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The Stage.

• Non-relativistic quantum mechanics.
• Elastic scattering at a potential V (x), vanishing at infinity.
• Incoming and outgoing momenta ki and kf .
• Mean momentum and momentum transfer

K =
1
2

(ki + kf ) , q = kf − ki .
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Path Integrals for Scattering.
Main Features.

• A phase eiS, S an action, is functionally integrated over two
different velocities v(t),w(t).

• w : phantom degree of freedom. Removes all seemingly
divergent quantities.
(→ The kinetic term of w in the action has the wrong sign).

• Interacting part of S: values of the potential are integrated
along a one-particle trajectory ξ(t ,v,w).

• The path integral describes the quantum fluctuations
around a reference trajectory.

→ ξ(t ,v,w) = ξref(t) + ξquant(t ,v,w).
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The Formulae.

Ti→f = i
K
m

∫
d2b e−iq·b

∫
DvDw eiSfree

[
ei Sint − 1

]
.

Sfree =
m
2

∫
dt
[
v2(t)−w2(t)

]
,

Sint = −
∫

dt V (ξ(t)), ξ(t) = ξref(t) + ξquant(t ,v,w).
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The Formulae.
Two Representations.

• Eikonal representation :

w 3-dimensional, ξref(t) = b +
K
m

t .

• Ray representation :

w ‖ K, ξref(t) = b +
K
m

t +
q

2m
|t |.

In both cases, ξquant(v,w) is linear in the velocities.
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Reference Trajectory.
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• Imagine you want to solve a path integral for an action S,
knowing its value for another action St . You may write∫
DxeiS =

∫
Dx ei(S−St )eiSt∫
Dx eiSt

∫
DxeiSt :=

〈
ei(S−St )

〉∫
DxeiSt .

• Consider in place of the above expression the following
functional:

F [St ] = ei〈S−St 〉
∫
Dx eiSt .

• It holds that

F [S] =

∫
Dx eiS and δF |S=St

= 0.

• We have thus found a stationary expression for the path
integral, which we can solve for a nearby action St .
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Corrections.
Two ways to expand

〈
eit∆S〉:

• Expansion in moments :〈
eit∆S

〉
=
∞∑

k=0

(it)k

k !

〈
(∆S)k

〉
.

• Expansion in cumulants λk :〈
eit∆S

〉
:= exp

[ ∞∑
k=1

(it)k

k !
λk

]
.

⇒ λ1 = 〈∆S〉 , λ2 =
〈

(∆S)2
〉
− 〈∆S〉2

• Our variational approximation is the first term of the
cumulant expansion.

• The first correction term is given by
F [St ]→ F [St ] exp

(
−1

2λ2
)
.
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Which Trial Action ?

The trial action St has to satisfy two criteria:
1. It must have a physical motivation.
2. It must be simple enough to allow analytical calculations.

(very restrictive !)
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Our Ansatz I.

Motivation:
• In a high-energy approach to our path integral, one would

expand the interacting part of the action in

V (ξref + ξquant(v,w)) ≈ V (ξref) +∇V (ξref) · ξquant(v,w).

• This makes the interacting part of the action linear in the
velocities (→ leads to eikonal-like expansions).



Path Integrals for Scattering The Feynman-Jensen Variational Principle Analytical Results Numerical Results Summary

Our Ansatz II.

This suggests:
• Our Ansatz will be to add to the free action a linear term in

the velocities.
• The variational procedure will pick up for us the best linear

term possible, while emulating the structure of the
high-energy expansion.
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What we do.

In our path integral formulae for the T -Matrix, instead of∫
DvDw eiS,

we will therefore consider

F [St ] = ei〈S−St 〉
∫
DvDw eiSt ,

where the trial action is linear in the velocities,

→ St = Sfree +

∫
dt B(t) · v(t) +

∫
dt C(t) ·w(t)
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Expectations.

The problem is reduced to:
1. The computation of the needed expectation values.
2. The solution to the variational equations for B(t) and C(t)

arising from the stationarity condition.

We expect:
1. To recover in the high-energy limit (at least) the leading

and next-to-leading term of the eikonal expansion.
2. That the approximation should also be valid for lower

energies or larger scattering angles.



Path Integrals for Scattering The Feynman-Jensen Variational Principle Analytical Results Numerical Results Summary

Expectations.

The problem is reduced to:
1. The computation of the needed expectation values.
2. The solution to the variational equations for B(t) and C(t)

arising from the stationarity condition.
We expect:

1. To recover in the high-energy limit (at least) the leading
and next-to-leading term of the eikonal expansion.

2. That the approximation should also be valid for lower
energies or larger scattering angles.



Path Integrals for Scattering The Feynman-Jensen Variational Principle Analytical Results Numerical Results Summary

Results Valid in both Representations.

• In both representations, the variational approximation
results
in two scattering phases, X0 ∝ V and X1 ∝ V 2.

→ Ti→f ∼
∫

d2b e−iq·b
[
ei(X0+X1) − 1

]
.

• The introduction of the linear term in the action leads to a
new trajectory, which we call now x(t).

• All the information is contained in this variational trajectory,
which is given in integral form.
(one may forget about B and C).
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The Scattering Phases.

• In the eikonal representation, the scattering phases are

X0 = −
∫

dt V (x(t))

and

X1 = − 1
4m

∫
dt
∫

ds ∇V (x(t)) · ∇V (x(s))|t − s|.

• These are identical to the first two phases of the eikonal
expansion (Wallace 1971), expect for

• the replacement of b + K
m t with x(t),

• the minus sign in front of X1.
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The Variational Trajectory.
• The variational trajectory is given by

x(t) = b +
K
m

t − 1
2m

∫
ds ∇V (x(s))|t − s|.

• By differentiating twice,

ẍ(t) = − 1
m
∇V (x(t)).



Path Integrals for Scattering The Feynman-Jensen Variational Principle Analytical Results Numerical Results Summary

The Variational Trajectory.
• The variational trajectory is given by

x(t) = b +
K
m

t − 1
2m

∫
ds ∇V (x(s))|t − s|.

• By differentiating twice,
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The Variational Trajectory II.

This integral equation

x(t) = b +
K
m

t − 1
2m

∫
ds ∇V (x(s))|t − s|,

• is the classical analogue of the Lippman-Schwinger wave
equation,

• it describes a classical scattering process with mean
momentum K.
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Behaviour at High Energy.

One expands in inverse powers of the incoming momentum k ,
while holding m/k constant:
• The variational trajectory, and the scattering phases X0

and X1.
• The factors of

K = k

√
1− q2

4k2 .

The result can be compared to the systematic eikonal
expansion, given by

Ti→f ∼
∫

d2b e−iq·b
[
eiχ0+iχ1+iχ2−ω2+···

]



Path Integrals for Scattering The Feynman-Jensen Variational Principle Analytical Results Numerical Results Summary

Behaviour at High Energy II.

One finds that the variational approximation contains

• the leading term,
• the first order correction (with the correct sign...),

• as well as the imaginary part of the second order term.

T variational
i→f →

∫
d2b e−iq·b

[
eiχ0+iχ1+iχ2+···

]
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Note on the second cumulant.

• The second cumulant is also given in integrating values of
potential derivatives along this variational trajectory.

• It completes the real part of the second order term ω2, and
parts of higher order terms.
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The Ray Scattering Phases.

• In the ray representation, the scattering phases are

X0 = −
∫

dt Vσ(t)(x(t))

and

X1 = − 1
4m

∫
dtds∇Vσ(t)(x(t))·∇Vσ(s)(x(s)) [|t − s| − |t | − |s|] .

• These are similar to the phases in the eikonal
representation. However,

• these are complex quantities,
• the potential V is replaced by a new, effective potential Vσ,
• the variational trajectory shows now some different

properties.
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Effective Potential.

• This new potential is defined in Fourier space as the
Gauss transformation

Ṽσ(t)(p) := Ṽ (p) exp
(
−i |t |

p2
⊥

2m

)
.

• It is a complex quantity.
• It takes some quantum mechanical aspects into account.
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The Ray Variational Trajectory.

• The variational trajectory is given by

x(t) = b+
K
m

t+
q

2m
|t |− 1

2m

∫
ds∇Vσ(s)(x(s)) [|t − s| − |t | − |s|] .

• By differentiating twice,

m ẍ(t) = −∇Vσ(t)(x(t)) + δ(t)
(

q +

∫
ds ∇Vσ(s)(x(s))

)
.

• It describes thus a (complex...) classical scattering
trajectory, except a time t = 0, when it suffers a kick.
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The Ray Variational Trajectory II.

• Asymptotics: For large |t |,

|t − s| − |t | − |s| → independent of t .

• It follows that at ± infinity,

ẋ(t) =
K
m
± q

2m
.

• Especially, K and q have in this classical trajectory the
same meaning of mean momentum and momentum
transfer.
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Numerical Results.

We tested the accuracy of the approximation for two particular
potentials,
• Gaussian,

• Woods-Saxon,

with parameters corresponding to an high-energy situation in
nuclear physics where the eikonal approximation was
previously found unsatisfactory.
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The trajectories were obtained through iteration:

xn+1(t) = b +
K
m

t − 1
2m

∫
ds ∇V (xn(s))|t − s|,

x0(t) = b +
K
m

t .
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• Integrations were performed with the Gauss-Legendre
rule, except for the second cumulant, where an adaptive
integration scheme was used.

• Oscillatory character of the second cumulant very
annoying...
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Outlook
Now

• The most general quadratic Ansatz can also be
investigated.

• The scattering process is then described by the same
variational trajectory, with the potential

Ṽσ(t)(p) = Ṽ (p) exp
(
− i

2
pT · σ(t)p

)
.

• σ(t) is now a matrix, that satisfies also a
”Lippmann-Schwinger” equation

σ = σ0 + σHσ0, Hij ≡ ∂i∂jVσ,

σ0 ”free classical propagator”.
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Outlook
Longer Term

• This variational approximation could play a role in the
stochastic evaluation of the scattering process.

• Multibody scattering.
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Summary

• We have investigated a completely new way to address the
scattering process.

• Singles out one particle classical trajectories, evolving
according to an effective potential.

• Rather accurate.

Low-energy behaviour ???
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