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Path Integrals for Scattering

The Stage.

Non-relativistic quantum mechanics.

Elastic scattering at a potential V(x), vanishing at infinity.
Incoming and outgoing momenta k; and k;.

Mean momentum and momentum transfer

_1
~2

K (ki +kr), a=ks—k.
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Path Integrals for Scattering.

Main Features.

 Aphase e, S an action, is functionally integrated over two
different velocities v(t),w(t).

e w : phantom degree of freedom. Removes all seemingly
divergent quantities.

(— The kinetic term of w in the action has the wrong sign).
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Path Integrals for Scattering.

Main Features.

 Aphase e, S an action, is functionally integrated over two
different velocities v(t),w(t).

e w : phantom degree of freedom. Removes all seemingly
divergent quantities.

(— The kinetic term of w in the action has the wrong sign).

e Interacting part of S: values of the potential are integrated
along a one-particle trajectory &(t, v, w).

e The path integral describes the quantum fluctuations
around a reference trajectory.

- £(ta V,W) = éref(t) + Equant(ta V,W).
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The Formulae.

K - , ,
Tiop=i— / d’b e~'a® /Dv Dw g/ie [e’ Sint 1} .

Summary
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The Formulae.

Two Representations.

o Eikonal representation :

K
W 3-dimensional, () = b + Et'

e Ray representation :
K
w || K, &e(t) = b+—t+—]t!

In both cases, &quant(V, W) is linear in the velocities.

Summary



al Results ~ Summary

an-Jensen

Variational Principle  Analytical Results ~ Numeric
0000000

Path Integrals for Scattering ~ The Feynm
000

Reference Trajectory.
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The Feynman-Jensen Variational Principle
A Stationary Expression for the Path Integral.

Summary



The Feynman-Jensen Variational Principle
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¢ Imagine you want to solve a path integral for an action S,
knowing its value for another action S;. You may write

S1) oS
pxes — 4 PX e* e Dxe’t .= S_St)> Dxe't
[ Dx &St ' '
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e Consider in place of the above expression the following
functional:
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The Feynman-Jensen Variational Principle
oeo

¢ Imagine you want to solve a path integral for an action S,
knowing its value for another action S;. You may write

S1) oS
pxes — 4 PX e* e Dxe’t .= S_St)> Dxe't
[ Dx &St ' '

e Consider in place of the above expression the following
functional:

FIS] = eSS / Dx €|

e [t holds that

F[S] = / Dxe® and JF|g_g =0.



The Feynman-Jensen Variational Principle
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¢ Imagine you want to solve a path integral for an action S,
knowing its value for another action S;. You may write

S0 ofS
pxes — 4 PX e* e Dxe’t .= S_St)> Dxe't
[ Dx &St ' '

e Consider in place of the above expression the following
functional:

FIS] = eSS / Dx €|

e [t holds that

F[S] = / Dxe® and JF|g_g =0.

e We have thus found a stationary expression for the path
integral, which we can solve for a nearby action S;.
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Corrections.
Two ways to expand (eA5):
e Expansion in moments :

(#) - £ 0 (o).

k=0
e Expansion in cumulants Ag:

<e’m3> ‘= exp [i (/;)Ik)\k] .
k=1
A
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Corrections.
Two ways to expand (eA5):
e Expansion in moments :

<e’m3> ‘= exp [i (IBK)\,(] .

=\ = (AS), = <(AS)2> — (AS)?

e QOur variational approximation is the first term of the
cumulant expansion.

e The first correction term is given by
F[S] — F[S]exp (—3X2) .
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The Feynman-Jensen Variational Principle

Our Ansatz

Summary



The Feynman-Jensen Variational Principle
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Which Trial Action ?

The trial action S; has to satisfy two criteria:
1. It must have a physical motivation.

2. It must be simple enough to allow analytical calculations.
(very restrictive !)
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Our Ansatz I.

Motivation:

¢ In a high-energy approach to our path integral, one would
expand the interacting part of the action in

V(éref + fquant(va W)) ~ V(‘Eref) + vV(gref) : £quant(va W)

e This makes the interacting part of the action linear in the
velocities (— leads to eikonal-like expansions).
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Our Ansatz Il.

This suggests:
e Our Ansatz will be to add to the free action a linear term in
the velocities.
e The variational procedure will pick up for us the best linear
term possible, while emulating the structure of the
high-energy expansion.
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What we do.

In our path integral formulae for the T-Matrix, instead of

/Dva e’
we will therefore consider
F[S] = €5~ /DVDW e,

where the trial action is linear in the velocities,

S = sfree+/dtB(t).v(t)+/dt0(t).
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Expectations.

The problem is reduced to:
1. The computation of the needed expectation values.

2. The solution to the variational equations for B(t) and C(t)
arising from the stationarity condition.



The Feynman-Jensen Variational Principle

O0000e

Expectations.

The problem is reduced to:
1. The computation of the needed expectation values.

2. The solution to the variational equations for B(t) and C(t)
arising from the stationarity condition.

We expect:
1. To recover in the high-energy limit (at least) the leading
and next-to-leading term of the eikonal expansion.

2. That the approximation should also be valid for lower
energies or larger scattering angles.
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Results Valid in both Representations.
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Results Valid in both Representations.

¢ In both representations, the variational approximation
results
in two scattering phases, Xg  V and X; o V2.

T [[dborun [0 1]

e The introduction of the linear term in the action leads to a

new trajectory, which we call now x(t).

Summary

« All the information is contained in this variational trajectory,

which is given in integral form.
(one may forget about B and C).
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Analytical Results
The Approximation in the Eikonal Representation

Summary
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The Scattering Phases.

¢ In the eikonal representation, the scattering phases are

Xo = —/dt V(x(1))
and
X; = —41m/dt/dsVV(x(t))-VV(x(s))\t—s|.
e These are identical to the first two phases of the eikonal

expansion (Wallace 1971), expect for
o the replacement of b + X t with x(¢),

¢ the minus sign in front of Xj.
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The Variational Trajectory.
e The variational trajectory is given by

x(1) = t—/dsvv Dt — sl.

¢ By differentiating twice,

Summary
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The Variational Trajectory.
e The variational trajectory is given by

x(1) = b + %t— %/dsVV(x(s))]t— s|.

» By differentiating twice,

X(t) = —%VV(x(t)).

vz

: A(mv)=FAt ¢

DEUTSCHE
BUNDESPOST

VT VT TVT T VYTV
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The Variational Trajectory Il.

This integral equation

x(1) = t—/dsvv it — s,

e is the classical analogue of the Lippman-Schwinger wave
equation,

e it describes a classical scattering process with mean
momentum K.
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Behaviour at High Energy.

One expands in inverse powers of the incoming momentum k,
while holding m/k constant:

e The variational trajectory, and the scattering phases Xy

and Xj.

e The factors of
q?
4K2°
The result can be compared to the systematic eikonal
expansion, given by

K=k\/1-

Tif~ /dzb e~iab |:eiXO+iX1+iX2—w2+...]



Path Integrals for Scattering ~ The Feynman-Jensen Variational Principle

Analytical Results ~ Numerical Resulis
000 0O0000e0
000000 00000

Behaviour at High Energy Il

One finds that the variational approximation contains
¢ the leading term,

e the first order correction (with the correct sign...),

Summary
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Behaviour at High Energy Il

One finds that the variational approximation contains

¢ the leading term,
e the first order correction (with the correct sign...),

¢ as well as the imaginary part of the second order term.

lear'icationa] N /de e—iq-b [eiX0+iX1+"X2+~~
—

Summary
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Note on the second cumulant.

e The second cumulant is also given in integrating values of
potential derivatives along this variational trajectory.

¢ It completes the real part of the second order term w», and
parts of higher order terms.
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Analytical Results

The Approximation in the Ray Representation

Summary
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The Ray Scattering Phases.

¢ In the ray representation, the scattering phases are

Xo= - / dt Vo (X(1))
and
1
Xi= / IS Vi1 (X(1))- ¥ Vi) (X(3)) [IE — 8| — 1] — [s].

e These are similar to the phases in the eikonal
representation. However,
o these are complex quantities,
o the potential V is replaced by a new, effective potential V,,
o the variational trajectory shows now some different
properties.
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Effective Potential.

e This new potential is defined in Fourier space as the
Gauss transformation

B 2
Voo (P) = V(p) oxp (~ilt5 ).

e |tis a complex quantity.
e |t takes some quantum mechanical aspects into account.
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The Ray Variational Trajectory.

e The variational trajectory is given by

B K, q 1
X(t) = b+mt+2m|t1—2m/dsvva(s)(x(s)) (It —s|—|t|—|s]].



Analytical Results

The Ray Variational Trajectory.
e The variational trajectory is given by

B K, q 1
X(t) = b+mt+2m|t1—2m/dsVVU(S)(x(s)) (It —s|—|t|—|s]].

o By differentiating twice,

mxX(t) = =V V) (x(1)) + 4(t) (q + /dsVVG(S)(x(s))> .

e |t describes thus a (complex...) classical scattering
trajectory, except a time t = 0, when it suffers a kick.



e Asymptotics: For large |t|,
|t — s| — |t| — |s| — independent of t.
e |t follows that at + infinity,

. K q
X(t) = =+ —.
(1) m  2m
e Especially, K and g have in this classical trajectory the
same meaning of mean momentum and momentum
transfer.

Summary
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Numerical Results.

Numerical Results

Summary




Numerical Results

Numerical Results.
We tested the accuracy of the approximation for two particular
potentials,

e Gaussian,

e Woods-Saxon,

-3 -2 -1 o 1 2 3

with parameters corresponding to an high-energy situation in
nuclear physics where the eikonal approximation was
previously found unsatisfactory.



Numerical Results
The trajectories were obtained through iteration:

K. 1
mt—zm/dsVV(x,,(s))t—s,

K
Xo(t) = b+t

Xpi1(t) = b+



Path Integrals for Scattering ~ The Feynman-Jensen Variational Principle ~ Analytical Results ~ Numerical Results

000 0000000
000000 00000

The trajectories were obtained through iteration:

K. 1
Xpat(l) = b+mt—2m/dsVV(xn(s))]t—s|,

K
Xo(t) = b+t

Summary
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Numerical Results

e Integrations were performed with the Gauss-Legendre
rule, except for the second cumulant, where an adaptive
integration scheme was used.

¢ Oscillatory character of the second cumulant very
annoying...
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Summary

Outlook

Now

e The most general quadratic Ansatz can also be
investigated.

e The scattering process is then described by the same
variational trajectory, with the potential

V(@) = Vip)exp (- 3p7 - a(0p).

e o(t) is now a matrix, that satisfies also a
"Lippmann-Schwinger” equation

o =00+ oHoo, Hj=0;0;V,,

oo “free classical propagator”.
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Outlook

Longer Term

e This variational approximation could play a role in the
stochastic evaluation of the scattering process.

e Multibody scattering.

Summary
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Summary

¢ We have investigated a completely new way to address the
scattering process.

e Singles out one particle classical trajectories, evolving
according to an effective potential.

e Rather accurate.

Low-energy behaviour ??7?
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