Weak effects in heavy quark and di-jet production

Andreas Scharf

Institut für Theoretische Teilchenphysik (TTP)

Universität Karlsruhe

Paul Scherrer Institut (PSI), Villigen, Switzerland

In collarboration with Johann H. Kühn and Peter Uwer

Outline

- Motivation & Leading order processes
- Next-to-leading order corrections $O(\alpha_s^2 \alpha)$
- Results & Discussion
- Conclusion & Outlook

Motivation & Leading order processes

Discoveries and Precision at Colliders

- Recent Colliders (examples)
 - Discovery: W and Z boson at the SPS
 - Precision: Z-resonance at the LEP \rightarrow three generations
 - Discovery: Top-quark at the Tevatron

Discoveries and Precision at Colliders

- Recent Colliders (examples)
 - Discovery: W and Z boson at the SPS
 - Precision: Z-resonance at the LEP \rightarrow three generations
 - Discovery: Top-quark at the Tevatron

Theory → Standard Model

Discoveries and Precision at Colliders

- Recent Colliders (examples)
 - Discovery: W and Z boson at the SPS
 - Precision: Z-resonance at the LEP \rightarrow three generations
 - Discovery: Top-quark at the Tevatron

Theory → Standard Model

- (Near) future Colliders (examples)
 - ▲ LHC: Discovery & Precision machine → direct and indirect measurements
 - ILC: High Precision machine

Why weak effects in hadronic collisions ?

- Hadron Colliders
 - Provide high energy events
 - Many observables will be measured at 10-20% accuracy

Theory: NLO corrections

- QCD-corrections are dominant
- Weak corrections
 - Smaller coupling: $\alpha < \alpha_s$
 - Large logarithms: Sudakov Logarithms

$$\ln^2\left(\frac{E_{cm}}{M_w}\right), \ \ln\left(\frac{E_{cm}}{M_w}\right)$$

(Sudakov 1954) (Kühn, Penin, Smirnov 1999) (Ciafaloni, Comelli 1999) (Denner,Pozzorini 2001) **Origin of the Sudakov Logarithms**

- Analogy to theories with massless gauge bosons (QCD,QED)
 - Soft and collinear logarithms in virtual corrections
 - Cancellation in the sum of virtual and real contributions

(Bloch, Nordsieck 1937) (Kinoshita, Lee, Nauenberg 1964)

Weak theory: massive bosons (Z, W)

Virtual and real corrections can be separated

Top-quark pair production

- Top-quark ($m_{\rm top} \simeq 172.7 \, {\rm GeV}$)
 - Completes the fermion sector of the SM
 - Still not very well measured
 - Probes physics at high mass scale
 - Plays central role in many SM extensions
- $t\bar{t}$ -production at Hadron Colliders

Top-quark pair production

- Experimentally (e.g. $p + \bar{p} \rightarrow t\bar{t} \rightarrow b\bar{b} + l\bar{v}_l + jj$)
 - Decay channels: di-lepton, semi-leptonic, full hadronic

• Tevatron:
$$rac{\Delta m_t}{m_t} \sim 1\%$$

Leading order p_T distribution

Bottom jet production

- **9** Bottom-quark ($m_b = 0$)
 - Events with well separated partons ($p_T > 50 \text{ GeV}$)
 - Background process ($t\bar{t}$, SUSY)
 - \checkmark Testing the SM at high $p_{\rm T}$
- *b*-jet production at Hadron Colliders

Bottom jet production

QCD, Mixed and Electroweak contributions

initial state	single <i>b</i> -tag	
quark-induced	$qb ightarrow qb, qar{b} ightarrow qar{b}, ar{q}b ightarrow ar{q}b, ar{q}ar{b} ightarrow ar{q}ar{b}$	$qar{q} o bar{b}$
gluon-induced	$gb ightarrow gb$, $gar{b} ightarrow gar{b}$	$gg ightarrow bar{b}$
pure bottom-induced	$bar{b} o bar{b}, bb o bb, ar{b}ar{b} o ar{b}ar{b}$	
	double <i>b</i> -tag	

- Experimentally
 - Lifetime of *B* mesons $\propto 1.5 \times 10^{-12} s$
 - Decay length allows b-jet identification

Bottom jet production

- p_T-distribution at leading order
 - Single b-tag

Di-jet production

- Gluon- & light quark-jets ($m_u = m_d = m_s = m_c = 0$)
 - \checkmark Well separated jets $p_T > 50 \; \text{GeV}$
 - Indirect new physics search, e.g. Z'
 - Study of jet production rates in the LHC start-up phase
- Di-jet production at Hadron Colliders
 - Processes of $O(\alpha_s^2)$ and $O(\alpha_s \alpha)$!

Experimentally

Tevatron: Di-jet-Masses up to 1 TeV

●LHC: Di-jet-Masses up to several TeV

p_T distribution at leading order

Di-jet production

Luminosity at the LHC

Consider top-quark pair production at LO

Define luminosity function:

 $L_{ij}(\tau,\mu_F) = \frac{1}{S} \int_{\tau}^{1} \frac{1}{x_1} f_{i,p}(x_1,\mu_F) f_{j,p}(\frac{\tau}{x_1},\mu_F)$ with $\tau = \frac{E_{cm}^2}{S}$

Next-to-leading order corrections $O(\alpha_s^2 \alpha)$

Status of NLO calculations

- Top-quark pair production
 - QCD corrections $O(\alpha_s^3)$
 - (Electro-)weak corrections $O(\alpha_s^2 \alpha)$

b-jet production

- QCD corrections $O(\alpha_s^3)$
- $b\bar{b}$ production $O(\alpha_s^2\alpha)$
- Di-jet production
 - QCD corrections $O(\alpha_s^3)$
 - Weak corrections $O(\alpha_s^2 \alpha)$

(Dawson, Nason, Ellis 1988) (Beenakker, Kuijf, Neerven, Smith 1989) (Bernreuther, Brandenburg, Si, Uwer 2004)

- $O(\alpha_s^2 \alpha) (Beenakker, Denner, Hollik, Mertig, Sack, Wackeroth 1994) (Bernreuther, Fücker, Si 2005, 2006) (Kühn, A.S., Uwer 2005, 2006) (Hollik, Kollar 2007) (Hollik, Kollar 2007)$
 - (Dawson, Ellis, Nason 1988) (Beenakker, Kuijf, Neerven, Smith 1989) (Frixione, Mangano 1997)

(Moretti et al 2003)

(Ellis, Sexton 1985) (Aversa et al 1988, 1991)

(Moretti et al 2006)

A. Scharf, TTP Karlsruhe

General Remarks

- Sorrections of $O(\alpha_s^2 \alpha)$ calculated in Feynman-'t Hooft Gauge
- Consider only weak corrections → neglecting photonic contributions
 - Gauge invariant subset
 - Photonic contributions involve no Sudakov Logarithms
- $t\bar{t}$ and b-jet production
 - $O(\alpha)$ corrections to LO α_s^2 processes: $Z, W, \phi, (\chi, H)$
- Di-jet production
 - " $O(\alpha)$ corrections to LO α_s^2 processes: Z, W "
 - " $O(\alpha_s)$ corrections to LO $\alpha_s \alpha$ processes"

Methods: Overview

- Scalar Integrals
- Renormalisation
- Real corrections

Methods: Renormalisation

Renormalisation: Counterterm formalism

 $\mathcal{L}(\Psi_0, A_0, m_0, g_0) \to \mathcal{L}(\Psi_R, A_R, m_R, g_R) + \mathcal{L}_{ct}(\Psi_R, A_R, m_R, g_R)$

- $t\bar{t}$ and b-jet production: $O(\alpha)$ corrections
 - On-shell scheme
 - No coupling renormalisation is needed
 - Only wave function and mass renormalisation
- Di-jet production
 - On-shell scheme (like $t\bar{t}$ and b-jet)
 - $\overline{\text{MS}}$ scheme

(Denner 1991)

Methods: Real corrections

- IR singularities
 - Phase-space-slicing

(Giele, Glover 1992) (Giele, Glover, Kosower 1993)

(Dipole-) subtraction method

(Catani, Seymour 1996) (Catani, Dittmaier, Seymour, Troćsányi 2002)

- Virtual corrections considered here
 - Only four quark processes are IR divergent
- IR divergent real corrections to four quark processes
 - Only $q(\bar{q}) \rightarrow q(\bar{q}) + g$ splitting must be considered
- **•** $t\bar{t}$ and b-jet production
 - Partonic results are independent from μ_F

Methods: (Dipole-) Subtraction

Methods: (Dipole-) Subtraction

• Subtraction method in
$$e^+e^-$$
 collisions $(e^+e^- \rightarrow m)$
 $\sigma^{\text{NLO}} = \int_m d\sigma^V + \int_{m+1} d\sigma^R = \int_m \left[d\sigma^V + \int_1 d\sigma^A \right] + \int_{m+1} \left[d\sigma^R - d\sigma^A \right]$
Integrated dipoles

Dipole method in hadron collisions ($h_1h_2 \rightarrow m$)

$$\sigma^{\text{NLO}} = \int_{m+1} d\sigma^{R} + \int_{m} d\sigma^{V} + \int_{m} d\sigma^{C} \text{ Has same singularity structure as } d\sigma^{R}$$

$$= \int_{m+1} \left[\left(d\sigma^{R} \right)_{\varepsilon=0} - \left(\sum_{dipoles} d\sigma^{LO} \otimes dV_{dipole} \right)_{\varepsilon=0} \right]$$
Contains all ε poles Finite remainder
$$+ \int_{m} \left[d\sigma^{V} + d\sigma^{LO} \otimes \mathbf{I} \right]_{\varepsilon=0} + \int dx \int_{m} d\sigma^{LO}(x) \otimes \left(\mathbf{K}(\mathbf{x}) + \mathbf{P}(\mathbf{x}) \right)$$

Methods: Technical Details

- Goal: Compact analytic results for further studies
- Amplitudes, Passarino-Veltman reduction & Renormalisation
 - FORM, MATHEMATICA, MAPLE
- Scalar Integrals
 - FF-LIBRARY, literature, analytical computation
- Numerics & Dipoles
 - FORTRAN 77
 - C/C++

(W. Bernreuther, M. Fücker, Z.G. Si)

A. Scharf, TTP Karlsruhe

• $t\bar{t}$ production

- Substitution of the IR and UV poles, ...
- Independent calculation by Peter Uwer \checkmark
- 🗩 Parallel work 🗸
- Literature ✓ (Beenakker, Denner, Hollik, Mertig, Sack, Wackeroth 1994) (Grzadkowski, Kühn 1987) → No aggreement with Moretti et al 2006 (Kniehl, Kühn 1989) (Jezábek, Kühn 1993)
- *b*-jet production
 - Substitution of the IR and UV poles, ...
 - Crossing symmetries
 - Independent calculation by Peter Uwer (\checkmark)
 - Literature

Status of di-jet production

- Virtual Corrections
- Real Corrections
- 🧢 Renormalisation 🗸
- Subtraction method in progress

Results & Discussion

Partonic results for $t\bar{t}$ **production**

Total hadronic cross section for $t\bar{t}$

Small corrections

tī production at the LHC

• Relative corrections to
$$M_{t\bar{t}} = \sqrt{(k_t + k_{\bar{t}})^2}$$

 $\int \mathcal{L} dt = 200 \text{fb}^{-1}$

tī production at the LHC

Relative corrections to p_T

 $\int \mathcal{L} dt = 200 \text{fb}^{-1}$

 $t\bar{t}$ production at the Tevatron

Relative corrections

Scale Dependence for $t\bar{t}$ **production**

b-jet production at the LHC

- Preliminary results
- Relative corrections to p_T: double b tag

b-jet production at the LHC

- Preliminary results
- Relative corrections to p_T: single b tag

Di-jet production

Discussion: General remarks

- Small corrections to total cross sections
- Important corrections for differential distributions at high energies
 - Statistics ?
 - Precision ?
- Weak boson emission ?
- Parton distribution functions
 - Error for light quark-PDF's \sim 10 % (2 TeV)
 - Error for gluon-PDF's \sim 50 % (2 TeV)

(Baur 2006)

• $t\overline{t}$ production

- NLO corrections to the "real" process $(p+p \rightarrow t\bar{t} \rightarrow b\bar{b} + l\bar{v}_l + jj)$?
- NNLO corrections ?
- *b*-jet production
 - Bottom-quark PDF's are not measured up to now
 - Uncertainity on the jet energy-scale
- Di-jet production
 - Uncertainity on the jet energy-scale

Conclusion & Outlook

- Heavy quark and di-jet production
 - Standard Model ?
 - New physics ?
- Weak corrections are important for differential distributions
 - Top-quark pair production: 15 20%
 - *b*-jet production: 10 15%
 - Analytic results for further studies

b-jet production

- Study further observables
- Di-jet production
 - Data taking starts already in the LHC warm up phase
 - Weak corrections should be known