	down	strange	bott	om	-1/3	-1/2	3
Leptons	e⁻	μ	т	-	- 1	-1/2	
	Ue	υμ	U	т	0	I/2	

Teilchen und ihre Wechselwirkungen

		Austausch teilchen		Masse		Reichweite	rel. Stärke
EM		Photon γ		0		∞	~10-3
schwache Kraft		₩+,₩-, Z		~100 GeV		10 ⁻¹⁸ m	~10-5
starke Kraft		Gluon (8)		0		10 ⁻¹⁵ m	~
					EM	schwac	h stark
Quarks	up	charm	to	р	2/3	I/2	3
	down	strange	bot	tom	-1/3	-1/2	3
Leptons	e⁻	μ	-	τ	- 1	-1/2	
	Ue	υμ	ι	υ _τ	0	I/2	

• Nach Einstein: $E = mc^2$

→kollidiere hochenergetische Teilchen zur Entdeckung schwerer Teilchen

Teilchenbeschleuniger

- Elektron-Positron Collider
 SLAC Stanford 50 GeV Strahlenergie
 LEP Cern 100 GeV Strahlenergie
- Elektron-Proton Collider
 HERA Hamburg 27.5 GeV Elektronen, 920 GeV Protonen
- Hadron-Hadron Collider
 Tevatron Chicago 980 GeV Strahlenergie
 LHC Cern 7 TeV Strahlenergie

	•	• =	-
\equiv	• •	• • =	=
			-

Teilchenbeschleuniger

- Elektron-Positron Collider
 SLAC Stanford 50 GeV Strahlenergie
 LEP Cern 100 GeV Strahlenergie
- Elektron-Proton Collider
 HERA Hamburg 27.5 GeV Elektronen, 920 GeV Protonen
- Hadron-Hadron Collider
 Tevatron Chicago 980 GeV Strahlenergie
 LHC Cern 7 TeV Strahlenergie

LEP Large Electron Positron Ring

1989 - 2000 bis zu 100 GeV pro Strahl 27km langer Tunnel jetzt: LHC

Mathematische Beschreibung

- Mikroskopische Welt wird durch Quantenmechanik beschrieben
- Klassisch verboten → Quantenmechanisch nur "fast" verboten
- Heisenbergsche Unschärferelation $\Delta E \Delta t \gtrsim h$
- Entwicklung einer Quantenfeldtheorie aus Symmetrieprinzipien Dirac Gleichung in QED $(i\partial_{\mu}\gamma^{\mu} - eA_{\mu}\gamma^{\mu} - m_{e})\Psi_{e} = 0$

Christian Kurz

Mathematische Beschreibung

- Mikroskopische Welt wird durch Quantenmechanik beschrieben
- Klassisch verboten → Quantenmechanisch nur "fast" verboten
- Heisenbergsche Unschärferelation $\Delta E \Delta t \gtrsim h$
- Entwicklung einer Quantenfeldtheorie aus Symmetrieprinzipien Dirac Gleichung in QED $(i\partial_{\mu}\gamma^{\mu} - eA_{\mu}\gamma^{\mu} - m_{e})\Psi_{e} = 0$
- QFT schwierig exakt zu lösen \rightarrow Entwicklung in kleinem Parameter, typischerweise Kopplungskonstante $\alpha = e^2/4\pi$

Mathematische Beschreibung

- Mikroskopische Welt wird durch Quantenmechanik beschrieben
- Klassisch verboten → Quantenmechanisch nur "fast" verboten
- Heisenbergsche Unschärferelation $\Delta E \Delta t \gtrsim h$
- Entwicklung einer Quantenfeldtheorie aus Symmetrieprinzipien Dirac Gleichung in QED $(i\partial_\mu\gamma^\mu - eA_\mu\gamma^\mu - m_e)\Psi_e = 0$
- QFT schwierig exakt zu lösen \rightarrow Entwicklung in kleinem Parameter, typischerweise Kopplungskonstante $\alpha = e^2/4\pi$

Outline

• Einführung in die Teilchenphysik

- QCD at e⁺e⁻ colliders
- Inventory of the calculation
- Results
- Summary and conclusions

The QCD Lagrangian and its implications

• Gluon fields in adjoint, quark fields in fundamental rep. of SU(3)

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} G^A_{\mu\nu} G^{\mu\nu}_A + \sum_q \bar{q}_a \left(i\gamma^\mu D_\mu - m_q \right)_{ab} q_b$$

 $G^A_{\mu\nu} = \partial_\mu G^A_\nu - \partial_\nu G^A_\mu - g_{\rm s} f^{ABC} G^B_\mu G^C_\nu$

 $(D_{\mu})_{ab} = \partial_{\mu}\delta_{ab} + \mathrm{i}g_{\mathrm{s}}(t^{A}G^{A}_{\mu})_{ab}$

possible vertices

The QCD Lagrangian and its implications

• Gluon fields in adjoint, quark fields in fundamental rep. of SU(3)

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} G^A_{\mu\nu} G^{\mu\nu}_A + \sum_q \bar{q}_a \left(i\gamma^\mu D_\mu - m_q \right)_{ab} q_b$$

 $G^A_{\mu\nu} = \partial_\mu G^A_\nu - \partial_\nu G^A_\mu - g_{\rm s} f^{ABC} G^B_\mu G^C_\nu$

 $(D_{\mu})_{ab} = \partial_{\mu}\delta_{ab} + \mathrm{i}g_{\mathrm{s}}(t^{A}G^{A}_{\mu})_{ab}$

possible vertices

- strength of coupling depends on energy
 - o large for small energies (infrared)
 o small for high energies (UV)

perturbation theory only valid for high energies

The QCD Lagrangian and its implications

Gluon fields in adjoint, quark fields in fundamental rep. of SU(3)

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} G^A_{\mu\nu} G^{\mu\nu}_A + \sum_q \bar{q}_a \left(i\gamma^\mu D_\mu - m_q \right)_{ab} q_b$$

 $G^A_{\mu\nu} = \partial_\mu G^A_\nu - \partial_\nu G^A_\mu - g_{\rm s} f^{ABC} G^B_\mu G^C_\nu$

possible vertices

 $(D_{\mu})_{ab} = \partial_{\mu}\delta_{ab} + \mathrm{i}g_{\mathrm{s}}(t^{A}G^{A}_{\mu})_{ab}$

- strength of coupling depends on energy

 - o large for small energies (infrared)
 > ⇒ perturbation theory only
 > small for high energies (UV)
 > → valid for high energies
- no free quarks and gluons (partons), only bound states (hadrons)

QCD at e⁺e⁻ colliders

 annihilation of an electron and positron into a photon or a Z boson which decays into a quark-antiquark pair

 $e \xrightarrow{\alpha}_{\gamma, Z} \stackrel{\alpha}{\longrightarrow} q \sim \alpha^2$

QCD at e⁺e⁻ colliders

- annihilation of an electron and positron into a photon or a Z boson which decays into a quark-antiquark pair
- first process where QCD plays a role is production of $q ar{q} {
 m g}$

 $\sim q \sim q^2$

QCD at e⁺e⁻ colliders

- annihilation of an electron and positron into a photon or a Z boson which decays into a quark-antiquark pair
- first process where QCD plays a role is production of $qar{q}{
 m g}$

- theory describes partons, experiments observe hadrons
- two possibilities
 - model parton \rightarrow hadron transition
 - define appropriate final states \rightarrow Jets

Jets

- experimentally hadrons with common momentum direction
- theoretically partons with common momentum direction

Three-jet production: $e^+e^- \rightarrow 3$ jets

LO QCD $e^+e^- \rightarrow q\bar{q}g$

Three-jet production: $e^+e^- \rightarrow 3$ jets

LO QCD $e^+e^- \rightarrow q\bar{q}g$

Three-jet production: $e^+e^- \rightarrow 3$ jets

Jet observables

- Jet algorithm (Durham)
 - I. define minimum separation $y_{\rm cut}$
 - **2.** calculate distance measure $y_{ij} = 2\min(E_i^2, E_j^2) (1 \cos \Theta_{ij})$
 - 3. particles are merged into clusters if $y_{ij} < y_{cut}$
 - 4. Go to 2 until no more pairs with $y_{ij} < y_{cut}$ are left

Jet observables

- Jet algorithm (Durham)
 - I. define minimum separation $y_{\rm cut}$
 - **2.** calculate distance measure $y_{ij} = 2\min(E_i^2, E_j^2) (1 \cos \Theta_{ij})$
 - 3. particles are merged into clusters if $y_{ij} < y_{cut}$
 - 4. Go to 2 until no more pairs with $y_{ij} < y_{cut}$ are left
- Other algorithms differ in definition of y_{ij} (JADE, Geneva, ...)
- Measured observable: *n*-jet rate $R_n(y_{cut}, \sqrt{s}) = \frac{\sigma_{n-jet}}{\sigma_{had}}$
- σ_{had} : totally inclusive cross section for $e^+e^- \rightarrow hadrons$

Event-shape observables

- Use information on geometry of final state \rightarrow define mapping $\{p_i\} \rightarrow x$
- Example Thrust (used throughout this talk)

$$T = \max_{\vec{n}} \frac{\sum_{i} |\vec{p_i} \cdot \vec{n}|}{\sum_{i} |\vec{p_i}|}$$

Event-shape observables

- Use information on geometry of final state \rightarrow define mapping $\{p_i\} \rightarrow x$
- Example Thrust (used throughout this talk)

α_s from jet observables

- It rates and event-shape observables very well suited for determination of α_s from LEP data over large energy range
 - high statistics
 - clean environment for QCD calculations
- Enormous progress over the past 25 years, latest result up to NNLO+NNLL in QCD

 $\alpha_{\rm s} (M_{\rm Z}) = 0.1224 \pm 0.0009 \,({\rm stat}) \pm 0.0009 \,({\rm exp}) \pm 0.0012 \,({\rm had}) \pm 0.0035 \,({\rm theo})$

Dissertori, Gehrmann, Luisoni, et.al. 06/2009 first NLO calculation Ellis, Ross, Terrano 1981
α_s from jet observables

- It rates and event-shape observables very well suited for determination of α_s from LEP data over large energy range
 - high statistics
 - clean environment for QCD calculations
- Enormous progress over the past 25 years, latest result up to NNLO+NNLL in QCD

 $\alpha_{\rm s} (M_{\rm Z}) = 0.1224 \pm 0.0009 \,(\text{stat}) \pm 0.0009 \,(\text{exp}) \pm 0.0012 \,(\text{had}) \pm 0.0035 \,(\text{theo})$

Dissertori, Gehrmann, Luisoni, et.al. 06/2009 first NLO calculation Ellis, Ross, Terrano 1981

- at this theo. precision also NLO electroweak effects become important: NNLO QCD $\alpha_s^2 \sim 0.01$, NLO EW $\alpha_{\rm EW} \sim 0.008$
- more involved since photon and weak gauge bosons connect initial and final state → rest of the talk

Outline

- Einführung in die Teilchenphysik
- QCD at e⁺e⁻ colliders
- Inventory of the calculation
- Results
- Summary and conclusions

Ingredients of a NLO calculation

Ingredients of a NLO calculation

in jet observables no distinction between photon and gluon

Ingredients of a NLO calculation

in jet observables no distinction between photon and gluon

Properties of the NLO corrections

- integrate over loop momentum l in virtual correction
 - UV divergencies for large $l \rightarrow$ renormalisation procedure, redef. of phys. parameters
 - IR divergencies for small l or special collinear configurations \rightarrow regulate with small photon and fermion masses, leads to singular logarithms $\sim \ln(m_{\gamma}), \ln(m_f)$

Properties of the NLO corrections

- integrate over loop momentum l in virtual correction
 - UV divergencies for large $l \rightarrow$ renormalisation procedure, redef. of phys. parameters
 - IR divergencies for small l or special collinear configurations \rightarrow regulate with small photon and fermion masses, leads to singular logarithms $\sim \ln(m_{\gamma}), \ln(m_f)$
- phase-space integration in real corrections
 - IR divergencies due to soft photon/gluon emission or collinear photon/gluon emission in the case of vanishing fermion masses

Properties of the NLO corrections

- integrate over loop momentum l in virtual correction
 - UV divergencies for large $l \rightarrow$ renormalisation procedure, redef. of phys. parameters
 - IR divergencies for small l or special collinear configurations \rightarrow regulate with small photon and fermion masses, leads to singular logarithms $\sim \ln(m_{\gamma}), \ln(m_{f})$
- phase-space integration in real corrections
- IR divergencies due to soft photon/gluon emission or collinear photon/gluon emission in the case of vanishing fermion masses

- for infrared-safe observables
 - BN theorem: soft divergencies cancel between virtual and real corrections
 - KLN theorem: collinear divergencies in final state cancel between virtual and real corrections
 - initial-state collinear radiation regularised by electron mass and suppressed by cut on production angle

Experimental event selection

- initial-state photons lead to difficulties in reconstruction of total energy of final state
- devise cuts to limit influence of initial-state photons (ALEPH)
 - 1. accept only particles with production angle $\cos \theta_i < \cos \theta_{
 m cut}$
 - 2. cluster particles according to Durham algorithm with $y_{\rm cut} = 0.002$
 - 3. remove events where photonic energy in jet is > 90% ($z_{\rm cut}$)
 - 4. calculate visible invariant mass s' of final state and accept event only if s'/s > 0.81 ($s_{\rm cut}$)

Experimental event selection

- initial-state photons lead to difficulties in reconstruction of total energy of final state
- devise cuts to limit influence of initial-state photons (ALEPH)
 - I. accept only particles with production angle $\cos \theta_i < \cos \theta_{
 m cut}$
 - 2. cluster particles according to Durham algorithm with $y_{\rm cut} = 0.002$
 - 3. remove events where photonic energy in jet is > 90% ($z_{\rm cut}$)
 - 4. calculate visible invariant mass s' of final state and accept event only if s'/s > 0.81 ($s_{\rm cut}$)
- step 3 leads to potential problems in perturbative calculations
 - remove events where photon and quark are collinear
 - → observable no longer infrared-safe
 - cancellation of collinear divergencies between virtual and real corrections no longer guaranteed
 - way out: use photon fragmentation function to restore infrared safety

Virtual corrections - Survey of diagrams

For EW corrections calculate ~ 200 different diagrams

• 2 pentagons

 γ, Z W q'∳₩₩ g $u_{
m e}$ e 0000 e γ, Z W e $\gamma,\!\mathrm{Z}$ qe γ, Z le a \mathbf{q} e е γ, Z q

- o 5 boxes
- vertices, self-energies

Virtual corrections - Survey of diagrams

For EW corrections calculate ~ 200 different diagrams

o 2 pentagons

- 5 boxes
- vertices, self-energies
- For QCD corrections calculate ~ 20 different diagrams

- generation of Feynman diagrams with FeynArts
- algebraic simplifications using FormCalc and Mathematica code
 - write I-loop amplitude $\mathcal{M}_{1}^{\sigma\sigma'\lambda} = \sum F_{n}^{\sigma\sigma'\lambda} (\{s, s_{ij}, t_{li}\}) \hat{\mathcal{M}}_{n}^{\sigma\sigma'\lambda} (k_{1}, k_{2}, k_{3}, k_{4}, k_{5})$
 - Standard Matrix Elements $\hat{\mathcal{M}}_{n}^{\sigma\sigma'\lambda^{n}}$ contain all information on helicities
 - use 4D of space-time to write product of Dirac chains

$$\underbrace{\bar{v}_{k_2} \not\in \gamma^{\mu} \gamma^{\nu} u_{k_1}}_{\mathsf{DC I}} \underbrace{\bar{u}_{k_3} \notk_2 \gamma_{\mu} \gamma_{\nu} v_{k_4}}_{\mathsf{DC 2}} = -\frac{64A_1A_2}{t_{13}^2 t_{14} t_{23} t_{24}} \epsilon \cdot k_2 \underbrace{\bar{v}_{k_2} \notk_3 u_{k_1}}_{\mathsf{DC I}} \underbrace{\bar{u}_{k_3} \notk_1 v_{k_4}}_{\mathsf{DC I}} \underbrace{\mathsf{DC I}}_{\mathsf{DC 2}} \underbrace{\mathsf{DC I}}_{\mathsf{DC 2}} \underbrace{\mathsf{DC I}}_{\mathsf{DC 2}} \underbrace{\mathsf{DC I}}_{\mathsf{DC 2}} \underbrace{\mathsf{DC 2}}_{\mathsf{DC 2}}$$

- generation of Feynman diagrams with FeynArts
- algebraic simplifications using FormCalc and Mathematica code
 - write I-loop amplitude $\mathcal{M}_{1}^{\sigma\sigma'\lambda} = \sum F_{n}^{\sigma\sigma'\lambda} (\{s, s_{ij}, t_{li}\}) \hat{\mathcal{M}}_{n}^{\sigma\sigma'\lambda} (k_{1}, k_{2}, k_{3}, k_{4}, k_{5})$
 - Standard Matrix Elements $\hat{\mathcal{M}}_{n}^{\sigma\sigma'\lambda^{n}}$ contain all information on helicities
 - use 4D of space-time to write product of Dirac chains

- reduce ~150 Dirac structures to ~20 SMEs → reduction of size of amplitude by factor 1/2
- efficient evaluation of SMEs using Weyl-van der Waerden formalism

- for calculation of loop integrals use COLI library of A. Denner
 - tensor reduction according to Denner-Dittmaier algorithm
 - scalar integrals evaluated using standard techniques
 - \rightarrow numerically stable results also in exceptional phase-space points
 - use fermion masses only as regulators

- for calculation of loop integrals use COLI library of A. Denner
 - tensor reduction according to Denner-Dittmaier algorithm
 - scalar integrals evaluated using standard techniques 0
 - \rightarrow numerically stable results also in exceptional phase-space points
 - use fermion masses only as regulators
- gauge boson widths are treated in complex-mass scheme
 - replace $M_V^2 \to \mu_V^2 = M_V^2 iM_V\Gamma_V$, V = W, Z
 - define complex weak mixing angle $\cos \theta_w = \frac{\mu_W^2}{\mu_Z^2}$ $\stackrel{e}{\longrightarrow} \frac{\gamma}{\rho}$ 0
 - 🗹 gauge-invariant result
 - **Valid everywhere in phase space**

Real corrections - Overview

- calculate Feynman diagrams "by hand" using WvdW formalism
- perform phase-space integration numerically
 - \rightarrow cancellation of IR divergencies delicate
- divide corrections into finite and singular piece and treat singular piece analytically
 - exact cancellation of singularities between virtual and real corrections
 - possible to work in massless approximation in finite piece and use fermion masses only as regulators in singular piece

Real corrections - Overview

- calculate Feynman diagrams "by hand" using WvdW formalism
- perform phase-space integration numerically
 - \rightarrow cancellation of IR divergencies delicate
- divide corrections into finite and singular piece and treat singular piece analytically
 - exact cancellation of singularities between virtual and real corrections
 - possible to work in massless approximation in finite piece and use fermion masses only as regulators in singular piece
- two approaches: phase-space slicing and dipole subtraction
- Both algorithms rely on analytical integration over full photonic phase-space → need extension for event selection used in experiment

- non-collinear-safe subtraction worked out by Dittmaier, Kasprzik
- for phase-space slicing consider collinear final-state radiation • without hard-photon cut $q_h = \frac{q_f}{z}$

 q_f

- non-collinear-safe subtraction worked out by Dittmaier, Kasprzik
- for phase-space slicing consider collinear final-state radiation • without hard-photon cut $q_h = \frac{q_f}{z}$

$$d\sigma_{\text{coll.}}^{\text{final}} = \sum_{i=3}^{4} \frac{\alpha}{2\pi} Q_i^2 d\sigma_{\text{Born}}(q_i) \int_0^{1-\Delta E/E_i} dz_i \left\{ \frac{1+z_i^2}{1-z_i} \ln\left(\frac{4E_i^2\delta_c}{2m_i^2}z_i^2\right) - \frac{2z_i}{1-z_i} \right\} \quad \forall k_{\gamma} = \frac{1-z}{z} q_f$$
$$= \sum_{i=3}^{4} \frac{\alpha}{2\pi} Q_i^2 d\sigma_{\text{Born}}(q_i) \left(\left[\frac{3}{2} + 2\ln\left(\frac{\Delta E}{E_i}\right) \right] \left[1 - \ln\left(\frac{4E_i^2}{m_i^2}\frac{\delta_c}{2}\right) \right] + 3 - \frac{2\pi^2}{3} \right)$$

• with hard-photon cut (translates into soft-quark cut z'_{cut})

$$d\sigma_{\text{coll.}}^{\text{final}}(\boldsymbol{z}_{\text{cut}}') = \sum_{i=3}^{4} \frac{\alpha}{2\pi} Q_{i}^{2} d\sigma_{\text{Born}}(q_{i}) \left\{ \int_{\boldsymbol{z}_{\text{cut}}}^{1-\Delta E/E_{i}} \mathrm{d}\boldsymbol{z}_{i} \frac{1+\boldsymbol{z}_{i}^{2}}{1-\boldsymbol{z}_{i}} \ln\left(\frac{4E_{i}^{2}\delta_{c}}{2m_{i}^{2}}\boldsymbol{z}_{i}^{2}\right) - \frac{2\boldsymbol{z}_{i}}{1-\boldsymbol{z}_{i}} \right\}$$
$$= \sum_{i=3}^{4} \frac{\alpha}{2\pi} Q_{i}^{2} \mathrm{d}\sigma_{\text{Born}}(q_{i}) \left[\frac{9}{2} - 4\boldsymbol{z}_{\text{cut}}' - \frac{\boldsymbol{z}_{\text{cut}}'^{2}}{2} + \left(2\boldsymbol{z}_{\text{cut}}' + \boldsymbol{z}_{\text{cut}}'^{2}\right) \ln\left(\boldsymbol{z}_{\text{cut}}'\right) \right.$$
$$\left. + \left(-\frac{3}{2} + \boldsymbol{z}_{\text{cut}}' + \frac{1}{2}\boldsymbol{z}_{\text{cut}}'^{2} - 2\ln\left(\frac{\Delta E/E_{i}}{1-\boldsymbol{z}_{\text{cut}}'}\right) \right) \ln\left(\frac{4E_{i}^{2}\delta_{c}}{2m_{i}^{2}}\right) - \frac{2\pi^{2}}{3}$$
$$\left. + 2\ln\left(\frac{\Delta E/E_{i}}{1-\boldsymbol{z}_{\text{cut}}'}\right) + 4\ln\left(1-\boldsymbol{z}_{\text{cut}}'\right)\ln\left(\boldsymbol{z}_{\text{cut}}'\right) + 4\text{Li}_{2}\left(\boldsymbol{z}_{\text{cut}}'\right) \right]$$

 q_f

 Idea: proceed as in parton distributions and factorise singular piece into experimentally determined photon fragmentation function

$$\Rightarrow \int \mathrm{d}\sigma^{\mathrm{IR-safe}} = \int \mathrm{d}\sigma_{\mathrm{virt}} + \int \mathrm{d}\sigma_{\mathrm{real}}(z'_{\mathrm{cut}}) + \int \mathrm{d}\sigma_{\mathrm{frag}}(z'_{\mathrm{cut}})$$

 Idea: proceed as in parton distributions and factorise singular piece into experimentally determined photon fragmentation function

$$\Rightarrow \int d\sigma^{\text{IR-safe}} = \int d\sigma_{\text{virt}} + \int d\sigma_{\text{real}}(z'_{\text{cut}}) + \int d\sigma_{\text{frag}}(z'_{\text{cut}})$$

• Ansatz used at ALEPH $D_{q \to \gamma}^{\text{ALEPH,MR}}(z) = \left(\frac{\alpha Q_q^2}{2\pi}\right) \left\{\frac{1+z^2}{1-z} \left[\ln\left(\frac{m_q^2}{\mu_0^2}\frac{(1-z)^2}{z^2}\right) + 1\right] + C\right\}$

 Idea: proceed as in parton distributions and factorise singular piece into experimentally determined photon fragmentation function

$$\Rightarrow \int d\sigma^{\text{IR-safe}} = \int d\sigma_{\text{virt}} + \int d\sigma_{\text{real}}(z'_{\text{cut}}) + \int d\sigma_{\text{frag}}(z'_{\text{cut}})$$

• Ansatz used at ALEPH $D_{q \to \gamma}^{\text{ALEPH,MR}}(z) = \left(\frac{\alpha Q_q^2}{2\pi}\right) \left\{\frac{1+z^2}{1-z} \left[\ln\left(\frac{m_q^2}{\mu_0^2}\frac{(1-z)^2}{z^2}\right) + 1\right] + C\right\}$

• results in
$$d\sigma_{\rm frag}(z'_{\rm cut}) = \sum_{i=3}^{4} \frac{\alpha}{2\pi} Q_i^2 d\sigma_{\rm Born}(q_i) \int_0^{z'_{\rm cut}} dz_i D_{q \to \gamma}^{\rm ALEPH, MR}(z_i)$$

 Idea: proceed as in parton distributions and factorise singular piece into experimentally determined photon fragmentation function

$$\Rightarrow \int d\sigma^{\text{IR-safe}} = \int d\sigma_{\text{virt}} + \int d\sigma_{\text{real}}(z'_{\text{cut}}) + \int d\sigma_{\text{frag}}(z'_{\text{cut}})$$

• Ansatz used at ALEPH $D_{q \to \gamma}^{\text{ALEPH,MR}}(z) = \left(\frac{\alpha Q_q^2}{2\pi}\right) \left\{\frac{1+z^2}{1-z} \left[\ln\left(\frac{m_q^2}{\mu_0^2}\frac{(1-z)^2}{z^2}\right) + 1\right] + C\right\}$

• results in
$$d\sigma_{\rm frag}(z'_{\rm cut}) = \sum_{i=3}^{4} \frac{\alpha}{2\pi} Q_i^2 d\sigma_{\rm Born}(q_i) \int_0^{z'_{\rm cut}} dz_i D_{q \to \gamma}^{\rm ALEPH, MR}(z_i)$$

• such that

$$d\sigma_{\rm frag}(z'_{\rm cut}) + d\sigma_{\rm coll.}^{\rm final}(z'_{\rm cut}) = d\sigma_{\rm coll.}^{\rm final} - \sum_{i=3}^{4} \left\{ (4+C) z'_{\rm cut} + \left(z'_{\rm cut} + \frac{1}{2} z'_{\rm cut}^2 \right) \ln \left(\frac{4E_i^2 \delta_c}{2\mu_0^2} (1-z'_{\rm cut})^2 \right) + \left[-\frac{3}{2} + \ln \left(\frac{4E_i^2 \delta_c}{2\mu_0^2} (1-z'_{\rm cut}) \right) \right] \ln \left((1-z'_{\rm cut})^2 \right) \right\}$$

• Experimentally measured quantity

$$\frac{1}{\sigma_{\rm had}} \frac{{\rm d}\sigma}{{\rm d}y}$$

• σ_{had} up to $\mathcal{O}(\alpha)$ $\sigma_{\text{had}} = \sigma_0 \left(1 + \left(\frac{\alpha}{2\pi}\right) \delta_{\sigma,1} + \mathcal{O}(\alpha^2) \right)$ • leads to $\frac{1}{\sigma_{\text{had}}} \frac{\mathrm{d}\sigma}{\mathrm{d}y} = \frac{\mathrm{d}A}{\mathrm{d}y} + \left(\frac{\alpha}{2\pi}\right) \left(\frac{\mathrm{d}\delta_{\gamma}}{\mathrm{d}y} + \frac{\mathrm{d}\delta_{A}}{\mathrm{d}y} - \frac{\mathrm{d}A}{\mathrm{d}y} \delta_{\sigma,1}\right) + \mathcal{O}(\alpha^2)$

Experimentally measured quantity 1 d σ $\overline{\sigma_{\rm had}} \, \overline{{\rm d} y}$ $\sigma_{
m had}$ up to ${\cal O}(lpha)$ $\sigma_{\text{had}} = \sigma_0 \left(1 + \left(\frac{\alpha}{2\pi} \right) \delta_{\sigma,1} + \mathcal{O} \left(\alpha^2 \right) \right)$ leads to $\frac{1}{\sigma_{\text{had}}}\frac{\mathrm{d}\sigma}{\mathrm{d}y} = \frac{\mathrm{d}A}{\mathrm{d}y} + \left(\frac{\alpha}{2\pi}\right)\left(\frac{\mathrm{d}\delta_{\gamma}}{\mathrm{d}y} + \frac{\mathrm{d}\delta_{A}}{\mathrm{d}y} - \frac{\mathrm{d}A}{\mathrm{d}y}\delta_{\sigma,1}\right) + \mathcal{O}\left(\alpha^{2}\right)$ $\frac{\mathrm{d}\delta_{\mathrm{EW}}}{\mathrm{d}y}$

Experimentally measured quantity 1 d σ $\overline{\sigma_{\rm had}} \, \overline{{\rm d} y}$ $\sigma_{
m had}$ up to ${\cal O}(lpha)$ $\sigma_{\text{had}} = \sigma_0 \left(1 + \left(\frac{\alpha}{2\pi} \right) \delta_{\sigma,1} + \mathcal{O} \left(\alpha^2 \right) \right)$ leads to $\frac{1}{\sigma_{\text{had}}}\frac{\mathrm{d}\sigma}{\mathrm{d}\boldsymbol{y}} = \frac{\mathrm{d}A}{\mathrm{d}\boldsymbol{y}} + \left(\frac{\alpha}{2\pi}\right)\left(\frac{\mathrm{d}\delta_{\gamma}}{\mathrm{d}\boldsymbol{y}} + \frac{\mathrm{d}\delta_{A}}{\mathrm{d}\boldsymbol{y}} - \frac{\mathrm{d}A}{\mathrm{d}\boldsymbol{y}}\delta_{\sigma,1}\right) + \frac{\mathrm{d}\delta_{\text{EW,LL}}}{\mathrm{d}\boldsymbol{y}} + \mathcal{O}\left(\alpha^{2}\right)$ $\frac{\mathrm{d}\delta_{\mathrm{EW}}}{\mathrm{d}y}$

Experimentally measured quantity $1 d\sigma$ $\overline{\sigma_{\rm had}} \, \overline{{
m d} y}$ $\sigma_{
m had}$ up to ${\cal O}(lpha)$ $\sigma_{\text{had}} = \sigma_0 \left(1 + \left(\frac{\alpha}{2\pi} \right) \delta_{\sigma,1} + \mathcal{O} \left(\alpha^2 \right) \right)$ leads to $\frac{1}{\sigma_{\text{had}}}\frac{\mathrm{d}\sigma}{\mathrm{d}u} = \frac{\mathrm{d}A}{\mathrm{d}u} + \left(\frac{\alpha}{2\pi}\right)\left(\frac{\mathrm{d}\delta_{\gamma}}{\mathrm{d}u} + \frac{\mathrm{d}\delta_{A}}{\mathrm{d}u} - \frac{\mathrm{d}A}{\mathrm{d}u}\delta_{\sigma,1}\right) + \frac{\mathrm{d}\delta_{\text{EW,LL}}}{\mathrm{d}u} + \mathcal{O}\left(\alpha^{2}\right)$ $\frac{\mathrm{d}\delta_{\mathrm{EW}}}{\mathrm{d}y}$ $\frac{\mathrm{d}\delta_{\mathrm{EW,LL}}}{\mathrm{d}\boldsymbol{u}} = \left(\frac{\mathrm{d}\delta_{A,\geq2,\mathrm{LL}}}{\mathrm{d}\boldsymbol{u}} - \frac{\mathrm{d}A}{\mathrm{d}\boldsymbol{u}}\delta_{\sigma,\geq2,\mathrm{LL}}\right) + \left(\frac{\mathrm{d}A}{\mathrm{d}\boldsymbol{u}}\delta_{\sigma,1,\mathrm{LL}}^2 - \frac{\mathrm{d}\delta_{A,1,\mathrm{LL}}}{\mathrm{d}\boldsymbol{u}}\delta_{\sigma,1,\mathrm{LL}}\right)$ contains logarithms of the form $\alpha^n \ln^n \left(\frac{s}{m^2} \right)$

Implementation

- calculate h.o. LL corrections using structure-function approach
- calculate σ_{had} up to $\mathcal{O}(\alpha)$ with the same event selection as in the case of three-jet production

Implementation

- calculate h.o. LL corrections using structure-function approach
- calculate σ_{had} up to $\mathcal{O}(\alpha)$ with the same event selection as in the case of three-jet production
- → put different contributions in parton-level Monte-Carlo event generator (based on POLE by C. Meier) extended to
 - treat unidentified particles in final state (Jets)
 - include non-collinear-safe phase-space slicing and subtraction
 - include photon fragmentation function for an infrared-safe definition of observables

Implementation

- calculate h.o. LL corrections using structure-function approach
- calculate σ_{had} up to $\mathcal{O}(\alpha)$ with the same event selection as in the case of three-jet production
- → put different contributions in parton-level Monte-Carlo event generator (based on POLE by C. Meier) extended to
 - treat unidentified particles in final state (Jets)
 - include non-collinear-safe phase-space slicing and subtraction
 - include photon fragmentation function for an infrared-safe definition of observables

• Checks:

- UV finiteness: vary scale $\mu~$ of dim. reg. \rightarrow result unchanged
- IR finiteness: vary m_{γ} and small $m_f \rightarrow$ result unchanged
- two completely independent calculations: one by S. Dittmaier and T. Gehrmann, the other by A. Denner and CK → full agreement

Outline

- Einführung in die Teilchenphysik
- QCD at e⁺e⁻ colliders
- Inventory of the calculation
- Results
- Summary and conclusions

Results for σ_{had}

• weak $\mathcal{O}(lpha)$ include weak and fermionic loops, contribute between -6% and +5%

- full $\mathcal{O}(\alpha)$ mostly between -10% and +30%, radiative return for $s>M_{
 m Z}^2$
- h.o.LL increases corrections below 60 GeV and above 120 GeV, decrease between

Corrections for $s = M_Z^2$

- similar behavior as for $\sigma_{
 m had}$
- \bullet onset of $q\bar{q}\gamma$ final states for
 - $1 T \lesssim 0.03$

Corrections for $s = M_Z^2$

- similar behavior as for $\sigma_{
 m had}$
- onset of $q\bar{q}\gamma$ final states for $1-T \lesssim 0.03$

- cancellations of ISR contribution between distribution and σ_{had}
- weak corrections at per-mille level
- drop in first bin due to lower cut-off

Phase-space slicing vs. subtraction

- vary slicing parameters ightarrow plateau for $\,\delta_{
 m s} \lesssim 10^{-3}, \; \delta_{
 m c} \lesssim 10^{-4}$
- subtraction and slicing agree perfectly
- subtraction more efficient:
 - 2×10^6 events for virtual, 5×10^9 events for real in slicing \rightarrow 44h on single CPU
 - 2×10^6 events for virtual, 2×10^8 events for real in subtr. $\rightarrow 23h$ on single CPU
Corrections above Z peak

0.3

0.3

- emergence of peak for energies above M_Z
- peak moves to larger T for larger energies
- peak disappears for 500 GeV
- explained by radiative return
- crucial to implement exact experimental setup

Outline

- Einführung in die Teilchenphysik
- QCD at e⁺e⁻ colliders
- Inventory of the calculation
- Results
- Summary and conclusions

Summary and conclusions

- We have calculated the NLO EW corrections to event-shape observables and jet rates
- Results have been implemented into flexible Monte-Carlo parton-level event generator and are valid for arbitrary energies
- Experimental set up has been modeled as precisely as possible
- Corrections are sizeable (~5%) and depend on the values of the event-selection cuts

Summary and conclusions

- We have calculated the NLO EW corrections to event-shape observables and jet rates
- Results have been implemented into flexible Monte-Carlo parton-level event generator and are valid for arbitrary energies
- Experimental set up has been modeled as precisely as possible
- Corrections are sizeable (~5%) and depend on the values of the event-selection cuts
- Include $q\bar{q}q\bar{q}$ contribution (QCD-EW interference)
- Use results for improved prediction of $lpha_{
 m s}$

Backup slides

Input

- use standard set of input parameters
- use G_{μ} -scheme to derive electromagnetic coupling
- work in complex-mass scheme

$$\begin{split} G_{\mu} &= 1.16637 \times 10^{-5} \,\mathrm{GeV}^{-2}, \quad \alpha(0) = 1/137.03599911, \quad \alpha_{G_{\mu}} = 1/132.43421099 \\ \alpha_{\mathrm{s}}(M_{\mathrm{Z}}) &= 0.1176, \\ M_{\mathrm{W}}^{\mathrm{LEP}} &= 80.403 \,\mathrm{GeV}, \qquad \Gamma_{\mathrm{W}}^{\mathrm{LEP}} = 2.141 \,\mathrm{GeV}, \\ M_{\mathrm{Z}}^{\mathrm{LEP}} &= 91.1876 \,\mathrm{GeV}, \qquad \Gamma_{\mathrm{Z}}^{\mathrm{LEP}} = 2.4952 \,\mathrm{GeV}, \\ m_{\mathrm{e}} &= 0.51099892 \,\mathrm{MeV}, \qquad m_{\mathrm{t}} = 171.0 \,\mathrm{GeV}, \qquad M_{\mathrm{H}} = 120 \,\mathrm{GeV} \end{split}$$

conversion of on-shell LEP masses to pole masses

 $M_V = M_V^{\text{LEP}} / \sqrt{1 + (\Gamma_V^{\text{LEP}} / M_V^{\text{LEP}})^2}, \qquad \Gamma_V = \Gamma_V^{\text{LEP}} / \sqrt{1 + (\Gamma_V^{\text{LEP}} / M_V^{\text{LEP}})^2}$

Input

- use standard set of input parameters
- use G_{μ} -scheme to derive electromagnetic coupling
- work in complex-mass scheme

$$\begin{split} G_{\mu} &= 1.16637 \times 10^{-5} \, \mathrm{GeV}^{-2}, \quad \alpha(0) = 1/137.03599911, \quad \alpha_{G_{\mu}} = 1/132.43421099 \\ \alpha_{\mathrm{s}}(M_{\mathrm{Z}}) &= 0.1176, \\ M_{\mathrm{W}}^{\mathrm{LEP}} &= 80.403 \, \mathrm{GeV}, \qquad \Gamma_{\mathrm{W}}^{\mathrm{LEP}} = 2.141 \, \mathrm{GeV}, \\ M_{\mathrm{Z}}^{\mathrm{LEP}} &= 91.1876 \, \mathrm{GeV}, \qquad \Gamma_{\mathrm{Z}}^{\mathrm{LEP}} = 2.4952 \, \mathrm{GeV}, \\ m_{\mathrm{e}} &= 0.51099892 \, \mathrm{MeV}, \qquad m_{\mathrm{t}} = 171.0 \, \mathrm{GeV}, \qquad M_{\mathrm{H}} = 120 \, \mathrm{GeV} \end{split}$$

conversion of on-shell LEP masses to pole masses

 $M_V = M_V^{\text{LEP}} / \sqrt{1 + (\Gamma_V^{\text{LEP}} / M_V^{\text{LEP}})^2}, \qquad \Gamma_V = \Gamma_V^{\text{LEP}} / \sqrt{1 + (\Gamma_V^{\text{LEP}} / M_V^{\text{LEP}})^2}$

• event selection based on four parameters

 $\cos \theta_{\rm cut} = 0.965, \quad s_{\rm cut} = 0.81, \quad z_{\rm cut} = 0.9, \quad y_{\rm cut} = 0.002$

Three-jet rate

Dependence of results on es parameters

- peak can be explained by radiative-return phenomenon
- cluster energetic photon and soft gluon such that $z_{\rm cut}$ is not exceeded and $s_{q\bar{q}\gamma}=M_Z^2$
 - enhancement due to radiative return
 - Iogarithmic enhancement due to soft gluon
- analytic analysis shows perfect agreement with the observed behavior

Comparison to related work

- different group already has published results
 - do not consider $q\bar{q}\gamma$ final states
 - not normalised to $\sigma_{
 m had}$
 - calculate event-shape observables from jet momenta and impose lower cut-off on jet energy

Comparison to related work

- different group already has published results
 - do not consider $q\bar{q}\gamma$ final states
 - not normalised to $\sigma_{
 m had}$
 - calculate event-shape observables from jet momenta and impose lower cut-off on jet energy
- not clear how event selection is realised in NLO calculation
 - \rightarrow difficult to perform tuned comparison
- agree on relative size of full $\mathcal{O}(\alpha)$ and h.o.LL improved results