TREE-LEVEL EVENT GENERATION AND THE SHERPA MONTE CARLO

Stefan Höche ${ }^{1}$
Institute for theoretical Physics
University of Zürich

${ }^{1}$ and the other Sherpas T. Gleisberg, F. Krauss, M. Schönherr, S. Schumann, F. Siegert \& J. Winter

TREE-LEVEL MONTE CARLOS

How do they work?

- Hard matrix elements
- Showers
- Multiple parton interactions
- Hadronisation
- Hadron decays "Traditional" tree-level MC's like Pythia and HERWIG have
 been around for longer than myself, so are tree-level MC's old-fashioned and not up to the task?
... is there still room for improvement and
can this help to solve urgent experimental problems?
Let's have a look and take Sherpa as an example

MATRIX ELEMENT GENERATION

- The task is to generate events (weighted or unweighted) according to the differential cross section
\Rightarrow Two steps: Compute the matrix element
- Sample the phasespace

Sounds trivial, everything is known, right ?
So why does it take us so long to build a tree-level ME generator?

- The hard matrix element is rather tedious to compute for large final state multiplicities, even at tree-level ($\mathrm{pp} \rightarrow \mathrm{W}+5$ jets has about 7000 diagrams)
- We have a high-dimensional phasespace with a most commonly sharply peaked integrand
The simple solution: restrict it to $2 \rightarrow 2$ and let showers do the rest If we want something better, we have to try harder ...

MATRIX ELEMENT GENERATION

Commonly used techniques to evaluate the ME (non-exhaustive $\frac{\text { 雨 }}{4 \times 20}$)

- Pre-compute Fast and easy
- Lacks generality, low multis

Pythia, HERWIG
Diagrammatic techniques

- Very flexible

MadGraph, CompHEP

- Medium multis
- Recursive techniques Very flexible, high multis
- Slow at low multis

On top of that we have a choice ...
... sample or sum over colours?

... sample or sum over helicities ?
... depends on what it costs ...
... the colour sum is tedious, because $\mathrm{SU}(3)$ is a nasty group
... the helicity sum is easy, because we can recycle subamplitudes

MATRIX ELEMENT GENERATION

Commonly used technique to evaluate the multi-particle phasespace

- Guess the peak structure of the integrand from the dynamics of the process Nucl. Phys. B9 (1969) 568

$$
\begin{gathered}
D_{\text {iso }}(23,45) \otimes P_{0}(23) \otimes P_{0}(45) \\
\otimes D_{\text {iso }}(2,3) \otimes D_{\text {iso }}(4,5)
\end{gathered}
$$

- Combine channels corresponding to single diagrams into a multi-channel and optimise CPC 83(1994)141
- Refine single integration channels with VEGAS CLNS-08/447 (1980)

Other, less optimal / general techniques exist, like Rambo \& HAAG The nasty part are correlation and interference effects in the ME, which often render the optimisation cumbersome! Colour- and / or helicity-sampling introduces additional d.o.f.

tREE-LEVEL ME GENERATORS

Example: ME-Generator comparison in context of MC4LHC http:/ / indico.cern.ch/ categoryDisplay.py?categId=152 (2004)

HIGH-MULTI ME'S WITHCSW

T. Gleisberg, SH, F. Krauss, R. Matyskiewicz; arXiv:0808.3672 [hep-ph] For large multis we need something better than Feynman diagrams ...

- Twistor-inspired techniques (CSW rules) said to speed up calculation of high multiplicy pure QCD ME's

- Advantage: Up to $\mathbf{N}_{\text {out }}=\mathbf{7}$ only up to 3 MHV-amps sewed together ... sounds promising, so how far can we really go with it?

$p p \rightarrow n$ jets gluons only	$n=2$	$n=3$	$n=4$	$n=5$	$n=6$			
MC cross section [pb]	$8.915 \cdot 10^{7}$	$5.454 \cdot 10^{6}$	$1.150 \cdot 10^{6}$	$2.757 \cdot 10^{5}$	$7.95 \cdot 10^{4}$			
stat. error	0.1%	0.1%	0.2%	0.5%	1%			
	integration time for given stat. error $[\mathrm{s}]$							
CSW (HAAG)	4	165	1681	12800	$2 \cdot 10^{6}$			
CSW (CSI)	-	480	6500	11900	197000			
AMEGIC (HAAG)	6	492	41400	-	-			
COMIX (RPG)	159	5050	33000	38000	74000			
COMIX (CSI)	-	780	6930	6800	12400			

Oops !

Stefan Höche, Particle Theory Seminar, PSI, 19.3.2009

WHY BG RECURSIVE RELATIONS?

C. Duhr, F. Maltoni, SH: JHEP 08 (2006) 062

Apparently, for very large multis we need something even better ...

- QCD: Comparison with BCFW / CSW method shows superiority of CDBG / Dyson-Schwinger algorithms for numerics
Computation time $2 \rightarrow$ n gluon ME for 10^{4} phase space points, sampled in helicity and colour $\mathrm{CO} \rightarrow$ colour ordered $\mathrm{CD} \rightarrow$ colour dressed

Factorial growth tamed! Now exponential ($\sim 3^{n}$)

Other methods much slower due to unsuitable natural color basis and/or large number of vertices

VERY HIGH-MULTI ME'S: COMI

T. Gleisberg, SH: JHEP12(2008)039

- BG recursion can be generalised \Rightarrow New ME generator COMI
- Fully general SM implementation

- Key point: Vertex decomposition of all four-particle vertices The growth in computational complexity is solely determined by the number of external legs at the model's vertices
- ME performance in QCD benchmark ($2 \rightarrow \mathrm{n}$ gluon)

World record ;-)

$\mathrm{gg} \rightarrow \mathrm{ng}$	Cross section [pb]				
n	8	9	10	11	12
$\sqrt{s}[\mathrm{GeV}]$	1500	2000	2500	3500	+1)
Comix	0.755(3)	0.305(2)	0.101(7)	0.057(5)	0.026(1)
Phys. Rev. D67(2003)014026	0.70(4)	0.30(2)	0.097(6)		
Nucl. Phys. B539(1999)215	0.719(19)				

Now the ME is really ticked off, but how about the phasespace?

COMI : PHASESPACE RECURSION

T. Gleisberg, SH: JHEP12(2008)039

- State-of-the art in phasespace generation: factorise PS using

$$
\mathrm{d} \boldsymbol{\Phi}_{\mathbf{n}}(\mathbf{a}, \mathbf{b} ; \mathbf{1}, \ldots, \mathbf{n})=\mathrm{d} \boldsymbol{\Phi}_{\mathbf{m}}(\mathbf{a}, \mathbf{b} ; \mathbf{1}, \ldots, \mathbf{m}, \bar{\pi}) \mathrm{d} \mathbf{s}_{\pi} \mathrm{d} \boldsymbol{\Phi}_{\mathbf{n}-\mathbf{m}}(\pi ; \mathbf{m}+\mathbf{1}, \ldots, \mathbf{n})
$$

Remaining basic building blocks of the phasespace:
\Rightarrow "Propagators" $\mathbf{P}_{\pi}=\left\{\begin{array}{cc}1 & \text { if } \boldsymbol{\pi} \text { or } \bar{\pi} \text { external } \\ \mathbf{d} s_{\pi} & \text { else }\end{array}\right.$

"Vertices"
$(2 \pi)^{4} \mathrm{~d}^{4} p_{a b} \delta^{(4)}\left(p_{a}+p_{b}-p_{a b}\right)$

Arrows \rightarrow Momentum flow

COMI : PHASESPACE RECURSION

T. Gleisberg, SH: JHEP12(2008)039

- Basic idea: Take above recursion literally and "turn it around" Example: s-channel phasespace recursion

$$
\left.\begin{array}{l}
\mathrm{d} \Phi_{S}(\pi)=\left[\sum \alpha\left(S_{\pi}^{\rho, \pi \backslash \rho}\right) 1^{-1} \quad \begin{array}{c}
\text { Weights for adaptive } \\
\text { multichanneling }
\end{array}\right. \\
\quad \times\left[\sum \alpha\left(S_{\pi}^{\rho, \pi \backslash \rho}\right) S_{\pi}^{\rho, \pi \backslash \rho} P_{\rho} \mathrm{d} \Phi_{S}(\rho) P_{\pi \backslash \rho} \mathrm{d} \Phi_{S}(\pi \backslash \rho)\right.
\end{array}\right]
$$

- Example process: $p p \rightarrow \mathbf{e}^{+} e^{-} g$
"b" is fixed \downarrow

Every weight is unique!
(can be labeled by shaded blobs)

Stefan Höche, Particle Theory Seminar, PSI, 19.3.2009

COMI : PERFORMANCE ISSUES

T. Gleisberg, SH: JHEP12(2008)039

- General structure of recursion (ME and phasespace):

$$
\mathcal{J}_{\alpha}(\pi)=P_{\alpha}(\pi) \sum_{\mathcal{V}_{\alpha}^{\alpha_{1}, \alpha_{2}}} \sum_{\mathcal{P}_{2}(\pi)} \mathcal{S}\left(\pi_{1}, \pi_{2}\right) \mathcal{V}_{\alpha}^{\alpha_{1}, \alpha_{2}}\left(\pi_{1}, \pi_{2}\right) \mathcal{J}_{\alpha_{1}}\left(\pi_{1}\right) \mathcal{J}_{\alpha_{2}}\left(\pi_{2}\right)
$$

n-particle currents only depend on $\mathrm{m}<\mathrm{n}$-particle currents
\Rightarrow Straightforward multithreading algorithm
Now you can use as many processors / cores as you like!

Identical procedure for ME and phasespace due to same recursion

COMI : PERFORMANCE

T. Gleisberg, SH: JHEP12(2008)039

Example: Drell-Yan+b-pair+jets comparison with ALPGEN \& AMEGIC++

$\sigma[\mathrm{pb}]$	Number of jets					
$e^{-} e^{+}+b \bar{b}+$ QCD jets	0	1	2	3	4	5
Comix	$18.90(3)$	$6.81(2)$	$3.07(3)$	$1.536(9)$	$0.763(6)$	$0.37(1)$
ALPGEN	$18.95(8)$	$6.80(3)$	$2.97(2)$	$1.501(9)$	$0.78(1)$	
AMEGIC++	$18.90(2)$	$6.82(2)$	$3.06(4)$			

- Example: b-pair + jets comparison with ALPGEN \& AMEGIC++

All partons !

$\sigma[\mu \mathrm{b}]$	Number of jets						
$b \bar{b}+$ QCD jets	0	1	2	3	4	5	6
Comix	$471.2(5)$	$8.83(2)$	$1.813(8)$	$0.459(2)$	$0.150(1)$	$0.0531(5)$	$0.0205(4)$
ALPGEN	$470.6(6)$	$8.83(1)$	$1.822(9)$	$0.459(2)$	$0.150(2)$	$0.053(1)$	$0.0215(8)$
AMEGIC++	$470.3(4)$	$8.84(2)$	$1.817(6)$				

COMI : PURE QCD PHASESPACE

T. Gleisberg, SH: JHEP12(2008)039

- QCD processes have typical \& complicated antenna structure

- HAAG can generate momenta according to specific antenna
- Colour configuration defines which HAAG channels needed
- For every phasespace point a multichannel is constructed on the flight \rightarrow CSI

We can now generate high multiplicity ME's, so let's carry on ...

CS-SUBTRACTION BASED SHOWER

F.Krauss, S.Schumann; JHEP03(2008)038

Next we need some shower algorithm ...

- Catani-Seymour subtraction terms
\Rightarrow General framework for QCD NLO calculations
- Splitting of parton $\tilde{\mathbf{j}}$ into partons i and j , spectator k
\rightarrow Momentum reshuffled locally, spectator enters splitting function!
e.g. initial-initial splitting:

$$
\begin{aligned}
& \left\langle\mathbf{V}^{\mathbf{a i}, \mathbf{b}}\left(\mathbf{x}_{\mathbf{i}, \mathbf{a b}}\right)\right\rangle=\mathbf{P}_{\mathbf{a} \rightarrow \tilde{\mathbf{a} i} \mathbf{i}}\left(\mathbf{x}_{\mathbf{i}, \mathbf{a b}}\right) \\
& \mathrm{x}_{\mathrm{i}, \mathrm{ab}}=\frac{\mathrm{p}_{\mathrm{a}} \mathrm{p}_{\mathrm{b}}-\mathrm{p}_{\mathrm{i}} \mathrm{p}_{\mathrm{a}}-\mathrm{p}_{\mathrm{i}} \mathrm{p}_{\mathrm{b}}}{\mathrm{p}_{\mathrm{a}} \mathrm{p}_{\mathrm{b}}}
\end{aligned}
$$

- Advantages over conventional Parton Shower
\rightarrow Excellent approximation of ME
\rightarrow Unambiguous kinematics
- Implemented into the Sherpa event generator in full generality (final-final, initial-final and initial-initial dipoles)

CS-SUBTRACTION BASED SHOWER

F.Krauss, S.Schumann; JHEP03(2008)038

- pp \rightarrow jets

Phys. Rev. Lett. 94 (2005) 221801

- pp \rightarrow jets

Phys. Rev. D50 (1994) 5562

Stefan Höche, Particle Theory Seminar, PSI, 19.3.2009

ME+PS: WHY SHOULD WE DO IT?

Now that we can compute high-multi ME's and generate showers, we need to combine the two in a sensible way

Matrix Elements

- Exact fixed order calculation

Parton Showers

- Resummation to all orders
- Good description of hard radiation (ME) Correct intrajet evolution (PS)
Strategy: Separate phase space Jet production region \rightarrow ME
- Intrajet evolution region $\rightarrow \mathrm{PS}$

Free parameter: Separation cut $Q_{\text {cut }}\left(Q \rightarrow K_{T}\right.$-type jet measure)

CKKW: Z+JETS @ TEVATRON

- Jet multiplicity

The $\mathrm{D} \emptyset$ collaboration, $\mathrm{D} \emptyset$ note 5066 -CONF

- Sherpa 1.0
normalized to data
Stefan Höche, Particle Theory Seminar, PSI, 19.3.2009

CKKW WITH COMI

SH, F. Krauss, S.Schumann, F. Siegert: in preparation

- pp $\rightarrow 11+$ jets at the Tevatron exclusive jet- p_{T}, comparison vs. PS

Stefan Höche, Particle Theory Seminar, PSI, 19.3.2009

CKKW WITH COMI

SH, F. Krauss, S.Schumann, F. Siegert: in preparation

- pp $\rightarrow 11+$ jets at the Tevatron inclusive jet- p_{T}, effect of $\mathrm{N}_{\text {max }}$ variation

Stefan Höche, Particle Theory Seminar, PSI, 19.3.2009

CKKW IN A NUTSHELL

JHEP 0111 (2001) 063, JHEP 0208 (2002) 015
Results look promising, but how does it actually work ?

- Define jet resolution parameter $Q_{\text {cut }}(Q \rightarrow j e t$ measure) \Rightarrow divide phase space into regions of jet production (ME) and jet evolution (PS)
Select final state multiplicity and kinematics according to σ 'above' $Q_{\text {cut }}$
- K_{T}-cluster backwards (construct PS-tree) and identify core process

- Reweight ME to obtain exclusive samples at $Q_{\text {cut }}$
- Start the parton shower at the hard scale Veto all PS emissions harder than $Q_{\text {cut }}$
Procedure is essentially based on NLL-formalism in PLB 269(1991)432 A prominent criticism is the missing proof for initial state evolution, so we need to improve ...

HOW CAN WE IMPROVE THIS?

SH, F. Krauss, S.Schumann, F. Siegert: arXiv:0903.1219 [hep-ph]

A NEW MERGING ALGORITHM

SH, F. Krauss, S.Schumann, F. Siegert: arXiv:0903.1219 [hep-ph]
Let's try and formulate what we expect from a ME - shower merging

- The starting point is QCD evolution

$$
\frac{\partial}{\partial \log \left(\mathbf{t} / \mu^{2}\right)} \frac{\mathbf{g}_{\mathbf{a}}(\mathbf{z}, \mathbf{t})}{\Delta_{\mathbf{a}}\left(\mu^{2}, \mathbf{t}\right)}=\frac{\mathbf{1}}{\Delta_{\mathbf{a}}\left(\mu^{2}, \mathbf{t}\right)} \int_{\mathbf{z}}^{\zeta_{\max }} \frac{\mathrm{d} \zeta}{\zeta} \sum_{\mathbf{b}=\mathbf{q}, \mathbf{g}} \mathcal{K}_{\mathbf{b a}}(\zeta, \mathbf{t}) \mathbf{g}_{\mathbf{b}}(\mathbf{z} / \zeta, \mathbf{t})
$$

This defines the backward no-branching probability for showers

$$
\mathcal{P}_{\mathbf{n o}, \mathbf{a}}^{(\mathbf{B})}\left(\mathbf{z}, \mathbf{t}, \mathbf{t}^{\prime}\right)=\frac{\mathbf{\Delta}_{\mathbf{a}}\left(\mu^{2}, \mathbf{t}^{\prime}\right) \mathbf{g}_{\mathbf{a}}(\mathbf{z}, \mathbf{t})}{\mathbf{\Delta}_{\mathbf{a}}\left(\mu^{2}, \mathbf{t}\right) \mathbf{g}_{\mathbf{a}}\left(\mathbf{z}, \mathbf{t}^{\prime}\right)}=\exp \left\{-\int_{\mathbf{t}}^{\mathbf{t}^{\prime}} \frac{\mathrm{d} \overline{\mathbf{t}}}{\overline{\mathbf{t}}} \int_{\mathbf{z}}^{\zeta_{\max }} \frac{\mathrm{d} \zeta}{\zeta} \sum_{\mathbf{b}=\mathbf{q}, \mathbf{g}} \mathcal{K}_{\mathbf{b a}}(\zeta, \overline{\mathbf{t}}) \frac{\mathbf{g}_{\mathbf{b}}(\mathbf{z} / \zeta, \overline{\mathbf{t}})}{\mathbf{g}_{\mathbf{a}}(\mathbf{z}, \overline{\mathbf{t}})}\right\}
$$

- Requirements for the ME - shower merging
\Rightarrow Above equation for shower evolution is preserved
\rightarrow Hardest emissions are described by matrix elements, schematically:

$$
\mathcal{K}_{\mathbf{a b}}(\mathbf{z}, \mathbf{t}) \rightarrow \frac{\mathbf{1}}{\sigma_{\mathbf{a}}^{(\mathbf{N})}\left(\boldsymbol{\Phi}_{\mathbf{N}}\right)} \frac{\mathrm{d}^{\mathbf{2}} \sigma_{\mathbf{b}}^{(\mathbf{N}+\mathbf{1})}\left(\mathbf{z}, \mathbf{t} ; \boldsymbol{\Phi}_{\mathbf{N}}\right)}{\mathrm{d} \log \left(\mathbf{t} / \mu^{2}\right) \mathrm{d} \mathbf{z}}
$$

A NEW MERGING ALGORITHM

SH, F. Krauss, S.Schumann, F. Siegert: arXiv:0903.1219 [hep-ph]

Now let's work it out ...

- Slice the phase space with a jet criterion Q

$$
\begin{aligned}
\mathcal{K}_{a b}^{\mathrm{ME}}(\xi, \bar{t}) & =\mathcal{K}_{a b}(\xi, \bar{t}) \Theta\left[Q_{a b}(\xi, \bar{t})-Q_{\mathrm{cut}}\right] \\
\mathcal{K}_{a b}^{\mathrm{PS}}(\xi, \bar{t}) & =\mathcal{K}_{a b}(\xi, \bar{t}) \Theta\left[Q_{\mathrm{cut}}-Q_{a b}(\xi, \bar{t})\right]
\end{aligned}
$$

- Veto the shower

$$
\tilde{\mathcal{P}}_{\mathrm{no}, \mathbf{a}}^{(\mathrm{B}) \mathrm{PS}}\left(\mathbf{z}, \mathbf{t}, \mathbf{t}^{\prime}\right)=\frac{\mathbf{\Delta}_{\mathbf{a}}^{\mathrm{PS}}\left(\mu^{2}, \mathbf{t}^{\prime}\right) \tilde{\mathrm{g}}_{\mathrm{a}}(\mathbf{z}, \mathbf{t})}{\Delta_{\mathbf{a}}^{\mathrm{PS}}\left(\mu^{2}, \mathbf{t}\right) \tilde{\mathrm{g}}_{\mathrm{a}}\left(\mathbf{z}, \mathbf{t}^{\prime}\right)}=\exp \left\{-\int_{\mathbf{t}}^{\mathbf{t}^{\prime}} \frac{\mathrm{d} \overline{\mathbf{t}}}{\overline{\mathbf{t}}} \int_{\mathbf{z}}^{\zeta_{\max }} \frac{\mathrm{d} \zeta}{\zeta} \sum_{\mathbf{b}=\mathbf{q}, \mathbf{g}} \mathcal{K}_{\mathbf{b a}}^{\mathrm{PS}}(\zeta, \overline{\mathbf{t}}) \frac{\tilde{\mathrm{g}}_{\mathbf{b}}(\mathbf{z} / \zeta, \overline{\mathbf{t}})}{\tilde{\mathrm{g}}_{\mathrm{a}}(\mathbf{z}, \overline{\mathbf{t}})}\right\}
$$

It looks as if one obtains a different evolution
But this is easily corrected by adding the missing part

$$
\mathcal{P}_{\mathrm{no}, \mathbf{a}}^{(\mathbf{B})}\left(\mathbf{z}, \mathbf{t}, \mathbf{t}^{\prime}\right)=\frac{\Delta^{\mathrm{ME}}\left(\mu^{2}, \mathbf{t}^{\prime}\right)}{\Delta^{\mathrm{ME}}\left(\mu^{2}, \mathbf{t}\right)} \mathcal{P}_{\mathrm{no}, \mathbf{a}}^{(\mathbf{B}) \mathrm{PS}}\left(\mathbf{z}, \mathbf{t}, \mathbf{t}^{\prime}\right), \quad \mathcal{P}_{\mathrm{no}, \mathbf{a}}^{(\mathbf{B}) \mathrm{PS}}\left(\mathbf{z}, \mathbf{t}, \mathbf{t}^{\prime}\right)=\frac{\boldsymbol{\Delta}_{\mathbf{a}}^{\mathrm{PS}}\left(\mu^{2}, \mathbf{t}^{\prime}\right) \mathbf{g}_{\mathbf{a}}(\mathbf{z}, \mathbf{t})}{\boldsymbol{\Delta}_{\mathbf{a}}^{\mathrm{PS}}\left(\mu^{2}, \mathbf{t}\right) \mathbf{g}_{\mathbf{a}}\left(\mathbf{z}, \mathbf{t}^{\prime}\right)}
$$

This works independent of the precise definition of \mathbf{Q} !

A NEW JET CRITERION

SH, F. Krauss, S.Schumann, F. Siegert: arXiv:0903.1219 [hep-ph]

- New proposal for phasespace separation, CS - inspired \Rightarrow Identify two-particle poles of real NLO ME through

$$
Q_{i j}^{2}=2 p_{i} p_{j} \underset{\min _{k \neq i, j}\left\{\frac{2}{C_{i, j}+C_{j, i}}\right\}}{\text { min over colour partners }} \quad \quad C_{i, j}=\left\{\begin{array}{cc}
\frac{p_{i} p_{k}}{\left(p_{i}+p_{k}\right) p_{j}}-\frac{m_{i}^{2}}{2 p_{i} p_{j}} & \text { if } j=g \\
1 & \text { else }
\end{array}\right.
$$

New separation criterion has better behaviour than conventional ones (e.g. $\mathbf{Q}_{\mathbf{i j}}^{2}=\mathbf{2} \min \left\{\mathbf{p}_{\perp, \mathrm{i}}^{2}, \mathbf{p}_{\perp, \mathrm{j}}^{2}\right\}\left[\cosh \boldsymbol{\Delta} \eta_{\mathrm{ij}}-\cos \boldsymbol{\Delta} \phi_{\mathrm{ij}}\right], \mathbf{Q}_{\mathbf{i b}}^{2}=\mathbf{p}_{\mathrm{i} \perp}^{2}$)

- Soft gluon limit ($j \rightarrow$ gluon)

$$
\frac{1}{\mathbf{Q}_{\mathrm{ij}}^{2}} \rightarrow \frac{1}{2 \lambda^{2}} \frac{1}{2 p_{\mathrm{i}} \mathbf{q}}\left[\frac{\mathbf{p}_{\mathrm{i}} \mathbf{p}_{\mathrm{k}}}{\left(\mathbf{p}_{\mathrm{i}}+\mathbf{p}_{\mathrm{k}}\right) \mathbf{q}}-\frac{\mathbf{m}_{\mathrm{i}}^{2}}{2{p_{i} q}}\right] \leftarrow \begin{gathered}
\text { correct part } \\
\text { of eikonal }
\end{gathered}
$$

(Quasi-)Collinear limit $\frac{1}{\mathrm{Q}_{\mathrm{ij}}^{2}} \rightarrow \frac{1}{2 \lambda^{2}} \frac{1}{\left|\mathrm{p}_{\mathrm{ij}}^{2}-\mathrm{m}_{\mathrm{i}}^{2}-\mathrm{m}_{\mathrm{j}}^{2}\right|}\left(\tilde{\mathrm{C}}_{\mathrm{i}, \mathrm{j}}, \tilde{\mathrm{C}}_{\mathrm{j}, \mathrm{i}}\right)$

$$
\tilde{\mathbf{C}}_{\mathrm{i}, \mathrm{j}}=\left\{\begin{array}{cc}
\frac{\mathrm{z}}{1-\mathrm{z}}-\frac{\mathbf{m}_{\mathbf{i}}^{2}}{2 \mathbf{p}_{\mathbf{i}} \mathbf{p}_{\mathbf{j}}} & \text { if } \mathbf{j}=\mathrm{g} \leftarrow \begin{array}{c}
\text { leading term of } \\
\text { DGLAP kernel }
\end{array} \\
1 & \text { else }
\end{array}\right.
$$

TRUNCATED SHOWERS

SH, F. Krauss, S.Schumann, F. Siegert: arXiv:0903.1219 [hep-ph]
What is a truncated shower and why is a standard shower not enough?

- Assuming we have a ME, predefining a branching at scale t with hard scale t^{\prime}. Filling the remaining phase space means computing $\quad \mathcal{P}_{\text {no }, \mathbf{a}}^{(\mathbf{B})}{ }^{\text {PS }}\left(\mathbf{z}, \mathbf{t}, \mathbf{t}^{\prime}\right)=\frac{\boldsymbol{\Delta}_{\mathbf{a}}^{\mathrm{PS}}\left(\mu^{2}, \mathbf{t}^{\prime}\right) \mathbf{g a}_{\mathbf{a}}(\mathbf{z}, \mathbf{t})}{\boldsymbol{\Delta}_{\mathbf{a}}^{\mathrm{PS}}\left(\mu^{2}, \mathbf{t}\right) \mathbf{g a}_{\mathbf{a}}\left(\mathbf{z}, \mathbf{t}^{\prime}\right)}$
\Rightarrow We need a shower evolving between t^{\prime} and t, i.e. a "truncated" one

In a truncated shower, the predefined ME branching at t sets the evolution-, splitting- and angular variable of a predefined node to be inserted later After any emission above t, this node must be reconstructed

ME+SHOWER: RESULTS

SH, F. Krauss, S.Schumann, F. Siegert: arXiv:0903.1219 [hep-ph] An immediate consequence is that the LO cross section is preserved
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons at LEP I, Total cross sections [nb]

		$N_{\max }$				
		0	1	2	3	4
$\log _{10} y_{\text {cut }}$	-1.25		$39.65(3)$	$39.66(3)$	$39.66(3)$	$39.67(3)$
	-1.75	$40.17(1)$	$39.38(5)$	$39.29(6)$	$39.13(5)$	$39.13(5)$
	-2.25		$39.27(8)$	$38.35(9)$	$37.89(11)$	$37.60(10)$

Drell-Yan at Tevatron Run II, Total cross sections [pb]

		$N_{\text {max }}$						
		0	1	2	3	4	5	6
$Q_{\text {cut }}$	20 GeV	192.6(1)	192.1(3)	194.0(5)	192.6(6)	191.9(7)	191.3(9)	207.4(14)
	30 GeV		193.3(2)	194.5(2)	194.6(3)	195.0(3)	194.7(3)	201.5(4)
	45 GeV		194.2(2)	194.9(1)	195.2(1)	195.3(2)	195.1(1)	197.7(1)

ME+SHOWER: RESULTS

SH, F. Krauss, S.Schumann, F. Siegert: arXiv:0903.1219 [hep-ph]

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons at LEP I

Durham $2 \rightarrow 3$ jet rate (parton level)

Stefan Höche, Particle Theory Seminar, PSI, 19.3.2009

ME+SHOWER: RESULTS

SH, F. Krauss, S.Schumann, F. Siegert: arXiv:0903.1219 [hep-ph]

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons at LEP I

Durham jet rates (hadron level, untuned)

Stefan Höche, Particle Theory Seminar, PSI, 19.3.2009

ME+SHOWER: RESULTS

SH, F. Krauss, S.Schumann, F. Siegert: arXiv:0903.1219 [hep-ph]

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons at LEP I

Shape observables (hadron level, untuned)

Stefan Höche, Particle Theory Seminar, PSI, 19.3.2009

ME+SHOWER: RESULTS

SH, F. Krauss, S.Schumann, F. Siegert: arXiv:0903.1219 [hep-ph]
Drell-Yan production at Tevatron Run I
Lepton observables

Stefan Höche, Particle Theory Seminar, PSI, 19.3.2009

ME+SHOWER: RESULTS

SH, F. Krauss, S.Schumann, F. Siegert: arXiv:0903.1219 [hep-ph]
Drell-Yan production at Tevatron Run I
Differential jet rates (parton level)

Stefan Höche, Particle Theory Seminar, PSI, 19.3.2009

ME+SHOWER: RESULTS

SH, F. Krauss, S.Schumann, F. Siegert: arXiv:0903.1219 [hep-ph]
Drell-Yan production at Tevatron Run I
Differential jet rates (parton level)

Stefan Höche, Particle Theory Seminar, PSI, 19.3.2009

ME+SHOWER: RESULTS

SH, F. Krauss, S.Schumann, F. Siegert: arXiv:0903.1219 [hep-ph]
Drell-Yan production at Tevatron Run II PRL 100(2008)102001 Jet observables for $\mathrm{p}_{\mathrm{T}, \mathrm{jet}}>30 \mathrm{GeV}$

Stefan Höche, Particle Theory Seminar, PSI, 19.3.2009

ME+SHOWER: RESULTS

SH, F. Krauss, S.Schumann, F. Siegert: arXiv:0903.1219 [hep-ph]

- Drell-Yan production at Tevatron Run II PRL 100(2008)102001 Jet observables for $\mathrm{p}_{\mathrm{T}, \mathrm{jet}}>30 \mathrm{GeV}$

Seems we can finally say somthing about jets ...

SUMMARY

Now we can generate ME's and showers and merge the two

 Still, there is a lot to be done. We work in two directionsLoopy ...

- Automated POWHEG
- Interfaces to loop ME codes
- Extension to CKKW@NLO
... and down-to-earth
- Cross-checks with other codes
- Application to heavy quark and SUSY production
- Application to ep-scattering
- More phenomenology!

SUMMARY

There is a whole lot of other stuff needed to build a full-fledged event generator
"Soft" physics ...

- Fragmentation
- Hadron decays
- QED radiation
"Hard" physics ...
- Inclusive decays
- Multiple parton interactions

Get the code to produce the plots in this talk ...

WWW.SHERPA-MC.DE

... and be a pain in the neck for its authors INFO@SHERPA-MC.DE

