NLO QCD corrections to the production of a weak boson pair with a jet

Grégory Sanguinetti - LAPTH

sangui@lapp.in2p3.fr

in collaboration with J.-P. Guillet, T. Binoth, S. Karg, N. Kauer

PSI Theory Seminar - January 24, 2008

Content

- Motivation
- Automatic computation of one-loop amplitudes: the GOLEM project
- Example: $pp \rightarrow VV + jet$
- Outlook

- ...
- ... Lausanne Hockey Club ?

- ...
- ... Lausanne Hockey Club ?
- ... Large Human Collider ??

- •
- ... Lausanne Hockey Club ?
- ... Large Human Collider ??
- Large Hadron Collider !!!

About the LHC

- Proton-Proton collisions at $\sqrt{s} \simeq 14 \text{ TeV}$
- 2 large beams of partons \rightarrow Beams of quarks, anti-quarks, gluons \rightarrow Hadrons
- QCD backgrounds have to be well known to discover new signals
- all the partonic processes evaluated at the tree level

About the LHC

Why do we need higher order corrections?

• LHC (pp) and Tevatron $(p\bar{p})$ need a precise phenomenological understanding of QCD signals and backgrounds

 \rightarrow Higgs boson, new physics searches (Supersymmetry, ...)

- Next-to-Leading Order (NLO) can be non negligible compared to the Leading Order (LO) predictions
- Standard techniques exist for partonic processes involving 4 particles (all NLO and some NNLO calculations already done)

So, what is the problem?

- For processes at NLO with more than 4 particles, an enormous growth of complexity (size, numerical instabilities)
 ⇒ standard techniques are no longer applicable.
- But multi-particle backgrounds have to be known with high accuracy!
- Automated calculations for a numerically stable evaluation of multi-leg amplitudes are highly desirable...

Les Houches wishlist 2005

where $V \in \{Z, W^-, W^+, \gamma\}$

Motivations for $pp \rightarrow VV + jet$

 on the top of "Les Houches wishlist 2005" for important missing NLO predictions

S. Dittmaier, S. Kallweit, P. UwerarXiv [hep-ph]: 0710.1577v1J. Campbell, R.K. Ellis, G. ZanderighiarXiv [hep-ph]: 0710.1832v2

- important background for the production of H + jet, $t\bar{t} H$, and new physics
- useful for electro-weak gauge boson coupling analysis
- an important test before approaching more complicated many particle processes at NLO

For QCD & EW one-loop multi-leg processes ...

... Who you gonna call?

For QCD & EW one-loop multi-leg processes ...

... Who you gonna call?

For QCD & EW one-loop multi-leg processes ...

... Who you gonna call?

G eneral

O ne

L oop

E valuator for

M atrix Elements

About GOLEM

- <u>Contributors</u> : T.Binoth, A.Guffanti, J.-P.Guillet, G.Heinrich, E.Pilon, C.Bernicot, T.Reiter, G.S.
- Golem paper: T.Binoth, J.-P.Guillet, G.Heinrich, E.Pilon, C.Schubert (JHEP 0510 (2005) 015 - arXiv: hep-ph/0504267)
- <u>Aim</u> : public Monte-Carlo codes for Standard Model predictions, available in particular for experimentalists
- <u>Tools</u>: computing, computer algebra system FORM, Maple, Mathematica, Fortran 90

Tests for GOLEM

$gg \rightarrow W^+W^-$	T.Binoth, M.Ciccolini, N.Kauer, M.Krämer JHEP 0612 (2006) 046
$gg \to \gamma \gamma g$	T.Binoth, JPh.Guillet, F.Mahmoudi JHEP 0402 (2004) 057
$\gamma\gamma o \gamma\gamma\gamma\gamma\gamma$	T.Binoth, T.Gehrmann, G.Heinrich, P.Mastrolia Phys. Lett. B 649 (2007) 422-426
6 quarks	T.Binoth, T.Reiter, JPh.Guillet
$pp \rightarrow VV + jet$	T.Binoth, JPh.Guillet, S.Karg, N.Kauer, G.S.

Outline of $pp \rightarrow VV + jet$

- final state: $g, q, \overline{q} \rightarrow jet$ (hadrons)
- $q\bar{q} \rightarrow VVg$, $qg \rightarrow VV\bar{q}$, $\bar{q}g \rightarrow VVq$
- $gg \rightarrow VVg$?

Outline of $pp \rightarrow VV + jet$

- final state: $g, q, \overline{q} \rightarrow jet$ (hadrons)
- $q\bar{q} \rightarrow VVg$, $qg \rightarrow VV\bar{q}$, $\bar{q}g \rightarrow VVq \Rightarrow \text{LO in } \alpha_s$
- $gg \rightarrow VVg$? \Rightarrow LO in α_s^3 (no tree level)

Outline of $pp \rightarrow VV + jet$

- final state: $g, q, \overline{q} \rightarrow jet$ (hadrons)
- $q\bar{q} \rightarrow VVg$, $qg \rightarrow VV\bar{q}$, $\bar{q}g \rightarrow VVq$
- $gg \rightarrow VVg$?
- inclusive cross section: $pp \rightarrow VV + jet + X$
- 3 parts: tree level, virtual correction, real emission

Preliminaries

- $q(p_1, \lambda_1) + \bar{q}(p_2, \lambda_2) + V(p_3, \lambda_3) + \bar{V}(p_4, \lambda_4) + g(p_5, \lambda_5) \to 0$ Here $V\bar{V} \in \{ZZ, W^-W^+, \gamma\gamma\}$. For massless quarks
- $qg \rightarrow VV\bar{q}$, $\bar{q}g \rightarrow VVq \Leftarrow$ by momentum crossing
- Algebraic Feynman diagrams approach Semi-numerical method
- Helicity amplitudes formalism: $|\mathcal{M}^{\lambda_i}|^2 \rightarrow |\mathcal{M}|^2$ $q\bar{q} \rightarrow \lambda_1 = \lambda_2 = \pm$ $V \rightarrow \lambda_3, \lambda_4 = \pm, 0 \Leftarrow M_V \neq 0$ $g \rightarrow \lambda_5 = \pm$

 \Rightarrow 36 helicities but 12 independent! (Bose, Charge, Parity transformations)

Preliminaries

One preferably uses the spinor helicity formalism But $p_3^2 = p_4^2 = M_V^2$

→ We introduce two auxiliary vectors k_3 , k_4 : $p_3 + p_4 = k_3 + k_4$, $k_3^2 = k_4^2 = 0$

$$k_{3} = \frac{1}{2\beta} [(1+\beta) p_{3} - (1-\beta) p_{4}]$$

$$k_{4} = \frac{1}{2\beta} [(1+\beta) p_{4} - (1-\beta) p_{3}]$$

where
$$\beta = \sqrt{1 - \frac{4M_V^2}{s_{34}}}$$

Preliminaries

color factor decomposition → gauge independent set
→ large cancellation between Feynman diagrams

Cross section: Virtual corrections & Real emission

$$\sigma_{2 \to n} = \sigma^{LO} + \sigma^{NLO}$$

= $\sigma^{LO} + \int_{n+1,1 \text{ or } 2 \text{ jets}} d\sigma^R + \int_{n,1 \text{ jet}} d\sigma^V$

Differences between ZZ and W^+W^-

• <u>ZZ case</u>: 80 diagrams ← Z bosons crossing

• W^+W^- case: 51 diagrams \leftarrow additional diagrams with WWV vertex

Difficulties

• NLO calculation with 5 legs, 2 external masses 10 pentagons, 22 boxes for ZZ + jet

 \Rightarrow huge complexity / number of terms: FORM output around 100 Mbytes for a 5-points diagram!

- 36 helicities
- Gram determinants (cancellation?) → numerical instabilities?
- Treatement of γ_5

 \rightarrow kept in 4 dim. with adequate (anti) commutation relations:

$$\{\hat{\gamma}^{\mu}, \gamma^{5}\} = 0, \quad [\tilde{\gamma}^{\mu}, \gamma^{5}] = 0$$

Divergences

- 2 types of divergences: UV & IR (soft and collinear singularities) divergences
- explicitly separated and extracted
- UV div. cancelled by QCD lagrangian renormalization
- IR div. cancelled by combining virtual and real amplitudes

How to check the code?

- UV & IR divergences cancellation (not difficult but not obvious)
- Gauge invariance for an external gauge boson:

$$\varepsilon_5^{\mu_5} \rightarrow \varepsilon_5'^{\mu_5} = \varepsilon_5^{\mu_5} + \lambda p_5^{\mu_5}$$

 $\mathcal{M}(\varepsilon_5) = \mathcal{M}'(\varepsilon_5')$

• Comparison of independent codes

Gram determinants

- spurious instability \rightarrow disappear for physical quantities
- Dilemma: slow numerical evaluation or reduction with instabilities?

$$I_{5}^{n,\mu_{1},\mu_{2},\mu_{3},\mu_{4}}(a_{1},a_{2},a_{3},a_{4};S) = \int d\tilde{k} \frac{q_{a_{1}}^{\mu_{1}}...q_{a_{5}}^{\mu_{5}}}{\prod_{i=1,...,5} (q_{i}^{2}-m_{i}^{2}+i\delta)}$$

$$\to I_{4}^{n}(S), I_{3}^{n}(S), I_{2}^{n}(S)???$$

• Faith in "compact" analytical result...

• Origin: from the reduction

$$I_4^{n+2}(l;S) = (b_l I_4^{n+2}(S) + \frac{1}{2} \sum_{j \in S} S_{jl}^{-1} I_3^n(S \setminus \{j\})) - \frac{1}{2} \sum_{j \in S \setminus \{l\}} b_j S_{jl}^{-1} I_3^n(l, S \setminus \{j\}))$$

det G : polynomial in $s_{ij} = (p_i + p_j)^2$ $\rightarrow 0$ in the phase space?

• depend on a good choice of the function basis

• Origin: from the reduction

$$\begin{split} I_4^{n+2}(l;S) &= -\frac{\det S}{\det G} (b_l \, I_4^{n+2}(S) + \frac{1}{2} \sum_{j \in S} S_{jl}^{-1} \, I_3^n(S \setminus \{j\}) \\ &- \frac{1}{2} \sum_{j \in S \setminus \{l\}} b_j \, S_{jl}^{-1} \, I_3^n(l,S \setminus \{j\})) \end{split}$$

det G : polynomial in $s_{ij} = (p_i + p_j)^2$ $\rightarrow 0$ in the phase space?

• depend on a good choice of the function basis

Computation

- Sort amplitudes by helicity and colour properties
- Generate the Feynman diagrams analytical expressions (FeynArts, QGRAPH)
- Write a FORM program to develop the Feynman diagrams expressions
- Algebraic tensor reduction in FORM $I_5^{n,\mu_1,\mu_2,\mu_3,\mu_4} \rightarrow I_5^{n,\mu_1}$, $I_4^{n,\mu...}$, $I_3^{n,\mu...}$, $I_2^{n,\mu...}$
- Sort into basis set of 2, 3, and 4 points scalar integrals using the GOLEM library

Computation

• Using MAPLE

 \rightarrow to reduce the size and cancel the inverse Gram determinants

<u>**PROBLEM**</u>: expressions with \neq denominators:

$$\frac{1}{(\det S)^n}, \ \frac{1}{(\det G_{\{3,4\}})^m}, \ \frac{1}{(\det S)^n (\det G)^m}$$

in a common denominator, with a brutal factorization? 13 Gb RAM memory not enough...

• using FORTRAN 90 \rightarrow numerical evaluation and phase space integration

Numerical check

- ZZ + jet and $W^+W^- + jet$ virtual corrections performed
- Comparison of 2 independent codes with S. Karg for ZZ + jet and $W^+W^- + jet$
- Successful check of the virtual amplitudes

About the ZZ + jet case:

- Size files : \simeq 100 Mbytes
- Runtime for 2000 phase space points : \simeq 900 sec

Virtual cross section: ZZ + jet

from Stefan Karg's thesis

Virtual cross section: ZZ + jet

from Stefan Karg's thesis

Virtual cross section: ZZ + jet

from Stefan Karg's thesis

Work in progress

- Comparison of numerical results for W⁺W⁻ + jet with S. Dittmaier, S. Kallweit, P. Uwer and J. Campbell, R.K. Ellis, G. Zanderighi (Full agreement for LO and NLO virtual amplitude)
- improvement of the virtual amplitude (size)
- Calculation of the real emission with the Catani-Seymour dipole substraction

Thank You!