TREE-LEVEL EVENT GENERATION AND THE SHERPA MONTE CARLO

Stefan Höche¹ Institute for theoretical Physics University of Zürich

¹ and the other Sherpas T. Gleisberg, F. Krauss, M. Schönherr, S. Schumann, F. Siegert & J. Winter

TREE-LEVEL MONTE CARLOS

How do they work?

- Hard matrix elements
- Showers
- Multiple parton interactions
- Hadronisation
- Hadron decays

"Traditional" tree-level MC's like Pythia and HERWIG have been around for longer than myself, so ...

... are tree-level MC's old-fashioned and not up to the task ?

... is there still room for improvement and contained of the second seco

- The task is to generate events (weighted or unweighted) according to the differential cross section
 - Two steps: Compute the matrix element
 Sample the phasespace
- Sounds trivial, everything is known, right ? So why does it take us so long to build a tree-level ME generator ?
- The hard matrix element is rather tedious to compute for large final state multiplicities, even at tree-level (pp→W+5jets has about 7000 diagrams)
- We have a high-dimensional phasespace with a most commonly sharply peaked integrand

The simple solution: restrict it to $2 \rightarrow 2$ and let showers do the rest If we want something better, we have to try harder ...

Commonly used techniques to evaluate the ME (non-exhaustive] Pre-compute Fast and easy Pythia, HERWIG Lacks generality, low multis Diagrammatic techniques • Very flexible MadGraph, CompHEP Medium multis AMEGIC-Recursive techniques • Very flexible, high multis Slow at low multis part of On top of that we have a choice ... Sherpa ... sample or sum over colours ? ... sample or sum over helicities ? ... depends on what it costs the colour sum is tedious, because SU(3) is a nasty group ... the helicity sum is easy, because we can recycle subamplitudes

Commonly used technique to evaluate the multi-particle phasespace

 Guess the peak structure of the integrand from the dynamics of the process Nucl. Phys. B9 (1969) 568

 $\begin{array}{l} \mathbf{D_{iso}(23,45)\otimes P_0(23)\otimes P_0(45)}\\ \otimes \mathbf{D_{iso}(2,3)\otimes D_{iso}(4,5)} \end{array}$

 Combine channels corresponding to single diagrams into a multi-channel and optimise CPC 83(1994)141
 Refine single integration channels with VEGAS CLNS-08/447 (1980)
 Other, less optimal / general techniques exist, like Rambo & HAAG The nasty part are correlation and interference effects in the ME, which often render the optimisation cumbersome ! Colour- and / or helicity-sampling introduces additional d.o.f.

• Example: ME-Generator comparison in context of MC4LHC http://indico.cern.ch/categoryDisplay.py?categId=152 (2004)

HIGH-MULTI ME'S WITHCSW

T. Gleisberg, SH, F. Krauss, R. Matyskiewicz; arXiv:0808.3672 [hep-ph]

For large multis we need something better than Feynman diagrams ...

 Twistor-inspired techniques (CSW rules) said to speed up calculation of high multiplicy pure QCD ME's

• Advantage: Up to $N_{out} = 7$ only up to 3 MHV-amps sewed together

... sounds promising, so how far can we really go with it ?

$pp \rightarrow n$ jets									
gluons only	n=2	n = 3	n = 4	n = 5	n = 6				
MC cross section [pb]	$8.915 \cdot 10^{7}$	$5.454 \cdot 10^{6}$	$1.150 \cdot 10^{6}$	$2.757 \cdot 10^5$	$7.95 \cdot 10^4$				
stat. error	0.1%	0.1%	0.2%	0.5%	1%				
	integration time for given stat. error [s]								
CSW (HAAG)	4	165	1681) 12800	$2\cdot 10^6$				
CSW (CSI)	-	480	6500	11900	197000				
AMEGIC (HAAG)	6	492	41400	-	-				
COMIX (RPG)	159	5050	33000	38000	74000				
COMIX (CSI)	-	780	6930 🤇	6800	12400				

C. Duhr, F. Maltoni, SH: JHEP 08 (2006) 062

Apparently, for very large multis we need something even better ... QCD: Comparison with BCFW/CSW method shows superiority of CDBG/Dyson-Schwinger algorithms for numerics

Computation time $2 \rightarrow n$ gluon ME for 10^4 phase space points, sampled in helicity and colour CO \rightarrow colour ordered CD \rightarrow colour dressed

Final	В	G	BC	CF	CSW		
State	CO CD		CO CD		CO	CD	
2g	0.24	0.28	0.28	0.33	0.31	0.26	
3g	0.45	0.48	0.42	0.51	0.57	0.55	
4g	1.20	1.04	0.84	1.32	1.63	1.75	
5g	3.78	2.69	2.59	7.26	5.95	5.96	
6g	14.2	7.19	11.9	59.1	27.8	30.6	
7g	58.5	23.7	73.6	646	146	195	
8g	276	82.1	597	8690	919	1890	
9g	1450	270	5900	127000	6310	29700	
10 <i>g</i>	7960	864	64000	-	48900	-	

Factorial growth tamed ! Now exponential (~3ⁿ)

Other methods much slower due to unsuitable natural color basis and/or large number of vertices Stefan Höche, Particle Theory Seminar, PSI, 19.3.2009

VERY HIGH-MULTI ME'S: COMIX

T. Gleisberg, SH: JHEP12(2008)039

- BG recursion can be generalised
 - \rightarrow New ME generator **COMIX** $_{max}$
- Fully general SM implementation

- Key point: Vertex decomposition of all four-particle vertices
 The growth in computational complexity is solely determined
 by the number of external legs at the model's vertices
 - ME performance in QCD benchmark (2→n gluon)

World record ;-)

$gg \rightarrow ng$	Cross section [pb]					
n	8	9	10	11	12	
$\sqrt{s} \; [\text{GeV}]$	1500	2000	2500	3500	5000	
Comix	0.755(3)	0.305(2)	0.101(7) (0.057(5)	0.026(1)	
Phys. Rev. D67(2003)014026	0.70(4)	0.30(2)	0.097(6)			
Nucl. Phys. B539(1999)215	0.719(19)					

Now the ME is really ticked off, but how about the phasespace ?

 State-of-the art in phasespace generation: factorise PS using dΦ_n (a, b; 1, ..., n) = dΦ_m (a, b; 1, ..., m, π̄) ds_π dΦ_{n-m} (π; m + 1, ..., n) Remaining basic building blocks of the phasespace:

Arrows → Momentum flow

Basic idea: Take above recursion literally and "turn it around" Example: s-channel phasespace recursion

 $d\Phi_{S}(\pi) = \left[\sum_{\alpha} \alpha \left(S_{\pi}^{\rho,\pi\setminus\rho}\right)\right]^{-1} \qquad \begin{array}{l} \text{Weights for adaptive} \\ \text{multichanneling} \\ \times \left[\sum_{\alpha} \alpha \left(S_{\pi}^{\rho,\pi\setminus\rho}\right) S_{\pi}^{\rho,\pi\setminus\rho} P_{\rho} d\Phi_{S}(\rho) P_{\pi\setminus\rho} d\Phi_{S}(\pi\setminus\rho)\right] \end{array}$

General structure of recursion (ME and phasespace):

$$\mathcal{J}_{\alpha}(\pi) = P_{\alpha}(\pi) \sum_{\mathcal{V}_{\alpha}^{\alpha_{1},\alpha_{2}}} \sum_{\mathcal{P}_{2}(\pi)} \mathcal{S}(\pi_{1},\pi_{2}) \mathcal{V}_{\alpha}^{\alpha_{1},\alpha_{2}}(\pi_{1},\pi_{2}) \mathcal{J}_{\alpha_{1}}(\pi_{1}) \mathcal{J}_{\alpha_{2}}(\pi_{2})$$

n-particle currents only depend on m<n-particle currents

Straightforward multithreading algorithm

Now you can use as many processors / cores as you like !

Identical procedure for ME and phasespace due to same recursion

Example: Drell-Yan+b-pair+jets comparison with ALPGEN & AMEGIC++

	σ [pb]		Number of jets									
	$e^-e^+ + b\overline{b} + QCI$	D jets	0	1	2	3	4	5				
N.VE	Comix		8.90(3)	6.81(2)	3.07(3)	1.536(9)	0.763(6)	0.37(1)				
No.	ALPGEN	12	8.95(8)	6.80(3)	2.97(2)	1.501(9)	0.78(1)					
	AMEGIC++		8.90(2)	6.82(2)	3.06(4)							
	Example: b-pair + jets comparison with ALPGEN & AMEGIC++											
	$\sigma [\mu b]$		1	<u> </u>	Number of	jets 🖌	N					
	$b\overline{b}$ + QCD jets	0	1	2	3	4	5	6				
1	Comix	471.2(5)	8.83(2)	1.813(8			0.0531(5)	0.0205(4)				
2	ALPGEN	470.6(6)	8.83(1)	1.822(9) $0.150(2)$	0.053(1)	0.0215(8)				
	AMEGIC++	470.3(4)	8.84(2)	1.817(6	5)							

QCD processes have typical & complicated antenna structure

■ For every phasespace point a multichannel is constructed on the flight → CSI

We can now generate high multiplicity ME's, so let's carry on ...

F.Krauss, S.Schumann; JHEP03(2008)038

Next we need some shower algorithm ...

Catani-Seymour subtraction terms

 General framework for QCD NLO calculations

 Splitting of parton ij into partons i and j, spectator k

 Momentum reshuffled locally, spectator enters splitting function !
 e.g. initial-initial splitting: i (V^{ai,b})
 (V^{ai,b})

 $\label{eq:xi,ab} x_{i,ab} = \frac{p_a p_b - p_i p_a - p_i p_b}{p_a p_b}$

Advantages over conventional Parton Shower
 Excellent approximation of ME
 Unambiguous kinematics
 Implemented into the Sherpa event generator in full generality

ai

(final-final, initial-final and initial-initial dipoles)

pp→jets

CS-SUBTRACTION BASED SHOWER

pp→jets Phys. Rev. Lett. 94 (2005) 221801

F.Krauss, S.Schumann; JHEP03(2008)038

Phys. Rev. D50 (1994) 5562

Now that we can compute high-multi ME's and generate showers, we need to combine the two in a sensible way

Matrix Elements $\left| \underbrace{\bigvee_{t}}_{t} + \underbrace{\bigvee_{u}}_{u} \right|^{2}$

Exact fixed order calculation

Parton Showers $\left| \underbrace{\bigvee_{t}}_{t} \right|^{2} + \left| \underbrace{\bigvee_{u}}_{u} \right|^{2}$

Resummation to all orders

Combine the two: CKKW / CKKW-L / MLM

- Good description of hard radiation (ME)
 Correct intrajet evolution (PS)
- Strategy: Separate phase space
 Jet production region ME
- Free parameter: Separation cut Q_{cut} ($Q \rightarrow K_T$ -type jet measure)

CKKW: Z+JETS@TEVATRON

The DØ collaboration, DØ note 5066-CONF

Pythia 6.2 normalized to data

Sherpa 1.0 normalized to data

CKKW WITH COMIX

SH, F. Krauss, S.Schumann, F. Siegert: in preparation

pp→ll+jets at the Tevatron exclusive jet- p_T , comparison vs. PS

CKKW WITH COMIX

SH, F. Krauss, S.Schumann, F. Siegert: in preparation

▶ $pp \rightarrow ll+jets$ at the Tevatron inclusive jet- p_T , effect of N_{max} variation

CKKWINANUTSHELL

 $\alpha_s(Q_1)$

 $\Delta_{\boldsymbol{g}}(Q_{\mathrm{cut}},Q_1)$

JHEP 0111 (2001) 063, JHEP 0208 (2002) 015

 $\Delta_{ar{q}}(Q_{ ext{cut}},\mu_H)$

Results look promising, but how does it actually work ?

- Define jet resolution parameter Q_{cut} (Q→jet measure)
 divide phase space into regions of $\Delta_q(Q_{cut},Q_1)$ jet production (ME) and jet evolution (PS) $\Delta_q(Q_{cut},\mu_H)$
- Select final state multiplicity and kinematics according to σ 'above' Q_{cut}
- K_T-cluster backwards (construct PS-tree) and identify core process
- ME Domain Solution ME Domain Solution
 Reweight ME to obtain exclusive samples at Q_{cut}
 Start the parton shower at the hard scale

Start the parton shower at the hard scale
 Veto all PS emissions harder than Q_{cut}
 Procedure is essentially based on NLL-formalism in PLB 269(1991)432
 A prominent criticism is the missing proof for initial state evolution, so we need to improve ...

HOW CAN WE IMPROVE THIS?

SH, F. Krauss, S.Schumann, F. Siegert: arXiv:0903.1219 [hep-ph]

Let's try and formulate what we expect from a ME - shower merging
The starting point is QCD evolution

$$\frac{\partial}{\partial \log(t/\mu^2)} \frac{\mathbf{g}_{\mathbf{a}}(\mathbf{z}, \mathbf{t})}{\boldsymbol{\Delta}_{\mathbf{a}}(\mu^2, \mathbf{t})} = \frac{1}{\boldsymbol{\Delta}_{\mathbf{a}}(\mu^2, \mathbf{t})} \int_{\mathbf{z}}^{\zeta_{\max}} \frac{\mathrm{d}\zeta}{\zeta} \sum_{\mathbf{b}=\mathbf{q}, \mathbf{g}} \mathcal{K}_{\mathbf{b}\mathbf{a}}(\zeta, \mathbf{t}) \, \mathbf{g}_{\mathbf{b}}(\mathbf{z}/\zeta, \mathbf{t})$$

This defines the backward no-branching probability for showers $\mathcal{P}_{no,a}^{(B)}(\mathbf{z}, \mathbf{t}, \mathbf{t}') = \frac{\Delta_{\mathbf{a}}(\mu^{2}, \mathbf{t}') \, \mathbf{g}_{\mathbf{a}}(\mathbf{z}, \mathbf{t})}{\Delta_{\mathbf{a}}(\mu^{2}, \mathbf{t}) \, \mathbf{g}_{\mathbf{a}}(\mathbf{z}, \mathbf{t}')} = \exp\left\{-\int_{\mathbf{t}}^{\mathbf{t}'} \frac{d\overline{\mathbf{t}}}{\overline{\mathbf{t}}} \int_{\mathbf{z}}^{\zeta_{max}} \frac{d\zeta}{\zeta} \sum_{\mathbf{b}=\mathbf{q},\mathbf{g}} \mathcal{K}_{\mathbf{b}\mathbf{a}}(\zeta, \overline{\mathbf{t}}) \, \frac{\mathbf{g}_{\mathbf{b}}(\mathbf{z}/\zeta, \overline{\mathbf{t}})}{\mathbf{g}_{\mathbf{a}}(\mathbf{z}, \overline{\mathbf{t}})}\right\}$

- Requirements for the ME shower merging
 - Above equation for shower evolution is preserved
 Hardest emissions are described by matrix elements, schematically:

 *K*_{ab}(z, t) → 1/(W) d²σ^(N+1)_b(z, t; Φ_N)

$$\mathcal{L}_{\mathbf{ab}}(\mathbf{z}, \mathbf{t}) \rightarrow \frac{\mathbf{I}}{\sigma_{\mathbf{a}}^{(\mathbf{N})}(\mathbf{\Phi}_{\mathbf{N}})} \frac{\mathrm{d} \ \sigma_{\mathbf{b}}^{(\mathbf{z}, \mathbf{t}, \mathbf{\Phi}_{\mathbf{N}})}}{\mathrm{d} \log(\mathbf{t}/\mu^{2}) \, \mathrm{d} \mathbf{z}}$$

SH, F. Krauss, S.Schumann, F. Siegert: arXiv:0903.1219 [hep-ph]

Now let's work it out ...

- Slice the phase space with a jet criterion Q $\mathcal{K}_{ab}^{\mathrm{ME}}(\xi, \bar{t}) = \mathcal{K}_{ab}(\xi, \bar{t}) \Theta \left[Q_{ab}(\xi, \bar{t}) - Q_{\mathrm{cut}} \right]$ $\mathcal{K}_{ab}^{\mathrm{PS}}(\xi, \bar{t}) = \mathcal{K}_{ab}(\xi, \bar{t}) \Theta \left[Q_{\mathrm{cut}} - Q_{ab}(\xi, \bar{t}) \right]$
 - Veto the shower

$$\tilde{\mathcal{P}}_{\text{no,a}}^{(B)\,\text{PS}}(\mathbf{z},\mathbf{t},\mathbf{t}') = \frac{\boldsymbol{\Delta}_{\mathbf{a}}^{\text{PS}}(\mu^{2},\mathbf{t}')\,\tilde{\mathbf{g}}_{\mathbf{a}}(\mathbf{z},\mathbf{t})}{\boldsymbol{\Delta}_{\mathbf{a}}^{\text{PS}}(\mu^{2},\mathbf{t})\,\tilde{\mathbf{g}}_{\mathbf{a}}(\mathbf{z},\mathbf{t}')} = \exp\left\{-\int_{\mathbf{t}}^{\mathbf{t}'}\frac{\mathrm{d}\overline{\mathbf{t}}}{\overline{\mathbf{t}}}\int_{\mathbf{z}}^{\zeta_{\text{max}}}\frac{\mathrm{d}\zeta}{\zeta}\sum_{\mathbf{b}=\mathbf{q},\mathbf{g}}\mathcal{K}_{\mathbf{b}\mathbf{a}}^{\text{PS}}(\zeta,\overline{\mathbf{t}})\,\frac{\tilde{\mathbf{g}}_{\mathbf{b}}(\mathbf{z}/\zeta,\overline{\mathbf{t}})}{\tilde{\mathbf{g}}_{\mathbf{a}}(\mathbf{z},\overline{\mathbf{t}})}\right\}$$

It looks as if one obtains a different evolution But this is easily corrected by adding the missing part

$$\mathcal{P}_{\mathrm{no},\,\mathbf{a}}^{(\mathbf{B})}(\mathbf{z},\mathbf{t},\mathbf{t}') = \frac{\Delta^{\mathrm{ME}}(\mu^{2},\mathbf{t}')}{\Delta^{\mathrm{ME}}(\mu^{2},\mathbf{t})} \, \mathcal{P}_{\mathrm{no},\,\mathbf{a}}^{(\mathbf{B})\,\mathrm{PS}}(\mathbf{z},\mathbf{t},\mathbf{t}') \,, \quad \mathcal{P}_{\mathrm{no},\,\mathbf{a}}^{(\mathbf{B})\,\mathrm{PS}}(\mathbf{z},\mathbf{t},\mathbf{t}') = \frac{\Delta_{\mathbf{a}}^{\mathrm{PS}}(\mu^{2},\mathbf{t}')\,\mathbf{g}_{\mathbf{a}}(\mathbf{z},\mathbf{t})}{\Delta_{\mathbf{a}}^{\mathrm{PS}}(\mu^{2},\mathbf{t})\,\mathbf{g}_{\mathbf{a}}(\mathbf{z},\mathbf{t}')}$$

This works independent of the precise definition of Q !

A NEW JET CRITERION

SH, F. Krauss, S.Schumann, F. Siegert: arXiv:0903.1219 [hep-ph]

New proposal for phasespace separation, CS - inspired masses $\begin{aligned} Q_{ij}^2 &= 2\,p_i p_j \min_{k \neq i, j} \left\{ \frac{2}{C_{i,j} + C_{j,i}} \right\} \qquad C_{i,j} &= \left\{ \begin{array}{c} \frac{p_i p_k}{(p_i + p_k) p_j} - \frac{m_i^2}{2\,p_i p_j} & \text{if } j = g \\ 1 & \text{elso} \end{array} \right. \end{aligned}$ → Identify two-particle poles of real NLO ME through New separation criterion has better behaviour than conventional ones $\left(\text{ e.g. } \mathbf{Q_{ij}^2} = 2 \min\left\{\mathbf{p_{\perp,i}^2}, \mathbf{p_{\perp,j}^2}\right\} \left[\cosh \Delta \eta_{ij} - \cos \Delta \phi_{ij}\right], \mathbf{Q_{ib}^2} = \mathbf{p_{i\perp}^2}\right)$ Soft gluon limit $\frac{1}{Q_{ij}^2} \rightarrow \frac{1}{2\lambda^2} \frac{1}{2p_i q} \left[\frac{p_i p_k}{(p_i + p_k) q} - \frac{m_i^2}{2p_i q} \right] \leftarrow \begin{bmatrix} \text{correct part} & \text{correct part} \\ \text{of eikonal} & \text{of eikonal} \end{bmatrix}$ $(Quasi-)Collinear limit \quad \frac{1}{Q_{ij}^2} \to \frac{1}{2\lambda^2} \frac{1}{\left|p_{ij}^2 - m_i^2 - m_j^2\right|} \left(\tilde{C}_{i,j}, \tilde{C}_{j,i}\right)$ $\tilde{C}_{i,j} = \begin{cases} \frac{z}{1-z} - \frac{m_i^2}{2p_ip_j} & \text{if } j=g \leftarrow \text{ leading term of } DGLAP \text{ kernel} \\ 1 & \text{else} \end{cases}$

TRUNCATED SHOWERS

SH, F. Krauss, S.Schumann, F. Siegert: arXiv:0903.1219 [hep-ph]

What is a truncated shower and why is a standard shower not enough?

- Assuming we have a ME, predefining a branching at scale t with hard scale t'. Filling the remaining phase space means computing $\mathcal{P}_{no,a}^{(B)\,PS}(\mathbf{z},\mathbf{t},\mathbf{t}') = \frac{\boldsymbol{\Delta}_{a}^{PS}(\mu^{2},\mathbf{t}')\,\mathbf{g}_{a}(\mathbf{z},\mathbf{t})}{\boldsymbol{\Delta}_{a}^{PS}(\mu^{2},\mathbf{t})\,\mathbf{g}_{a}(\mathbf{z},\mathbf{t}')}$
 - We need a shower evolving between t' and t,
 i.e. a "truncated" one

In a truncated shower, the predefined ME branching at t sets the evolution-, splitting- and angular variable of a predefined node to be inserted later After any emission above t, this node must be reconstructed

SH, F. Krauss, S.Schumann, F. Siegert: arXiv:0903.1219 [hep-ph]

An immediate consequence is that the LO cross section is preserved

• e^+e^- + hadrons at LEP I, Total cross sections [nb]

6.4% variation

		$N_{ m max}$						
		0	1	2	3	4		
	-1.25		39.65(3)	39.66(3)	39.66(3)	39.67(3)		
$\log_{10} y_{\rm cut}$	-1.75	40.17(1)	39.38(5)	39.29(6)	39.13(5)	39.13(5)		
	-2.25		39.27(8)	38.35(9)	37.89(11)	37.60(10)		

Drell-Yan at Tevatron Run II, Total cross sections [pb]

		$N_{ m max}$							
		0	1	2	3	4	5	6	
	$20 { m GeV}$		192.1(3)	194.0(5)	192.6(6)	191.9(7)	191.3(9)	207.4(14)	
$Q_{ m cut}$	$30 { m GeV}$	192.6(1)	193.3(2)	194.5(2)	194.6(3)	195.0(3)	194.7(3)	201.5(4)	
	$45 { m GeV}$		194.2(2)	194.9(1)	195.2(1)	195.3(2)	195.1(1)	197.7(1)	

SH, F. Krauss, S.Schumann, F. Siegert: arXiv:0903.1219 [hep-ph]

e⁺e⁻→ hadrons at LEP I Durham 2→3 jet rate (parton level)

Stefan Höche, Particle Theory Seminar, PSI, 19.3.2009

SH, F. Krauss, S.Schumann, F. Siegert: arXiv:0903.1219 [hep-ph]

e⁺e⁻→ hadrons at LEP I Durham jet rates (hadron level, untuned)

SH, F. Krauss, S.Schumann, F. Siegert: arXiv:0903.1219 [hep-ph]

e⁺e⁻→ hadrons at LEP I Shape observables (hadron level, untuned)

SH, F. Krauss, S.Schumann, F. Siegert: arXiv:0903.1219 [hep-ph]

Drell-Yan production at Tevatron Run I Lepton observables

Stefan Höche, Particle Theory Seminar, PSI, 19.3.2009

SH, F. Krauss, S.Schumann, F. Siegert: arXiv:0903.1219 [hep-ph]

Drell-Yan production at Tevatron Run I Differential jet rates (parton level)

Stefan Höche, Particle Theory Seminar, PSI, 19.3.2009

SH, F. Krauss, S.Schumann, F. Siegert: arXiv:0903.1219 [hep-ph]

Drell-Yan production at Tevatron Run I Differential jet rates (parton level)

Stefan Höche, Particle Theory Seminar, PSI, 19.3.2009

SH, F. Krauss, S.Schumann, F. Siegert: arXiv:0903.1219 [hep-ph]

Drell-Yan production at Tevatron Run II PRL 100(2008)102001 Jet observables for $p_{T,jet} > 30$ GeV

SH, F. Krauss, S.Schumann, F. Siegert: arXiv:0903.1219 [hep-ph]

Drell-Yan production at Tevatron Run II PRL 100(2008)102001 Jet observables for p_{T,jet} > 30 GeV

Seems we can finally say somthing about jets ...

Now we can generate ME's and showers and merge the two Still, there is a lot to be done. We work in two directions

Loopy ...

- Automated POWHEG
- Interfaces to loop ME codes
- Extension to CKKW@NLO
- ... and down-to-earth
 - Cross-checks with other codes
 - Application to heavy quark and SUSY production
 - Application to ep-scattering
 - More phenomenology !

There is a whole lot of other stuff needed to build a full-fledged event generator

- "Soft" physics ...
 - Fragmentation
 - Hadron decays
 - QED radiation
- "Hard" physics ...
 - Inclusive decaysMultiple parton interactions

Get the code to produce the plots in this talk ...

WWW.SHERPA-MC.DE

... and be a pain in the neck for its authors

INFO@SHERPA-MC.DE