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Tree-level Monte Carlos

Stefan Höche, Particle Theory Seminar, PSI, 19.3.2009

How do they work ?
Hard matrix elements
Showers
Multiple parton interactions
Hadronisation
Hadron decays

... is there still room for improvement and
    can this help to solve urgent experimental problems ?

“Traditional” tree-level MC’s
like Pythia and HERWIG have
been around for longer than myself, so ...

2 Contents

Fig. 1 Pictorial representation of a tt̄h event as produced by an event gener-
ator. The hard interaction (big red blob) is followed by the decay of
both top quarks and the Higgs boson (small red blobs). Additional
hard QCD radiation is produced (red) and a secondary interaction
takes place (purple blob) before the final state partons hadronise
(light green blobs) and hadrons decay (dark green blobs). Photon
radiation occurs at any stage (yellow).

Event generation

To compare theoretical predictions and experimental events in a detector, there are es-
sentially two different strategies. Either the experimental signature is corrected back to
the parton level through “running hadronisation and QCD evolution backwards”, or the
full final state is simulated by a computer program including all aspects described above.
The former can be viewed as the “experimentalists approach” to validate a given predic-
tion, while the latter is the “phenomenologists approach”. It leads to the construction of
computer programs known as event generators.

Event generators rely on the factorisation of an event into different stages, corresponding to
different energy scales. This is pictorially represented by Fig. 1. In general the simulation
starts with the hard process (dark red blob), where perturbation theory is applicable due to
correspondingly high scales. This part of the simulation is handled by matrix element (ME)
generators. QCD evolution is then run from the hard scale down to the hadronisation scale,

... are tree-level MC’s old-fashioned
    and not up to the task ?

Let’s have a look and take Sherpa as an example



Sounds trivial, everything is known, right ?
So why does it take us so long to build a tree-level ME generator ?

Two steps:

The task is to generate events (weighted or unweighted)
according to the differential cross section

Matrix element generation

Compute the matrix element
Sample the phasespace

The hard matrix element is rather tedious to compute
for large final state multiplicities, even at tree-level
( pp    W+5jets has about 7000 diagrams )
We have a high-dimensional phasespace
with a most commonly sharply peaked integrand

The simple solution: restrict it to 2    2 and let showers do the rest
If we want something better, we have to try harder ...
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Pre-compute

Matrix element generation

Commonly used techniques to evaluate the ME ( non-exhaustive         )

Fast and easy
Lacks generality, low multis Pythia, HERWIG

Diagrammatic techniques Very flexible
Medium multis

MadGraph, CompHEP
AMEGIC++

Recursive techniques Very flexible, high multis
Slow at low multis HELAC, Comix

On top of that we have a choice ...
... sample or sum over colours ?
... sample or sum over helicities ?
... depends on what it costs ...
... the colour sum is tedious, because SU(3) is a nasty group
... the helicity sum is easy, because we can recycle subamplitudes

part of
Sherpa

Stefan Höche, Particle Theory Seminar, PSI, 19.3.2009



Guess the peak structure of the integrand 
from the dynamics of the process Nucl. Phys. B9 (1969) 568

Matrix element generation

Commonly used technique to evaluate the multi-particle phasespace
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Combine channels corresponding to single diagrams
into a multi-channel and optimise  CPC 83(1994)141

The nasty part are correlation and interference effects in the ME,
which often render the optimisation cumbersome !
Colour- and / or helicity-sampling introduces additional d.o.f.

Refine single integration channels with VEGAS  CLNS-08/447 (1980)

Other, less optimal / general techniques exist, like Rambo & HAAG 

Diso(23, 45) ⊗ P0(23) ⊗ P0(45)

⊗ Diso(2, 3) ⊗ Diso(4, 5)
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Tree-level ME generators

2.2 Results 21

In the phase-space integration cuts on transverse momentum pT , pseudo-rapidity η and the
cone distance ∆R have been applied on all final state particles with the exception of massive
particles with mi > 3 GeV and neutrinos, whose phase space remains unconstrained. The
cuts read, in particular:

pT
i > 20 GeV,

|ηi| < 2.5

∆Rij =
√

∆φ2 + ∆η2 > 0.4 , (2.13)

Statistical errors of the Monte Carlo integrations, i.e. one standard deviation, are given in
parentheses.

Numerical results

X-sects (pb) e−ν̄e + n QCD jets
Number of jets 0 1 2 3 4 5 6

ALPGEN 3904(6) 1013(2) 364(2) 136(1) 53.6(6) 21.6(2) 8.7(1)
AMEGIC++ 3908(3) 1011(2) 362.3(9) 137.5(5) 54(1)
CompHEP 3947.4(3) 1022.4(5) 364.4(4)
GR@PPA 3905(5) 1013(1) 361.0(7) 133.8(3) 53.8(1)
JetI 3786(81) 1021(8) 361(4) 157(1) 46(1)

MadEvent 3902(5) 1012(2) 361(1) 135.5(3) 53.6(2)

Table 2.8: Cross sections for the process e−ν̄e + n jets at the LHC. All results are in pb.

X-sects (pb) e+νe + n QCD jets
Number of jets 0 1 2 3 4 5 6

ALPGEN 5423(9) 1291(13) 465(2) 182.8(8) 75.7(8) 32.5(2) 13.9(2)
AMEGIC++ 5432(5) 1277(2) 466(2) 184(1) 77.3(4)
CompHEP 5485.8(6) 1287.5(7) 467.3(8)
GR@PPA 5434(7) 1273 (2) 467.7(9) 181.8(5) 76.6(3)
JetI 5349(143) 1275(12) 487(3) 212(2)

MadEvent 5433(8) 1277(2) 464(1) 182(1) 75.9(3)

Table 2.9: Cross sections for the process e+νe + n jets at the LHC. All results are in pb.

The first processes considered here are the production of electroweak gauge bosons. In
Tables 2.9 and 2.8 the cross sections for the production of positively and negatively charged
W bosons accompanied by the production of up to 6 jets are presented1. The achieved
precision of AMEGIC++ and the other codes is on the sub-per cent level. Note that the cross
sections for pp → W+ + X are approximately 35% larger than the corresponding cross
sections for pp → W− + X. This is in contrast to the Tevatron, where proton anti-proton
collisions are performed, such that the charge does not matter for the production cross

1AMEGIC++ is able to calculate the cross section for the production of gauge bosons with up to four extra
jets.
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Example: ME-Generator comparison in context of MC4LHC
http://indico.cern.ch/categoryDisplay.py?categId=152  (2004)

And we like
to fill these, too !

Sherpa uses
AMEGIC++
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Twistor-inspired techniques (CSW rules) 
said to speed up calculation of
high multiplicy pure QCD ME’s

T. Gleisberg, SH, F. Krauss, R. Matyskiewicz; arXiv:0808.3672 [hep-ph]

High-Multi ME’s withCSW

Parameter Value

EW parameters in the Gµ scheme

GF 1.16639 × 10−5

αQED 1/132.51

sin2 θW 0.2222

MZ 91.188 GeV

mH 120 GeV

QCD parameters

PDF set CTEQ6L1

αs 0.130

µF , µR MZ

jet, initial parton g, u, d, s, c

Parameter Value

Widths (fixed width scheme)

ΓZ 2.446 GeV

Cuts

p⊥, i > 30 GeV

|ηi| < 5

66 GeV < mll < 116 GeV

CDF Run II kT algorithm [23]

with kT > 30 GeV and D=0.7

Tab. 3 Parameters for the integration time comparison.

pp → n jets

gluons only n = 2 n = 3 n = 4 n = 5 n = 6

MC cross section [pb] 8.915 · 107 5.454 · 106 1.150 · 106 2.757 · 105 7.95 · 104

stat. error 0.1% 0.1% 0.2% 0.5% 1%

integration time for given stat. error [s]

CSW (HAAG) 4 165 1681 12800 2 · 106

CSW (CSI) - 480 6500 11900 197000

AMEGIC (HAAG) 6 492 41400 - -

COMIX (RPG) 159 5050 33000 38000 74000

COMIX (CSI) - 780 6930 6800 12400

Tab. 4 Cross section and evaluation times for different matrix element (phase space) generation methods
for multi-gluon scattering at the LHC, given in pb. Numbers were generated on a 2.53 GHz
Intel R© CoreTM2 Duo T9400 CPU. For cuts and parameter settings, cf. Tab. 3.
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Advantage: Up to                 only up to 3 MHV-amps sewed togetherNout = 7

1.5 BCF recursion 19
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Fig. 1.2 The six MHV graphs for the computation of the 6-gluon non-MHV ampli-
tude A(−,−,−,+,+,+) in the CSW formalism. Gluons are represented by
straight lines, while grey blobs denote MHV amplitudes.

1.5 The BCF recursive relations

In this section, the BCF recursive relations, presented in Refs. [66] shall be introduced.
Like the CSW vertex rules presented above, they are an outcome of major theoretical
improvements in the calculation of higher order QCD corrections. They state that any tree-
level colour-ordered amplitude can be constructed from products of two on-shell amplitudes
of fewer particles, multiplied by a simple scalar propagator. These new calculational tools
have allowed to derive expressions for multi-parton amplitudes [67], which have simple and
compact analytic forms.

Assuming an n-gluon amplitude with 1 and n being opposite sign helicity gluons, the BCF
recursive relations read

An(1, 2, . . . , n) =
n−2∑

k=2

Ak+1

(
1̂, 2, . . . , k,−P̂−h

1,k

) 1

P 2
1,k

An−k+1

(
P̂ h

1,k, k + 1, . . . , n̂
)

, (1.42)

where a sum over the helicities h of the intermediate gluon is implicit, and

P̂1,k = P1,k + zλnλ̃1 ,

p̂1 = p1 + zλnλ̃1 ,

p̂n = pn − zλnλ̃1 .

(1.43)

In this context λi and λ̃i are the co- and contravariant spinor components of the light-like

Oops !

... sounds promising, so how far can we really go with it ?

For large multis we need something better than Feynman diagrams ...

Stefan Höche, Particle Theory Seminar, PSI, 19.3.2009



Apart from these, the new CSW-like recursive relations retain the same form as the cor-

responding color-ordered relations with the difference that in the color-ordered case the

sum goes over unordered objects. Furthermore, as in the color-ordered case, the number

of different vertices is fixed and only three-point vertices appear in the recursive relations.

Therefore we may compare them to the color-dressed Berends-Giele recursive relation pre-

sented in Section 3.

6. Numerical results

All relations for calculating multi-gluon amplitudes presented in the previous sections have

been implemented into C++ Monte Carlo programs using the tools set ATOOLS-2.0 and

the integration package PHASIC++-1.0 [3]. A comparison of calculation times for helicity

summed color-ordered amplitudes versus the results obtained in Ref. [29] has been per-

formed. Our implementations yield exactly the same growth in computation time, except

for the CSW rules, where we gain considerably due to rewriting the CSW vertex rules in

terms of recursive relations for internal lines. Furthermore we have checked, employing the

color-flow basis, that the color-dressed relations yield the same results as the calculations

employing color-ordered amplitudes along with the color-flow decomposition presented in

Ref. [24]. Using the adjoint representation, we have checked that the color-dressed BCF

relations yield the same result as the color-ordered ones along with a decomposition of the

total amplitude in the adjoint basis.

A comparison of the computation times for the various approaches using the color-

flow basis can be found in Table 3. The color-dressed Berends-Giele relations are the

fastest method for more than five final state gluons. For less than six final state gluons the

color-flow decomposition using color-ordered amplitudes calculated according to the BCF

recursion performs better. In this case only few valid color flows exist [24] and primarily

Final BG BCF CSW

State CO CD CO CD CO CD

2g 0.24 0.28 0.28 0.33 0.31 0.26

3g 0.45 0.48 0.42 0.51 0.57 0.55

4g 1.20 1.04 0.84 1.32 1.63 1.75

5g 3.78 2.69 2.59 7.26 5.95 5.96

6g 14.2 7.19 11.9 59.1 27.8 30.6

7g 58.5 23.7 73.6 646 146 195

8g 276 82.1 597 8690 919 1890

9g 1450 270 5900 127000 6310 29700

10g 7960 864 64000 - 48900 -

Table 3: Computation time (s) of the 2 → n gluon amplitudes for 104 phase space points, sam-
pled over helicity and color. Results are given for the color-ordered (CO) and the color-dressed
(CD) Berends-Giele (BG), Britto-Cachazo-Feng (BCF) and Cachazo-Svrček-Witten (CSW) rela-
tions. Numbers were generated on a 2.66 GHz XeonTM CPU.

– 18 –

C. Duhr, F. Maltoni, SH: JHEP 08 (2006) 062
Apparently, for very large multis we need something even better ...

why BG recursive Relations ?

QCD: Comparison with BCFW/CSW method shows 
superiority of CDBG/Dyson-Schwinger algorithms for numerics

Computation time
2   n gluon ME for 
10  phase space 
points, sampled in
helicity and colour

4

CO    colour ordered
CD    colour dressed

Factorial growth tamed !
Now exponential (~3  )n Other methods much slower due 

to unsuitable natural color basis 
and/or large number of vertices
Stefan Höche, Particle Theory Seminar, PSI, 19.3.2009



The growth in computational complexity is solely determined 
by the number of external legs at the model’s vertices

BG recursion can be generalised
New ME generator COMIX

Fully general SM implementation
Key point: Vertex decomposition of all four-particle vertices

Very High-Multi ME’s: COMIX

T. Gleisberg, SH: JHEP12(2008)039
1.3 Berends-Giele recursion 17
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Fig. 1.1 Pictorial representation of the Berends-Giele recursive relations, Eq. (1.36)

where the momentum sum Pi,j is defined through

Pi,j =
j−1∑

k=i

pk , (1.37)

and where V µνρ
3 (P1,k, Pk+1,n) and V µνρσ

4 are the colour-ordered three and four-gluon vertices
defined in Ref. [55].

V µνρ
3 (P, Q) = i

gs√
2

(
gνρ(P − Q)µ + 2gρµQν − 2gµνP ρ

)
,

V µνρσ
4 = i

g2
s

2

(
2gµρgνσ − gµνgρσ − gµσgνρ

)
.

(1.38)

The algorithm is schematically depicted in Fig. 1.1. A full n+1-gluon amplitude is obtained
by amputating the off-shell propagator and contracting the remaining quantity with the
external polarisation of gluon n + 1.

A(1, . . . , n + 1) = εµ
n+1

P 2
1,n

i
Jµ(1, . . . , n) . (1.39)

Similar recursions exists for the off-shell quark currents [59]. For some exceptional cases
Eq. (1.36) can be solved in closed form [59, 60]. In particular one obtains the n-gluon
off-shell current with like-sign helicity gluons

Jµ(1+, . . . , n+) = gn−2
s

〈k−|γµ/P1,n|k+〉√
2〈k1〉〈12〉 . . . 〈n−1 n〉〈nk〉

. (1.40)

It can be used to prove the form of maximally helicity violating (MHV) or Parke-Taylor
tree amplitudes, which was first conjectured by Parke and Taylor in Ref. [61] and proved by
Berends and Giele in Ref. [59]. Such amplitudes correspond to the “mostly plus” (“mostly
minus”) helicity assignment, where only two of n gluons have negative (positive) helicity.
They are given by the simple formulae

A(1+, . . . , i−, . . . , j−, . . . , n+) = i gn−2
s

〈ij〉4

〈12〉 . . . 〈n−1 n〉〈n1〉
,

A(1−, . . . , i+, . . . , j+, . . . , n−) = i gn−2
s

[ij]4

[12] . . . [n−1 n] [n1]
.

(1.41)

Process Time [ ms / pt ]
sum sample Ratio Gain

gg → 2g 0.073 0.025 2.9 2.1
gg → 3g 0.339 0.060 5.7 3.5
gg → 4g 1.67 0.149 11 4.5
gg → 5g 8.98 0.427 21 5.3
gg → 6g 49.6 1.39 36 6.6
gg → 7g 298 4.32 69 7.1
gg → 8g 1990 13.6 146 6.9
gg → 9g 13100 43.7 300 6.7
gg → 10g 96000 138 695 5.9

Tab. 1 Computation time for multi-gluon scattering matrix elements sampled over colour con-
figurations. Displayed times are averages for a single evaluation of the colour-dressed BG
recursion relation, when summing and sampling over helicity configurations, respectively.
Additionally in the last column, labeled ‘Gain’ we give the inverse ratio of evaluation
times multiplied by the naive ratio 2n − 2(n + 1), where n is the number of external
gluons. Numbers were generated on a 2.80 GHz PentiumR© 4 CPU.

gg → ng Cross section [pb]
n 8 9 10 11 12√

s [GeV] 1500 2000 2500 3500 5000
Comix 0.755(3) 0.305(2) 0.101(7) 0.057(5) 0.026(1)
Phys. Rev. D67(2003)014026 0.70(4) 0.30(2) 0.097(6)
Nucl. Phys. B539(1999)215 0.719(19)

Tab. 2 Cross sections for multi-gluon scattering at the center of mass energy
√

s, using the
phase space cuts specified in Eq. (53), compared to literature results. In parentheses the
statistical error is stated in units of the last digit of the cross section.

gg → ng Cross section [pb]

n 7 8 9 10
Comix 2703(14) 407.0(36) 66.5(13) 15.2(26)

Tab. 3 Multi-gluon cross sections at the LHC with
√

d ≥ 20 GeV and d defined as in Ref. [41],
except that ∆R2

ij → cosh ∆ηij − cos ∆φij . In parentheses the statistical error is stated
in units of the last digit of the cross section.
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ME performance in QCD benchmark (2   n gluon)
World

record ;-) 

Now the ME is really ticked off, but how about the phasespace ?
Stefan Höche, Particle Theory Seminar, PSI, 19.3.2009
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π αbπ
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T̄ π,αbπ
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ρ π \ ρ

π

S̄ ρ,π\ρ
π

Fig. 2 Basic decay vertices for phase space generation. Grey blobs correspond to eventually off mass-shell particles.

Dark blobs denote known momenta, light blobs unknown momenta. Arrows indicate the momentum flow.
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In this context we define the one- and no-particle phase space

dΦi = 1 ,

dΦ∅ = 0 .
(41)

The function α corresponds to a vertex-specific weight which may be adapted to optimise the integration
procedure, see Ref. [10]. The second sums run over all possible S- and T -type vertices which have a corre-
spondence in the matrix element. The full differential phase space element is given by

dΦn (a, b; 1, . . . , n) = dΦT (a) . (42)

Note that Eqs. (39) and (40) in the form stated above are not suited to generate the sequence of final state
momenta. To do so one rather has to employ the following algorithm, which corresponds to a reversion of
the recursion and respects the weight factors α introduced above.

• From the set of possible vertices connecting currents in the matrix element, choose a sequence con-
necting all external particles in the following way:

1. Start with the set of indices π = {a, b, 1, . . . , n − 1}, corresponding to the unique external current
of index n.

2. From the set of possible phase space vertices connecting to π select one according to an on-
the-flight constructed multi-channel employing the weights α.4 If π is a single index, stop the
recursion.

3. According to the selected vertex, split π into the subsets π1 and π2. Repeat step 2 for these
subsets.

• Fore each vertex, make use of the fact that π = π to adjust the indices in an appropriate way for
momentum generation. That is if any π contains b and other indices, replace π by π.

• Order T̄ -type vertices ascending and S̄-type vertices descending in the number of external indices
connected to initial states.

4 Note that in this context α-weights have to be normalised to unity on-the-flight.
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momenta. To do so one rather has to employ the following algorithm, which corresponds to a reversion of
the recursion and respects the weight factors α introduced above.

• From the set of possible vertices connecting currents in the matrix element, choose a sequence con-
necting all external particles in the following way:

1. Start with the set of indices π = {a, b, 1, . . . , n − 1}, corresponding to the unique external current
of index n.

2. From the set of possible phase space vertices connecting to π select one according to an on-
the-flight constructed multi-channel employing the weights α.4 If π is a single index, stop the
recursion.

3. According to the selected vertex, split π into the subsets π1 and π2. Repeat step 2 for these
subsets.

• Fore each vertex, make use of the fact that π = π to adjust the indices in an appropriate way for
momentum generation. That is if any π contains b and other indices, replace π by π.

• Order T̄ -type vertices ascending and S̄-type vertices descending in the number of external indices
connected to initial states.

4 Note that in this context α-weights have to be normalised to unity on-the-flight.
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COMIX: Phasespace Recursion

State-of-the art in phasespace generation: factorise PS using

“Propagators“

dΦn (a,b;1, . . . ,n) = dΦm (a,b;1, . . . ,m, π̄) dsπ dΦn−m (π;m + 1, . . . ,n)

“Vertices”

Arrows       Momentum flow

Pπ =

{

1 if π or π external

dsπ else

Remaining basic building blocks of the phasespace:

S
π,π\ρ

π =
λ(sπ, sρ, sπ\ρ)

8 sπ

d cos θρ dφρ

T
π,αbπ

α
=

λ(sαb, sπ, s
αbπ

)

8 sαb

d cos θπ dφπ

ρ π \ ρ

π

S̄ ρ,π\ρ
π

π αbπ

bα

T̄ π,αbπ
α,b

αb

bα

D̄α,b

Fig. 2 Basic vertices for phase space generation. Grey blobs correspond to eventually off mass-
shell particles. Dark blobs denote known momenta, light blobs unknown momenta.
Arrows indicate the momentum flow, i.e. the order in which unknown momenta are
determined from known ones. The D̄-vertex corresponds to overall momentum conser-
vation.

The phase space vertices are used differently in the case of weight calculation and

phase space generation. Consider the t-channel decay. If a phase space point is to be

generated, the new final state momenta pπ and pαbπ are determined from the known initial

state momenta pα and pb. If a weight needs to be computed, the new weight w(b)
α is

determined from the vertex weight and the input weights wπ and wαbπ. The corresponding

situations are depicted in Figs. 2 and 3, respectively. The basic building blocks of phase

space integration are summarised as follows

Pπ =







1 if π or π̄ external
dsπ

2π
else

,

S ρ,π\ρ
π =

λ
(

sπ, sρ, sπ\ρ

)

16π2 2 sπ
d cos θρ dφρ ,

T π,αbπ
α,b =

λ
(

sαb, sπ, s αbπ

)

16π2 2sαb
d cos θπ dφπ ,

Dα,b = (2π)4 d4pαb δ(4)
(

pα + pb − pαb

)

.

(4.3)

Here we have introduced the triangular function

λ (sa, sb, sc) =
√

(sa − sb − sc)
2 − 4sbsc (4.4)

Note that even since α might correspond to an off-shell internal particle, b always indicates

a fixed external incoming particle. This is essential in all further considerations and allows

reusing weight factors in the Monte Carlo integration, just as currents are reused in the

matrix element computation. The functions corresponding to S ρ,π\ρ
π and T π,αbπ

α are in fact

identical, since they represent a solid angle integration. In practice however we choose the

different sampling strategies proposed in Ref. [18]. The s-channel production vertex Dα,b is

only needed for bookkeeping, since it corresponds to overall momentum conservation and

the associated overall weight factor (2π)4.

– 13 –

(2π)4 d4pab δ(4)(pa + pb − pab)

T. Gleisberg, SH: JHEP12(2008)039
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a,b ⊗
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23

Da1,b
⊗ P23 ⊗
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23

1
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3

a b

→

a b

23 1

T 23,1
a,b ⊗

a23 b

1

Da23,b
⊗ P23 ⊗

2 3

23

S 2,3
23

Fig. 4 Correspondence between Feynman diagrams and phase space channels for the pro-
cess qq̄ → e+e−g. The terms in the dashed box are common to both channels and
have to be evaluated only once when computing the phase space weight.

4.1.3 Formulation of the recursive algorithm

Recursive relations for phase space integration in terms of the above quantities can then

be defined through

dΦS (π) = Sπ1,π2
π Pπ1 dΦS (π1) Pπ2 dΦS (π2)

∣

∣

∣

(π1,π2)∈OP(π)
,

dΦ(b)
T (α) = T π1,π2

α,b Pπ1 dΦS (π1) Pπ2 dΦ(b)
T (απ1)

∣

∣

∣

(π1,π2)∈OP(αb)
+ Dα,b dΦS

(

αb
)

.
(4.6)

The above equations correspond to selecting one possible splitting of the multi-index π or

αb per phase space point. We can improve the integration procedure by forming an average

over all possible splittings in the spirit of a multi-channel. Let F be a generalised mean

function. We can then use the F -mean to define

dΦS (π) = F−1









∑

(π1,π2)∈OP(π)

ωπ1,π2
π





−1

×
∑

(π1,π2)∈OP(π)

ωπ1,π2
π F

[

Sπ1,π2
π Pπ1 dΦS (π1) Pπ2 dΦS (π2)

]



 ,

(4.7)
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COMIX: Phasespace Recursion

Example process:

Compute
only once !

Basic idea: Take above recursion literally and “turn it around”
Example: s-channel phasespace recursion

Weights for adaptive 
multichanneling

dΦS (π) =
[

∑

α
(

Sρ,π\ρ
π

) ]−1

×
[

∑

α
(

Sρ,π\ρ
π

)

Sρ,π\ρ
π Pρ dΦS (ρ) Pπ\ρ dΦS (π \ ρ)

]

pp → e
+
e

−

g

“b” is fixed

Every weight 
is unique !

( can be labeled
by shaded blobs )

T. Gleisberg, SH: JHEP12(2008)039
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COMIX: Performance issues

. . .

Amplitude Calculation

Main Program

Current Calculation Current Calculation Current Calculation

Thread NThread 2Thread 1
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Fig. 1 Structure of the multi-threaded implementation for Matrix Element com-
putation in Comix. The number of threads N is variable and depends on
the number of available processors. The main program communicates start
and wait signals to the calculator threads, while those communicate done
and wait signals to the main program. Details are explained in the text.

found in Sec. 5. The default choice in Comix is helicity summation. To allow computations for very large
multiplicities, however, helicity sampling can be enabled as an option.

The effective computation time per phase space point can be further reduced by a multi-threaded implemen-
tation of Eq. (6). Figure 1 shows the basic structure of this algorithm. The main advantage of Eq. (6) is, that
in order to compute a current that depends on n external particles, it is sufficient to know all subcurrents
that depend on m < n external particles. This leads to a straightforward multi-threading algorithm.

• Create N threads at program startup with the following properties

1. The thread waits for the main program to signal the start of a computation.
It then signals the main program to wait.

2. It takes a number n and computes a block of currents depending on n external particles using
subcurrents depending on m < n external particles. If n = 1, it computes external polarization
vectors and spinors.

3. It signals the main program that the calculation is done and returns to step 1.

• For each phase space point, employ the following algorithm in the main program

1. Start with n = 1.

2. Split the number of currents that depend on n external particles into N blocks.
Communicate n and one block to each calculator thread.

3. Signal the threads to start their computation.
Wait for all threads to signal completion.

4. Let n → n + 1 and return to step 2 if further currents need to be computed.

The effectivity of this algorithm solely depends on an efficient thread library. The overhead with a modern
POSIX threading is about 10% of the total computational cost. However, if on the other hand it is possible
to make use of multiple processors or multiple processor cores due to threading, the respective overhead is
not of any concern, since the computation time decreases roughly proportional to the increase in processor
usage.

4 Integration techniques in Comix

In this section we present two new methods for integrating over the phase space. Both of them are designed
to cope especially with large numbers of outgoing particles. The first method is a fully general approach and
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Identical procedure for ME and phasespace due to same recursion

this section we will show that within the standard model it is possible to reduce Nmax to two, which is the
lowest possible number at all. For QCD interactions we employ the results of Ref. [22], where this task
has already been performed and the original Berends-Giele recursive relations have been reformulated to
incorporate color.

2.2 General form of the recursive relations

In the following we will denote by Jα (π) an unordered SM current of type α, which receives contributions
from all Feynman graphs having as external particles the on-shell SM particles in the set π and one internal
particle, described by this current. The index α in this respect is a multiindex, carrying information on all
quantum numbers and eventually on the pseudoparticle character of the particle. Special currents are given
by the external particles’ currents. They correspond to external scalars, spinors and polarization vectors,
see Sec. 3. For them there is only one multiindex α = αi associated with the external particle i, whereas
in the general case multiple multiindices may lead to non-vanishing internal currents. This corresponds to
multiple particle types being possible as intermediate states. Assuming that only three-point vertices exist,
any internal SM particle and pseudoparticle off-shell current can be written as

Jα (π) = Pα (π)
∑

V
α1, α2

α

∑

P2(π)

S (π1, π2) V α1, α2
α (π1, π2) Jα1

(π1)Jα2
(π2) . (6)

Here Pα (π) denotes a propagator term depending on the particle type α and the set π. The term V α1,α2
α (π1, π2)

is a vertex depending on the particle types α, α1 and α2 and the decomposition of the set π into disjoint
subsets π1 and π2. The quantity S (π1, π2) is the symmetry factor associated with the decomposition of π
into π1 and π2 and will be discussed in Sec. 2.5. Superscripts in this context refer to incoming particles,
subscripts to outgoing particles. The sums run over all vertices in the reformulated Standard Model and
all unordered partitions P2 of the set π into two disjoint subsets, respectively. A full unordered n-particle
scattering amplitude is then given by

A (π) = Jαn (n)
1

Pᾱn (π \ n)
Jᾱn (π \ n) , (7)

where ᾱ denotes a set of reversed particle properties. It has been proved in Ref. [22] that the above
form is correct for pure gluonic scattering amplitudes once the four gluon vertex is suitably decomposed
into two vertices involving an internal antisymmetric tensor pseudoparticle. We briefly recall this proof
before continuing with the decomposition of four particle vertices in electroweak interactions. Once this
decomposition is achieved, no further complications arise and Eq. (6) can be employed to compute arbitrary
scattering amplitudes in the Standard Model.

2.3 Colour dressed Berends-Giele recursive relations in QCD

Any perturbative QCD scattering amplitude A can be written as a sum of terms, which factorise into two
components, one only depending on the gauge structure and one only depending on the kinematics. Such a
decomposition is called colour decomposition. For tree-level n-gluon amplitudes several colour decomposi-
tions exist. A very intuitive one based on the fundamental represenation of the gauge group is given by [27]

A (1, . . . , n) =
∑

σ∈Sn−1

Tr (T a1T aσ2 . . . T aσn ) A (1, σ2, . . . , σn) . (8)

Here σ runs over all permutations Sn−1 of the n− 1 indices 2 . . . n. The functions A depend on the Lorentz-
structure of the process only and are called color-ordered amplitudes. A more suitable colour decomposition
for n-gluon amplitudes has been introduced in Refs. [28,29]. It employs the adjoint representation matrices
(F a)bc of SU(3) and reads

A (1, . . . , n) =
∑

σ∈Sn−2

(F aσ2 . . . F aσn−1 )a1an
A (1, σ2, . . . , σn−1, n) . (9)

Note that in this case the sum runs over the permutations of the n − 2 indices 2 . . . n − 1 only, whereas the
first and the last index remain fixed. Another colour decomposition, suited especially for Monte Carlo event

3

General structure of recursion (ME and phasespace):

Straightforward multithreading algorithm
Now you can use as many processors / cores as you like !

n-particle currents only depend on m<n-particle currents

T. Gleisberg, SH: JHEP12(2008)039

Stefan Höche, Particle Theory Seminar, PSI, 19.3.2009



Example: b-pair + jets
comparison with ALPGEN & AMEGIC++

COMIX: Performance

Example: Drell-Yan+b-pair+jets
comparison with ALPGEN & AMEGIC++

All partons ! 

62 3 Comix - A new matrix element generator

σ [nb] Number of jets

γ + QCD jets 1 2 3 4 5 6
Comix 89.5(2) 19.65(6) 7.52(3) 2.664(8) 1.000(5) 0.387(2)
AMEGIC++ 89.6(1) 19.60(5) 7.59(2) 2.64(2)

σ [pb] Number of jets

e−ν̄e + bb̄ + QCD jets 0 1 2 3 4 5
Comix 9.40(2) 9.81(3) 6.82(5) 4.32(4) 2.47(2) 1.28(2)
ALPGEN 9.34(4) 9.85(6) 6.82(6) 4.18(7) 2.39(5)
AMEGIC++ 9.37(1) 9.86(2) 6.98(3) 4.31(6)

σ [pb] Number of jets

e−e+ + bb̄ + QCD jets 0 1 2 3 4 5
Comix 18.90(3) 6.81(2) 3.07(3) 1.536(9) 0.763(6) 0.37(1)
ALPGEN 18.95(8) 6.80(3) 2.97(2) 1.501(9) 0.78(1)
AMEGIC++ 18.90(2) 6.82(2) 3.06(4)

Tab. 3.10 Cross sections in the MC4LHC comparison [78] setup. In parentheses the statistical
error is stated in units of the last digit of the cross section. Note that for AMEGIC++

and COMIX all subprocesses are considered, while ALPGEN is restricted to up to four
quarks. Taking this into account, all values agree within 2σ.

efficiency Number of jets

jets 2 3 4 5 6 7 8

ε = 10−3 9.3·10−2 7.8·10−3 2.1·10−3 7.0·10−4 3.6·10−4 1.3·10−4 6.1·10−5

ε = 10−6 3.1·10−2 3.8·10−3 1.5·10−3 4.3·10−4 2.4·10−4 9.9·10−5 5.8·10−5

efficiency Number of jets

e+νe + QCD jets 0 1 2 3 4 5 6

ε = 10−3 1.5·10−1 2.4·10−2 9.1·10−3 2.0·10−3 6.7·10−4 1.9·10−4 3.1·10−5

ε = 10−6 1.6·10−2 4.5·10−3 3.3·10−3 1.2·10−3 4.3·10−4 1.3·10−4 2.8·10−5

Tab. 3.11 Efficiencies for processes in the MC4LHC comparison [78] setup.

3.4 Results 61

σ [µb] Number of jets

jets 2 3 4 5 6 7 8
Comix 331.0(4) 22.72(6) 4.95(2) 1.232(4) 0.352(1) 0.1133(5) 0.0369(3)
ALPGEN 331.7(3) 22.49(7) 4.81(1) 1.176(9) 0.330(1)
AMEGIC++ 331.0(4) 22.78(6) 4.98(1) 1.238(4)

σ [µb] Number of jets

bb̄ + QCD jets 0 1 2 3 4 5 6
Comix 471.2(5) 8.83(2) 1.813(8) 0.459(2) 0.150(1) 0.0531(5) 0.0205(4)
ALPGEN 470.6(6) 8.83(1) 1.822(9) 0.459(2) 0.150(2) 0.053(1) 0.0215(8)
AMEGIC++ 470.3(4) 8.84(2) 1.817(6)

σ [pb] Number of jets

tt̄ + QCD jets 0 1 2 3 4 5 6
Comix 754.8(8) 745(1) 518(1) 309.8(8) 170.4(7) 89.2(4) 44.4(4)
ALPGEN 755.4(8) 748(2) 518(2) 310.9(8) 170.9(5) 87.6(3) 45.1(8)
AMEGIC++ 754.4(3) 747(1) 520(1)

σ [pb] Number of jets

e+νe + QCD jets 0 1 2 3 4 5 6
Comix 5434(5) 1274(2) 465(1) 183.0(6) 77.5(3) 33.8(1) 14.7(1)
ALPGEN 5423(9) 1291(13) 465(2) 182.8(8) 75.7(8) 32.5(2) 13.9(2)
AMEGIC++ 5432(5) 1279(2) 466(2) 185.2(5) 77.3(4)

σ [pb] Number of jets

e−ν̄e + QCD jets 0 1 2 3 4 5 6
Comix 3911(4) 1011(2) 362(1) 137.1(3) 54.9(2) 22.4(1) 9.26(4)
ALPGEN 3904(6) 1013(2) 364(2) 136(1) 53.6(6) 21.6(2) 8.7(1)
AMEGIC++ 3903(4) 1012(2) 363(1) 137.6(3) 54.8(6)

σ [pb] Number of jets

e−e++ QCD jets 0 1 2 3 4 5 6
Comix 723.5(4) 187.9(3) 69.7(2) 27.14(7) 11.09(4) 4.68(2) 2.02(2)
ALPGEN 723.4(9) 188.3(3) 69.9(3) 27.2(1) 10.95(5) 4.6(1) 1.85(1)
AMEGIC++ 723.0(8) 188.2(3) 69.6(2) 27.21(6) 11.1(1)

σ [pb] Number of jets

νeν̄e + QCD jets 0 1 2 3 4 5 6
Comix 3266(3) 715.9(8) 266.6(7) 105.0(3) 44.4(2) 19.11(7) 8.30(7)
ALPGEN 3271(1) 717.4(5) 267.4(4) 105.4(2) 43.7(2) 18.68(8) 7.88(5)
AMEGIC++ 3270(1) 717.3(7) 266.3(6) 105.4(3) 44.3(5)

Tab. 3.9 Cross sections in the MC4LHC comparison [78] setup. In parentheses the statistical
error is stated in units of the last digit of the cross section. Note that for AMEGIC++

and COMIX all subprocesses are considered, while ALPGEN is restricted to up to four
quarks. Taking this into account, all values agree within 2σ

T. Gleisberg, SH: JHEP12(2008)039

Stefan Höche, Particle Theory Seminar, PSI, 19.3.2009



COMIX: Pure QCD phasespace

HAAG can generate momenta
according to specific antenna

QCD processes have typical & complicated antenna structure
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Fig. 4 Overall integration performance for multi-gluon scattering. Upper panels display the Monte Carlo
estimate of the cross section with the corresponding 1σ statistical error band as a function of the
total integration time. Lower panels show the relative statistical error. HAAG denotes the phase
space integrator described in section C, applied on colour- and helicity-summed ME, generated
using the CSW recursion. CSI denotes the integrator discussed in section 4.3.1, applied on colour-
sampled and helicity-summed ME’s, generated using the CDBG recursion. Results for RAMBO
were generated using colour- and helicity-sampled ME’s form the CDBG recursion. Calculations

have been performed on a 2.66 GHz Xeon
TM

CPU
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CSI

CSI - Colour Sampling Integrator

HAAG only

p
0

p
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p
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m

p
1

p
m+1

p
n−1

∼
1

(p0 ·p2)(p2 ·p3)...(pm ·p1)(p1 ·pm+1)...(pn−2 ·pn−1)(pn−1 ·p0)

Fig. 1 Antenna configuration.

5. The weight is given by

g(smin, smax)

s

g(amin, amax)

a

1

2π
, where g(xmin, xmax) = log

xmax

xmin
. (8)

Type 0 antennae

The phase space for type 0 antenna configurations can be obtained by a direct multiple application
of the basic building block:

dΦn(p0, p1; p2, ..., pn−1) = ds2 dΦ2(p0 + p1; p2, Q2; p1)

× ds3 dΦ2(Q2; p3, Q3; p2)

...

× dsn−3 dΦ2(Qn−4; pn−3, Qn−3; pn−4)

× dΦ2(Qn−3; pn−1, pn−2; pn−3) .

(9)

The corresponding total weight is given by

w ∼

∏n−3
j=1 pj

(

∑n−1
i=j+1 pi

)

∏n−3
j=3

(

∑n−1
i=j pi

)2

1

(p1 ·p2)(p2 ·p3) · · · (pn−2 ·pn−1)
, (10)

where the contributions from boundary dependent functions g have been omitted.

Type 1 antennae

For this configuration the following phase space decomposition is considered:

dΦn(p0, p1; p2, ..., pn−1) = ds2 dΦ2(p0 + p1; p2, Q2; p0)

× ds3 dΦ2(Q2; p3, Q3; p1)

× ds4 dΦ2(Q3; p4, Q4; p3)

...

× dsn−3 dΦ2(Qn−4; pn−3, Qn−3; pn−4)

× dΦ2(Qn−3; pn−1, pn−2; pn−3) .

(11)

12

Colour configuration defines
which HAAG channels needed
For every phasespace point
a multichannel is constructed
on the flight     CSI

∝

1

(p0p1)(p1p2)...(pn−2pn−1)(pn−1p0)

T. Gleisberg, SH: JHEP12(2008)039

We can now generate high multiplicity ME’s, so let’s carry on ...
Stefan Höche, Particle Theory Seminar, PSI, 19.3.2009



Splitting of parton     into partons i and j, spectator k

e.g. initial-initial splitting:

General framework for QCD NLO calculations
ĩj

CS-subtraction based Shower

Catani-Seymour subtraction terms

Advantages over conventional Parton Shower
Excellent approximation of ME
Unambiguous kinematics

Implemented into the Sherpa event generator in full generality
( final-final, initial-final and initial-initial dipoles )

F.Krauss, S.Schumann; JHEP03(2008)038

Momentum reshuffled locally, spectator enters splitting function !

ãi

a

i

b

〈Vai,b〉

pb

pa

pi

Fig. 1 Schematical view of the splitting of an initial-state parton with an initial-state spectator.
The blob denotes the m-parton matrix element. Incoming and outgoing lines label initial-
and final-state partons, respectively.

parametrised in the Lorentz invariant variables

xi,ab =
papb − pipa − pipb

papb
and ṽi =

pipa

papb
. (51)

In Eq. (50) the sum takes account of all allowed backward QCD splittings of parton ãi with parton b serving
as spectator. The ratio of PDFs thereby correctly accounts for the change of the incoming momentum and
potential flavour transitions during a backward evolution step. The second term in the exponent reflects the
case that the roles of initial-state emitter and spectator are swapped. The concrete splitting functions for
CS initial–initial dipoles are particularly easy, as they depend on xi,ab only:

〈Vai,b(xi,ab)〉 = Pa→ eai i(xi,ab) . (52)

In terms of the variables defined in Eq. (51) and the initial momenta p̃ai and pb the squared transverse
momentum of the emitted final-state parton i reads

k
2
⊥ = 2p̃aipb ṽi

1 − xi,ab − ṽi

xi,ab
, (53)

such that the identities

dṽi

ṽi
=

1 − xi,ab − ṽi

1 − xi,ab − 2ṽi

dk2
⊥

k2
⊥

= J(xi,ab, ṽi)
dk2

⊥

k2
⊥

, (54)

ṽi(xi,ab,k
2
⊥) =

1 − xi,ab

2

(

1 −

√

1 −
2k2

⊥xi,ab

p̃aipb(1 − xi,ab)2

)

(55)

hold. Replacing this in Eq. (50) we can identify k2
⊥ as potential shower evolution variable. Introducing the

lower cut-off k2
⊥,0, the xi,ab-integration boundaries read

xi,ab ∈

[

ηai , xmax =
2p̃aipb

2p̃aipb + 4k2
⊥,0

]

. (56)

Having identified the splitting operator for an initial–initial CS dipole (ãi, b), a corresponding Sudakov form
factor can be identified

∆( eai,b)
II (k2

⊥,0,k
2
⊥,max) = exp



−
∑

ai

1

N spec
ai

k
2
⊥,max∫

k2
⊥,0

dk2
⊥

k2
⊥

xmax∫

ηai

dxi,ab

xi,ab

αs(k2
⊥/4)

2π

× J(xi,ab, ṽi(xi,ab,k
2
⊥)) 〈Vai,b(xi,ab)〉

fa(ηai/xi,ab,k2
⊥)

fai(ηai,k2
⊥)



 .

(57)

15

〈Vai,b(xi,ab)〉 = P
a→eai i

(xi,ab)

xi,ab =

papb − pipa − pipb

papb

Next we need some shower algorithm ...
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CS-subtraction based Shower

pp    jets 
Phys. Rev. Lett. 94 (2005) 221801

F.Krauss, S.Schumann; JHEP03(2008)038

-4 -2 0 2 4
!

3

  0

0.02

0.04

0.06

0.08

1
/"

 d
"

/d
!

3

CDF 94 (detector level)

CS show. + Py 6.2 had.

normalised distribution of !
3
 @ Tevatron Run I

#R
jj
 > 0.7, |!

1
|, |!

2
| < 0.7

|$
1
-$

2
| < 2.79 rad

E
T1

 > 110 GeV, E
T2

 > 10 GeV

-%/2 -%/4 0 %/4 %/2
&

0

0.01

0.02

0.03

0.04

0.05

0.06

1
/"

 d
"

/d
&

CDF 94 (detector level)

CS show. + Py 6.2 had.

normalised distribution of & @ Tevatron Run I

#R
jj
 > 0.7, |!

1
|, |!

2
| < 0.7

1.1 < #R
23

 < %

|$
1
-$

2
| < 2.79 rad

E
T1

 > 110 GeV, E
T2

 > 10 GeV

Figure 21: The pseudo-rapidity distribution of the third-hardest jet (left panel) and the distri-
bution of the angle α (right panel) in inclusive QCD three-jet production in comparison with
CDF data taking during Tevatron Run I. Experimental errors are statistical only. Histograms
are normalised to one.

showing that the impact of the finite detector resolution is much smaller than the size of the
physical effects. The generic features of the two observables presented here are not dependent
on detector effects, and they are well described by the new shower formulation.

The conclusion of this is that the proposed parton shower algorithm with its notion of
emitter–spectator dipoles associated with the color flow of the event and using transverse mo-
menta as evolution variable accounts for soft colour coherence and yields a very satisfying
description, both on the qualitative and the quantitative level. It can be anticipated that such
non-trivial quantum phenomena are of large importance at the LHC, since the phase space for
jet production is much larger and hard jets are produced copiously. For a solid description of
QCD therefore the systematic and correct inclusion of these effects is paramount.

6 Conclusions and outlook

In this publication a parton shower model based on Catani-Seymour dipole subtraction kernels
has been presented, which was proposed for the first time in [1,2]. In the present implementa-
tion, the original proposal is extended to cover also initial-state splittings, finite parton masses,
and QCD radiation off SUSY particles.

Choices concerning the evolution parameter of the parton shower and the various scales
entering running coupling constants, PDFs, etc. have been detailed, fixing the full algorithm.
The kinematics of massive splittings has been presented in some detail, and the corresponding
massless limits have been discussed. By direct comparison with some benchmark processes,
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Figure 20: Azimuthal decorrelation in dijet events measured by DØ at Tevatron Run II [116].

different ranges of the leading-jet transverse momentum and are then multiplied with different
constant prefactors in order to display them in one plot. In all cases, the second-leading jet
was required to have a transverse momentum pT > 40 GeV and both jets are constrained to
the central-rapidity region, |yj| < 0.5. The data are overlayed with the respective predictions
of the Catani-Seymour dipole shower approach. The simulation agrees very well with the data
over the whole interval of ∆φdijet spanned by the experimental measurements. This is a very
satisfying result as it proves that the proposed shower formulation not only correctly accounts
for phase space regions related to soft and collinear radiation but also yields qualitatively and
quantitatively correct estimates for rather hard emissions as well. Furthermore, since this ob-
servable is quite sensitive to model-intrinsic scale choices such as the shower start scale and
scales entering the running coupling constant and parton density functions, this agreement
proves that the defaults have been chosen correctly.

The last item to be discussed are observables in QCD jet production at hadron colliders
that are known to be sensitive to the correct treatment of QCD soft colour coherence in the
parton shower simulation. Colour-coherence effects have been widely studied for e+e− collisions,
for an early review see e.g. [117]. They manifest themselves in the fact that soft emissions
are forbidden outside a certain angular cone around the emitting particle’s direction, known
as angular ordering [46,50]. To account for this in shower Monte Carlos the phase space for
allowed emissions has to be properly constrained. Within the HERWIG Monte Carlo for instance
this is realised by evolving the shower in terms of cone-opening angles. While the situation
for pure final-state showers is quite clear, in hadronic collisions the situation is slightly more
complicated due to the presence of more colour flows, among them those that connect initial-
and final-state partons. As colour-coherence here already influences the first emission from the
initial- and final-state partons QCD three-jet events are the best place to look for the pattern

51

pp    jets 
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ME+PS: why should we do it ?

Exact fixed order calculation

Matrix Elements

Resummation to all orders 

Parton Showers

Free parameter: Separation cut Q       (Q    K  -type jet measure)

Strategy: Separate phase space Jet production region      ME
Intrajet evolution region      PS

cut T

Now that we can compute high-multi ME’s and generate showers,
we need to combine the two in a sensible way ....

+ ut

2

u+t

2 2

3

+ ut

2

u+t

2 2

3

Combine the two: CKKW / CKKW-L / MLM
Good description of hard radiation (ME)
Correct intrajet evolution (PS)
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CKKW with COMIX

SH, F. Krauss, S.Schumann, F. Siegert: in preparation

pp    ll+jets at the Tevatron
exclusive jet-p   , comparison vs. PS
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CKKW with COMIX

pp    ll+jets at the Tevatron
inclusive jet-p   , effect of N        variationT
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Procedure is essentially based on NLL-formalism in PLB 269(1991)432
A prominent criticism is the missing proof for initial state evolution,
so we need to improve ...

Qcut

ME Domain

µH

αs(Q1)
αs(Qcut)

Qcut

ME Domain
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Qcut

ME Domain
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Qcut (6)

µH (7)
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∆q(Qcut,Q1) (8)

∆q(Qcut,Q1) (9)

∆q̄(Qcut,µH) (10)

∆g(Qcut,Q1) (11)
αs(Q1)

αs(Qcut)
(12)

1

2

0

3 54

2

CKKW in a nutshell

Define jet resolution parameter Q       (Q    jet measure)
      divide phase space into regions of
      jet production (ME) and jet evolution (PS)

cut

Select final state multiplicity and kinematics
according to σ  ‘above’ Q cut
K   -cluster backwards (construct PS-tree) 
and identify core process
Reweight ME to obtain exclusive samples at Q
Start the parton shower at the hard scale
Veto all PS emissions harder than Q

cut

cut

JHEP 0111 (2001) 063, JHEP 0208 (2002) 015

T

Results look promising, but how does it actually work ?
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How can we improve this ?

Procedure is essentially based on NLL-formalism in PLB 269(1991)432
A prominent criticism is the missing proof for initial state evolution,
so we need to improve ...

Qcut

ME Domain
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Define jet resolution parameter Q       (Q    jet measure)
      divide phase space into regions of
      jet production (ME) and jet evolution (PS)

cut

Select final state multiplicity and kinematics
according to σ  ‘above’ Q cut
K   -cluster backwards (construct PS-tree) 
and identify core process
Reweight ME to obtain exclusive samples at Q
Start the parton shower at the hard scale
Veto all PS emissions harder than Q

cut

cut

T

Results look promising, but how does it actually work ?Usual K  -type measure does not take
beam assignment into account

( possible solution in NPB 406 (1993) 187 )

Clustering does not necessarily reconstruct
sensible history according to NLL formalism

T

pQCD is crossing invariant
and so the measure must be

NLL resummation is not the end of the story
ordering must be guided by shower evolution

resolves IS/FS 
clustering ambiguity, 
D-parameter obsolete

decouples 
phasespace separation

and shower history
constructionCS-based shower

allows better control
over jet veto

Colour sampling in 
Comix allows easy
large N   projectionc

SH, F. Krauss, S.Schumann, F. Siegert: arXiv:0903.1219 [hep-ph]
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A new merging algorithm

∂

∂ log(t/µ2)

ga(z, t)

∆a(µ2, t)
=

1

∆a(µ2, t)

∫ ζmax

z

dζ

ζ

∑
b=q,g

Kba(ζ, t)gb(z/ζ, t)

The starting point is QCD evolution

This defines the backward no-branching probability for showers

P
(B)
no, a(z, t, t

′) =
∆a(µ2, t′)ga(z, t)

∆a(µ2, t)ga(z, t′)
= exp







−

∫ t′

t

dt̄

t̄

∫ ζmax

z

dζ

ζ

∑

b=q,g

Kba(ζ, t̄)
gb(z/ζ, t̄)

ga(z, t̄)







Requirements for the ME - shower merging
Above equation for shower evolution is preserved
Hardest emissions are described by matrix elements,
schematically:

Let’s try and formulate what we expect from a ME - shower merging

Kab(z, t) →
1

σ(N)
a (ΦN)

d2σ(N+1)
b

(z, t;ΦN)

d log(t/µ2) dz

SH, F. Krauss, S.Schumann, F. Siegert: arXiv:0903.1219 [hep-ph]
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A new merging algorithm

Slice the phase space with a jet criterion Q

Veto the shower

It looks as if one obtains a different evolution
But this is easily corrected by adding the missing part

K
ME
ab (ξ, t̄) = Kab(ξ, t̄) Θ

[

Qab(ξ, t̄) − Qcut

]

K
PS
ab (ξ, t̄) = Kab(ξ, t̄) Θ

[

Qcut − Qab(ξ, t̄)
]

P̃
(B) PS
no, a (z, t, t′) =

∆PS
a (µ2, t′) g̃a(z, t)

∆PS
a (µ2, t) g̃a(z, t′)

= exp







−

∫ t′

t

dt̄

t̄

∫ ζmax

z

dζ

ζ

∑

b=q,g

K
PS
ba(ζ, t̄)

g̃b(z/ζ, t̄)

g̃a(z, t̄)







P
(B)
no, a(z, t, t

′) =
∆ME(µ2

, t′)

∆ME(µ2, t)
P

(B) PS
no, a (z, t, t′) , P

(B) PS
no, a (z, t, t′) =

∆PS
a (µ2

, t′)ga(z, t)

∆PS
a (µ2, t)ga(z, t′)

This works independent of the precise definition of Q !

Now let’s work it out ...
SH, F. Krauss, S.Schumann, F. Siegert: arXiv:0903.1219 [hep-ph]
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Ci,j =











pipk

(pi + pk)pj
−

m2
i

2pipj
if j = g

1 else

C̃i,j =











z

1 − z
−

m2
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2pipj
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1 else
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)
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ij

→

1

2λ2

1

2pi q

[

pipk

(pi + pk)q
−

m2
i

2piq

]

min over colour partners

(Quasi-)Collinear limit

A new jet criterion

New proposal for phasespace separation, CS - inspired
Identify two-particle poles of real NLO ME through

New separation criterion has better behaviour than conventional ones
( e.g.                                                                        ,                 )Q2

ij = 2 min
{

p2
⊥, i,p

2
⊥, j

}

[ cosh∆ηij − cos∆φij ]

Soft gluon limit
( j    gluon)

Q2
ib = p2

i⊥

masses
included

correct part
of eikonal

leading term of
DGLAP kernel

Q2
ij = 2pipj min

k!=i,j

{

2

Ci,j + Cj,i

}

SH, F. Krauss, S.Schumann, F. Siegert: arXiv:0903.1219 [hep-ph]
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Truncated showers

What is a truncated shower and why is a standard shower not enough?

Assuming we have a ME, predefining a branching at scale t
with hard scale t’. Filling the remaining phase space means
computing

P
(B) PS
no, a (z, t, t′) =

∆PS
a (µ2

, t′)ga(z, t)

∆PS
a (µ2, t)ga(z, t′)

We need a shower evolving between t’ and t,
i.e. a “truncated” one

In a truncated shower, the predefined ME branching at t sets
the evolution-, splitting- and angular variable
of a predefined node to be inserted later
After any emission above t, this node must be reconstructed

SH, F. Krauss, S.Schumann, F. Siegert: arXiv:0903.1219 [hep-ph]
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ME+Shower: Results

e e     hadrons at LEP I, Total cross sections [nb]+ -

Nmax

0 1 2 3 4

log10 ycut

-1.25
40.17(1)

39.65(3) 39.66(3) 39.66(3) 39.67(3)
-1.75 39.38(5) 39.29(6) 39.13(5) 39.13(5)
-2.25 39.27(8) 38.35(9) 37.89(11) 37.60(10)

Table 1: Total cross sections for e+e− → jj at
√

s = 91.25GeV in [nb] and
their dependence on the separation criterion and the maximum jet
multiplicity.
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Figure 2: Integrated jet rates for three different merging cuts compared to data from LEP [53].
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Drell-Yan at Tevatron Run II, Total cross sections [pb]

An immediate consequence is that the LO cross section is preserved
6.4%

variation

7.6%
variation

SH, F. Krauss, S.Schumann, F. Siegert: arXiv:0903.1219 [hep-ph]

Nmax

0 1 2 3 4 5 6

Qcut

20 GeV
192.6(1)

192.1(3) 194.0(5) 192.6(6) 191.9(7) 191.3(9) 207.4(14)
30 GeV 193.3(2) 194.5(2) 194.6(3) 195.0(3) 194.7(3) 201.5(4)
45 GeV 194.2(2) 194.9(1) 195.2(1) 195.3(2) 195.1(1) 197.7(1)

Table 2: Total cross sections [pb] in pp̄ → e+e− + jets at
√

s = 1960 GeV and their dependence
on the merging cut.

6.2 Drell-Yan lepton production in pp̄ collisions

The scope of this section is to validate the proposed merging algorithm in collisions with hadronic initial
states. One of the simplest processes in this setup is Drell-Yan lepton pair production. It constitutes an
important testing ground to validate the applicability of the proposed jet criterion and the interplay of the
merging algorithm with the PDF’s.

Event generation has been set up for pp̄-collisions at a centre-of-mass energy of
√

s = 1960 GeV. For
the hard process a merged sample of pp̄ → e+e− + N jets has been produced, where N ≤ Nmax with
0 ≤ Nmax ≤ 6. In addition, a cut of 66 GeV < me+e− < 116 GeV has been applied at the matrix-element
level. The factorisation scale has been chosen as m2

e+e− . Note that the transverse mass squared of the
lepton pair, m2

T,e+e− = m2
e+e− + k2

⊥,e+e− , which is often selected as the factorisation scale in other merging
approaches, is not a proper choice for the proposed algorithm. It is non-continuous with respect to the
transverse momentum, k2

⊥,e+e− , because the leading-order configuration is generated with k2
⊥,e+e− = 0 and

the minimum transverse momentum of events with one additional jet is limited by the phase-space separation
cut.

Total cross sections and jet rates

Again, we first present a comparison of total cross sections predicted by the merging algorithm for various
values of the separation criterion Qcut and the maximum jet multiplicity Nmax. Table 1 shows the respective
results. Differences range up to 7.6%, between the leading-order cross section and predictions for the merged
samples. The systematic uncertainties in hadronic collisions are larger than in e+e− reactions, partly due
to PDF uncertainties and partly because the shower evolution generated by the CSS and the resummation
used to compute the PDF’s are not entirely compatible, cf. [58]. This effect could account for the slightly
larger deviations between results for the merged samples.

Figure 5 shows integrated rates of jets determined with the CDF Run II kT -algorithm [68] as a function of
the analysis cut dcut. Monte Carlo results have been produced using a merged sample for up to five jets in
the final state, generated with COMIX and showered with the CSS with a merging cut Qcut = 20GeV.

Differential distributions

To study the merging systematics in more detail, we investigate again the differential jet rates dn n+1,
describing the scales at which n+1 jets are clustered into n jets according to the CDF Run II kT -algorithm.
This algorithm has a free parameter, D, which accounts for the missing information on beam partons. Hence,
in this setup, no firm relation can be established between the jet measure of the kT -algorithm and the jet
criterion, Eq. (24). Nevertheless, a certain correspondence between the two quantities exists, making these
distributions a good testing ground for variations around the merging cuts.

To produce Fig. 6 a merged sample of up to five jets from the matrix element has been generated with COMIX

and showered with the CSS. The merging cuts, which have been used, are Qcut = 20 GeV, Qcut = 30 GeV,
and Qcut = 45 GeV. As in the case of e+e− collisions, the deviations between the predictions of the various
samples are small.

Most observables are even less sensitive to the precise value of the merging cut. As an example, Figure 7
displays the transverse momentum of the two leading jets for the three merging cut values in comparison to
data from CDF [69].
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e e     hadrons at LEP I
Durham 2   3 jet rate (parton level)
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ME+Shower: Results

SH, F. Krauss, S.Schumann, F. Siegert: arXiv:0903.1219 [hep-ph]
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e e     hadrons at LEP I
Durham jet rates (hadron level, untuned)
+ -
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e e     hadrons at LEP I
Shape observables (hadron level, untuned)
+ -
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Drell-Yan production at Tevatron Run I
Lepton observables
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Drell-Yan production at Tevatron Run I
Differential jet rates (parton level)
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Drell-Yan production at Tevatron Run II  PRL 100(2008)102001
Jet observables for p       > 30 GeVT,jet
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Drell-Yan production at Tevatron Run II  PRL 100(2008)102001
Jet observables for p       > 30 GeV
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Seems we can finally say somthing about jets ...
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Loopy ...
Automated POWHEG
Interfaces to loop ME codes
Extension to CKKW@NLO

Summary

... and down-to-earth

Cross-checks with other codes
Application to heavy quark and SUSY production
Application to ep-scattering

Now we can generate ME’s and showers and merge the two
Still, there is a lot to be done. We work in two directions

Stefan Höche, Particle Theory Seminar, PSI, 19.3.2009

More phenomenology !



“Soft” physics ...
Fragmentation
Hadron decays
QED radiation

summary

“Hard” physics ...

Inclusive decays
Multiple parton interactions

There is a whole lot of other stuff needed
to build a full-fledged event generator
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advertGet the code to produce the plots in this talk ...

WWW.sherpa-mc.de

info@sherpa-mc.de

... and be a pain in the neck for its authors


