Searching for new physics with a non decoupling effective theory

Theory group LTP, PSI March 6th, 2008

Emilie Passemar, ITP, Bern passemar@itp.unibe.ch

Collaborators: V. Bernard (LPT-Strasbourg) M. Oertel (LUTH Meudon) J. Stern (IPN Orsay)

Paper: Phys. Lett. B638:480, 2006 (hep-ph/0603202). JHEP 0801:15, 2008 (Arxiv: 0707.4194 [hep-ph]).

Outline

- 1. The Low Energy Effective Theory beyond the Standard Model.
- 2. How to probe the electroweak couplings of quarks ?
- 3. $K_{\mu3}^{L}$ decay : a stringent test of right-handed quark currents.
- 4. Tests of the electroweak couplings to Z boson.
- 5. Conclusion and outlook.

1. The Low Energy Effective Theory beyond the Standard Model

1.1 The Standard Model

- Theory of strong and electroweak interactions.
- The elementary particles:
 - The quarks

-- The leptons

$$\begin{pmatrix} v_{eL} \\ e_L \end{pmatrix}, \begin{pmatrix} v_{\mu L} \\ \mu_L \end{pmatrix}, \begin{pmatrix} v_{\tau L} \\ \tau_L \end{pmatrix} \rightarrow \chi_L$$

$$e_R, \mu_R, \tau_R \rightarrow \chi_R$$

- The gauge bosons or Yang-Mills fields: W^{\pm}, Z^{0}, A
- Gauge group: $SU(2)_W \otimes U(1)_Y$
- Mass generation: Higgs Mecanism. A scalar particle remains in the spectrum H
- Theory renormalizable.

E.Passemar

- A decade of experimental success:
 - Prediction of the quark top before its discovery.
 - CP violation measured in the B and K decays (CKM matrix).
- But hints of new physics (SM: theory valid up to a certain energy scale):
 - Not enough CP violation to explain the matter/antimatter asymmetry.
 - Neutrino oscillations: $m_v \neq 0$
 - m_v very small compared to the other lepton masses, new scale ?
 - Mass origin ? (Standard Higgs or other ?)
 - Dark matter, dark energy.
- Extensions/Alternatives:
 - Supersymmetry, extra dimensions.
 - Higgsless theories (naturality, non observed particle...).

1.2 Effective approach (framework) beyond the Standard Model

- The Standard Model, effective theory: Theory valid up to an energy scale Λ :

 - all observed particles gauge group $SU(2)_{W} \otimes U(1)_{Y}$ renormalizability Standard Model
 - renormalizability

- At higher energy ($\Lambda > \sim 1 \text{TeV}$), : New symmetries and particles. ۲
 - heavy states (M > Λ) beyond the Standard Model.
 - Larger symmetry group beyond the SM one : $S \supset SU(2)_W \otimes U(1)_V$

Usual decoupling scenario

with D: mass dimension.

SM degrees of freedom

New physics

- If Λ large enough, the new symmetries and particles are irrelevant at low ٠ energy $E \ll \Lambda$.
- At NLO, 80 independent invariant operators of D=6 dimension. ۲
- Research of New Physics quasi impossible ! ۲

Construction of an effective theory a la ChPT.

- Build all the operators invariant under $SU(2)_W \otimes U(1)_Y$.
- Theory non renormalizable in the usual sense.
- Expansion in external momenta, coupling constants...

$$\mathcal{L}_{eff} = \sum_{d \geq 2} \mathcal{L}_d$$
, $d = n_p + n_g + \frac{n_\chi}{2}$

- Validity : $p \ll \Lambda \sim 3 \text{ TeV}$.
- Renormalizable and unitarized order by order in the expansion.

Difficulties of an electroweak effective theory based on $SU(2)_W \otimes U(1)_Y$ symmetry

- At Leading Order operators SU(2)_W ⊗U(1)_Y invariant.
 ➡ Unwanted operators.
- Example: right-handed currents.
 - \rightarrow Left-handed sector :

$$i \overline{\chi_{L}^{i}} \gamma^{\mu} \left(\Sigma D_{\mu} \Sigma^{\dagger} \right) \chi_{L}^{j} = \mathcal{O} \left(p^{2} \right)$$

 \rightarrow Right-handed sector :

$$i\overline{\chi_{R}^{i}}\gamma^{\mu}\left(\Sigma^{\dagger}D_{\mu}\Sigma\right)\chi_{R}^{j}=\mathcal{O}\left(p^{2}\right)$$

 $\Sigma \equiv e^{i\vec{\pi} \cdot \vec{\tau} / f_W}$: Goldstone bosons, χ_L, χ_R : fermions

• Suppressed in the SM case : operators of dimension D=6.

$$\frac{1}{\Lambda^{2}}\overline{\chi_{L}^{i}}\gamma^{\mu}\Phi\left(D_{\mu}\Phi^{\dagger}\right)\chi_{L}^{j}\qquad \qquad \frac{1}{\Lambda^{2}}\overline{\chi_{R}^{i}}\gamma^{\mu}\Phi^{\dagger}\left(D_{\mu}\Phi\right)\chi_{R}^{j}$$

Couplings experimentally excluded at Leading Order !

PSI, 6 March, 2008

• Difficulty: Leading Order $(\mathcal{O}(p^2))$ operators non present in the SM and experimentally excluded.

- Solution: enlarge the symmety $S_{nat} \supset SU(2)_W \otimes U(1)_Y$ which becomes nonlinearly realised:
 - not manifest in the low energy spectrum (the gauge fields associated to this symmetry do not all appear in the spectrum).
 - but constrains the effective interaction (cf. Custodial Symmetry).

- The minimal low-energy effective theory (LEET), a not quite decoupling theory:
 - > Heavy states present at $E > \Lambda$ still decouple at low energy.
 - ▶ BUT higher (local) symmetry $S_{nat} \supset SU(2)_W \otimes U(1)_Y$ survives at low energy and becomes non linearly realised.

1.3 Minimal Higgs-less LEET [J.Hirn & J.Stern, Phys.Rev.D73 '06]

• What is
$$S_{nat}$$
?
 $\implies S_{nat}$ can be inferred from \mathcal{L}_{SM} asking :
- At $\mathcal{O}(p^2)$, S_{nat} selects all the (Higgs-less) vertices of the SM and nothing else.
- Minimality.

$$S_{nat} = [SU(2) \otimes SU(2)] \otimes U(1)_{B-L} \otimes Z_{2v_R}$$

• $Z_{2\nu_R}$: $\nu_R \rightarrow -\nu_R$: forbids Dirac neutrino masses and charged leptonic righthanded currents.

More concretely,

- At leading order, one unwanted operator: $\left[Tr\left(\tau_{3}\Sigma^{\dagger}D_{\mu}\Sigma\right)\right]^{2} = \mathcal{O}\left(p^{2}\right)$ operator that can potentially induce a large modification of the SM gauge boson mixing: contribution to the « oblique parameter T ».
- Operator invariant under $SU(2)_W \otimes U(1)_Y$ $\Sigma(x) \rightarrow G_L(x) \Sigma(x) G_R^{-1}(x), \quad G_L \in SU(2)_W, \quad G_R \in U(1)_Y.$ with $G_R(x)\tau_3 G_R^{-1}(x) = \tau_3$
- Enlarge the symmetry: $SU(2)_W \otimes U(1)_Y \to S_{elem} = SU(2)_{G_L} \otimes SU(2)_{G_R} \otimes U(1)_{G_B}^{B-L}$ $\Longrightarrow \left[Tr \left(\tau_3 \Sigma^{\dagger} D_{\mu} \Sigma \right) \right]^2$ no more invariant under S_{elem} . $G_R(x) \tau_3 G_R^{-1}(x) \neq \tau_3$

Reduction of S_{nat} $S_{nat} \rightarrow SU(2)_W \otimes U(1)_Y$: via the spurions.

$$SU(2)_{G_{L}} \times SU(2)_{\Gamma_{L}} \times SU(2)_{G_{R}} \times SU(2)_{\Gamma_{R}} \times U(1)_{G_{B}}^{B-L}$$

$$X \rightarrow G_{L}X\Gamma_{L}^{-1} \qquad X \qquad Y_{u,d} \rightarrow G_{R}Y_{u,d}\Gamma_{R}^{-1} \qquad Y = Y_{u} + Y_{d}$$

$$SU(2)_{W} \qquad \times \qquad SU(2)_{\Gamma_{R}} \qquad \times \qquad U(1)_{B-L}$$

$$\Gamma_{L\mu} = X \operatorname{g}_{L}G_{L\mu}X^{-1} + i X\partial_{\mu}X^{-1} \qquad Z \rightarrow e^{i\alpha} \Gamma_{R}Z\Gamma_{R}^{-1} \qquad Z$$

$$SU(2)_{W} \qquad \times \qquad U(1)_{Y}$$

• $S_{nat} / SU(2)_W \otimes U(1)_Y \equiv [SU(2)]^3$ populated by spurions

- X, Y, Z are called spurions ($D_{\mu}(spurions) = 0$).
- It exists a gauge where the spurions become constants \mathcal{K} : \longrightarrow 3 parameters which describe the hierarchical breaking of S_{nat} (~ quark masses in ChPT).

E.Passemar

PSI, 6 March, 2008

Power counting scheme or how searching for physics beyond the SM

- Terms explicitly involving spurions fermion masses and genuine effects beyond the SM.
- The operators are ordered in power of momenta and of explicit symmetry breaking parameters (spurions: \mathcal{K}):

$$\mathcal{L}_{eff} = \underbrace{\mathcal{L}\left(p^{2}\kappa^{0}\right) + \mathcal{L}\left(p^{1}\kappa^{2}\right) + \underbrace{\mathcal{L}\left(p^{2}\kappa^{2}\right)}_{\mathsf{LO}:\mathcal{O}\left(p^{2}\right)} + \underbrace{\mathcal{L}\left(p^{4}\right) + \ldots}_{\mathsf{NLO}:\mathcal{O}\left(p^{3}\right)} + \underbrace{\mathcal{L}\left(p^{4}\right)}_{\mathsf{NLO}:\mathcal{O}\left(p^{4}\right)}$$

Loops, oblique corrections

• Counting rule:
$$\frac{m_t}{\Lambda} = \kappa^2 = \mathcal{O}(p)$$

1.4 First effets beyond the SM

- At Leading Order (LO), $\mathcal{O}(p^2)$: we recover the Standard Model at tree level without a Higgs.
- At Next to Leading Order (NLO) O(p²κ²) new physics (contains spurions) arising before loops, oblique corrections..... only 2 operators :

 \rightarrow Left-handed sector :

 \rightarrow Right-handed sector :

$$i \overline{\chi_{L}^{i}} \gamma^{\mu} \left(\Sigma D_{\mu} \Sigma^{\dagger} \right) \chi_{L}^{j} = \mathcal{O} \left(p^{2} \right)$$

$$i\overline{\chi_{R}^{i}}\gamma^{\mu}\left(\Sigma^{\dagger}D_{\mu}\Sigma\right)\chi_{R}^{j}=\mathcal{O}\left(p^{2}\right)$$

 $\Sigma \equiv e^{i\vec{\pi} \cdot \vec{\tau} / f_W}$: Goldstone bosons, χ_L, χ_R : fermions

Operators invariant under $SU(2)_W \otimes U(1)_Y$ but not invariant under S_{nai} To make them invariant under S_{nat} , we insert spurions: spurions $i \chi_L^i \gamma^{\mu} \chi^{\dagger} (\Sigma D_{\mu} \Sigma^{\dagger}) \chi_{\chi_L^j} = \mathcal{O} (p^2 \kappa^2)$ $i \chi_R^i \gamma^{\mu} \mathcal{Y}_a^{\dagger} (\Sigma^{\dagger} D_{\mu} \Sigma) \mathcal{Y}_b \chi_R^j = \mathcal{O} (p^2 \kappa^2)$

1.4 First effets beyond the SM

- At leading order (LO) $\mathcal{O}(p^2)$, we recover the Standard Model at tree level without a Higgs.
- At Next to the Leading Order (NLO) O(p²κ²) before the loops only 2 operators instead of the 80 that appear in the decoupling scenario !
 new couplings of fermions to W and Z.

• Counting rule: NLO, potentially the most important effects of physics beyond the SM.

1.5 Conclusion

- New approach to go beyond the Standard Model : the minimal low-energy effective theory.
- Larger symmetry non linearly realised.
- Power counting scheme is classifies and hierarchizes the effects beyond the Standard Model.
- First predicted effects modification and new electroweak couplings of fermions (quarks and leptons).

Couplings of the fermions to W : charged currents

$$\mathcal{L}_{CC} = \frac{1}{\sqrt{2}} g(1 - \xi^2 \rho_L) (J_{\mu}^{\overline{U}D} + J_{\mu}^{\overline{N}L}) W^{\mu} + h.c, \quad U = \begin{pmatrix} u \\ c \\ t \end{pmatrix}, D = \begin{pmatrix} d \\ s \\ b \end{pmatrix}, N = \begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix}, L = \begin{pmatrix} e \\ \mu \\ \tau \end{pmatrix}$$

$$J_{\mu}^{\overline{U}D} = (1 + \delta) \overline{U}_{L} V_{L} \gamma_{\mu} D_{L} + \varepsilon \overline{U}_{R} V_{R} \gamma_{\mu} D_{R}$$
$$J_{\mu}^{\overline{N}L} = \overline{N}_{L} V_{MNS} \gamma_{\mu} L_{L}$$

- V_L, V_R: 2 unitary flavor mixing matrixes from the diagonalisation of the mass matrix of U and D quarks.
- 3 parameters which involve spurions arise :

$$(1-\xi^2\rho_L)$$
 $(1+\delta)$ \mathcal{E}

PSI, 6 March, 2008

Charged Currents parameters at NLO

$(1 - \xi^2 \rho_L)$ Common factor absorbed in the G_F definition.

$(1 + \delta)$ Normalisation of the left-handed quarks with respect to the leptons.

E Strength of right-handed quark currents.

Experimental probe

- Experimentally, we measure axial and vectorial currents.
- We write the charged current in term of axial and vectorial currents:

$$J_{\mu}^{\overline{U}D} = \frac{1}{2} \left[\overline{U} \mathcal{V}_{eff} \gamma_{\mu} D + \overline{U} \mathcal{A}_{eff} \gamma_{\mu} \gamma_{5} D \right]$$

$$\mathcal{V}_{eff}^{ij} = (1 + \delta) V_{L}^{ij} + \varepsilon V_{R}^{ij} + NNLO$$
 and $\mathcal{A}_{eff}^{ij} = -(1 + \delta) V_{L}^{ij} + \varepsilon V_{R}^{ij} + NNLO$

- V_L and V_R unitary but not $\boldsymbol{\mathcal{V}}_{eff}$ and $\boldsymbol{\mathcal{A}}_{eff}$!
- At LO (SM) : $\delta = \varepsilon = 0$, $\mathcal{V}_{eff} = -\mathcal{A}_{eff} = V_{CKM}$ (V-A interaction).
- At NLO: $\mathcal{V}_{eff} \neq -\mathcal{A}_{eff}$ charged right-handed currents appear.

E.Passemar

PSI, 6 March, 2008

Experimental probe

- Experimentally, we measure axial and vectorial currents.
- We write the charged current in term of axial and vectorial currents:

$$J_{\mu}^{\overline{U}D} = \frac{1}{2} \left[\overline{U} \mathcal{V}_{eff} \gamma_{\mu} D + \overline{U} \mathcal{A}_{eff} \gamma_{\mu} \gamma_{5} D \right]$$

$$\mathcal{V}_{eff}^{ij} = (1+\delta) V_{L}^{ij} + \varepsilon V_{R}^{ij} + \text{NNLO} \quad \text{and} \quad \mathcal{A}_{eff}^{ij} = -(1+\delta) V_{L}^{ij} + \varepsilon V_{R}^{ij} + \text{NNLO}$$
$$\left|\mathcal{V}_{eff}^{ij}\right|^{2} = \left|V_{L}^{ij}\right|^{2} \left\{1 + 2\delta + 2\varepsilon \operatorname{Re}\left(\frac{V_{R}^{ij}}{V_{L}^{ij}}\right)\right\} \quad \left|A_{eff}^{ij}\right|^{2} = \left|V_{L}^{ij}\right|^{2} \left\{1 + 2\cdot\delta - 2\varepsilon \cdot \operatorname{Re}\left(\frac{V_{R}^{ij}}{V_{L}^{ij}}\right)\right\}$$

• In the light quark sector, 3 quantities to determine:

$$\varepsilon_{NS} = \varepsilon \cdot \mathbf{R} \, \mathbf{e} \left(\frac{V_R^{\ u \, d}}{V_L^{\ u \, d}} \right) \qquad \varepsilon_S = \varepsilon \cdot \mathbf{R} \, \mathbf{e} \left(\frac{\varepsilon_S}{V_L^{\ u \, d}} \right)$$

E.Passemar

PSI, 6 March, 2008

21

 V_R^{us}

u s

Order of magnitude of the parameters

- Possible enhancement of ε_s
- Expected effects of at most several percents.

2. How to probe the electroweak couplings of quarks ?

2.1 Introduction

- Experiments of parity violation 50 years ago adoption of the assumption that the weak interaction is V-A like.
- Have we probed that the weak interaction is V-A?
- Several tests for the leptons (Muon, Tau polarisation measurements...)
- And for the quarks ? Couplings difficult to test: we can not access directly to quarks because of the confinement !
- Experimentally, the measurements of the electroweak couplings $(\mathcal{V}_{eff}, \mathcal{A}_{eff})$ depend on the knowledge of the QCD observables and vice versa !

2.2 Dependence of the electroweak couplings and the low-energy QCD observables

$$\Gamma\left[\pi^{+} \rightarrow \mu^{+} \nu\left(\gamma\right)\right] \rightarrow \mathcal{A}_{eff}^{ud} \left\langle 0 \left| \overline{u} \gamma_{\mu} \gamma_{5} d \right| \pi \right\rangle \sim \left| F_{\pi} \mathcal{A}_{eff}^{ud} \right|$$

 \blacksquare We do not measure F_{π} but a combination of F_{π} and \mathcal{A}_{eff}^{ud} .

• In the case of the electroweak couplings of the SM : $(\mathcal{V}_{eff} = -\mathcal{A}_{eff} = V_{CKM})$

 $\mathcal{A}_{eff}^{ud} \rightarrow V_{CKM}^{ud} \quad \text{very precisely measured from } (0+ \rightarrow 0+) \text{ superallowed} \\ \beta \text{ decays: } \mathcal{V}_{eff}^{ud} = 0.97418(26) \quad \text{[Towner and Hardy'07].}$

$$\Longrightarrow \widehat{F}_{\pi} = (92.4 \pm 0.2) MeV$$

$$F_{\pi} = \widehat{F}_{\pi} \left(1 + 2\varepsilon_{NS} \right)$$

۲

PSI, 6 March, 2008

2.2 Dependence of the electroweak couplings and the low-energy QCD observables

• Example: Decay of the pion:

$$\Gamma\left[\pi^{+} \rightarrow \mu^{+}\nu\left(\gamma\right)\right] \rightarrow \mathcal{A}_{eff}^{ud} \left\langle 0\left|\overline{u}\gamma_{\mu}\gamma_{5}d\right|\pi\right\rangle \sim \left|F_{\pi}\mathcal{A}_{eff}^{ud}\right|$$

 \implies We do not measure $F\pi$ but a combination of $F\pi$ and \mathcal{A}_{eff}^{ud} .

• To be more precise

$$F_{\pi} = F_{\pi} \left| \mathcal{A}_{eff}^{ud} \right| \left| \frac{1}{\mathcal{V}_{eff}^{ud}} \right| \left| \frac{\mathcal{V}_{eff}^{ud}}{\mathcal{A}_{eff}^{ud}} \right| \left| \frac{\mathcal{V}_{eff}^{ud}}{\mathcal{V}_{eff}^{ud}} \right| \left| \frac{\mathcal$$

E.Passemar

PSI, 6 March, 2008

2.2 Dependence of the electroweak couplings and the low-energy QCD observables

• But also β -decay of the neutron :

$$\left\langle p \left| \mathcal{V}_{eff}^{ud} \overline{u} \gamma_{\mu} d + \mathcal{A}_{eff}^{ud} \overline{u} \gamma_{\mu} \gamma_{5} d \right| n \right\rangle \sim \left| \mathcal{V}_{eff}^{ud} \left(g_{V}(q^{2}) \gamma_{\mu} - i \frac{g_{M}(q^{2})}{m_{n}} \sigma_{\mu\nu} q^{\nu} \right) \right.$$

$$\left. + \left| \mathcal{A}_{eff}^{ud} \right| \left(g_{A}(q^{2}) \gamma_{\mu} \gamma_{5} + \frac{g_{S}(q^{2})}{m_{n}} \gamma_{5} q_{\mu} \right) \right.$$

 Measurement of the neutron life time and polarisation do not allow us any more to extract g_A !

The knowledge of the QCD parameters would allow to determine the electroweak couplings and vice versa !

2.3 How to probe these couplings ?

- Among all the experimental processes involving charged currents, we are looking for those whose QCD parameters (form factors, α_S, m_q...) are under control or enough small.
- We are looking for effects to first order in δ et ϵ .

Not a lot of processes...

Experimental processes	Parameters extracted	Low Energy/QCD inputs
Nuclear β decays	${\cal V}^{ud}_{e\!f\!f}$	CVC + nuclear corrections
Hadronic <i>τ</i> decays		OPE
R _v ,R _A , R _s , Moments	$\epsilon_{ m NS},~\delta$ + $\epsilon_{ m NS}$	[Braaten et al '92, Lediberder & Pich '92]
ALEPH, OPAL		$lpha_{\sf S}({\sf m}_{ au}),{\sf m}_{\sf q},{\sf condensates}$
Γ _w	δ	Perturbative QCD
LEP, TEVATRON		α _s (m _w)
DIS $v(\overline{v})$ on protons	δ	Normalized pdf
Κ^L_{μ3} decay KTeV, NA48, KLOE	[€] s ^{= €} NS	K π scattering phases [Buettiker, Descotes, Moussallam' 02] and Δ_{CT} : χ PT

Experimental processes	Parameters extracted	Low Energy/QCD inputs
Nuclear β decays	\mathcal{V}_{eff}^{ud}	CVC + nuclear corrections
0⁺→0⁺		[Iowner & Hardy '07]
Hadronic $ au$ decays		OPE
R _v ,R _A , R _S ,	e Ste	[Braaten et al '92,
Moments	ε _{NS} , στε _{NS}	Lediberder & Pich '92]
ALEPH, OPAL		$lpha_{\sf S}({\sf m}_{ au}),{\sf m}_{\sf q},{\sf condensates}$
Г _w	8	Perturbative QCD
LEP, TEVATRON	0	α _s (m _w)
DIS $v(\overline{v})$ on protons	δ	Normalized pdf
K^L_{μ3} decay KTeV, NA48, KLOE	ຣ _S = ຣ _{NS}	K π scattering phases [Buettiker, Descotes, Moussallam' 02] and A $\pm \pi PT$

3. $K_{\mu3}^{L}$ decay : a stringent test of right-handed quark currents.

3.1 Introduction

 K_L^0

 π^{F}

$$K_L^0 \to \pi^{\mp} \mu^{\pm} \nu_{\mu}$$

Hadronic part :

$$\pi^{-}(p_{\pi}) | \overline{s} \gamma_{\mu} u | K^{0}(\mathbf{p}_{K}) \rangle = f_{+}(t) (p_{K} + p_{\pi})_{\mu} + f_{-}(t) (p_{K} - p_{\pi})_{\mu}$$

$$f_+(t), f_-(t) : \text{ facteurs de forme}$$

• We consider the scalar form factor :

$$f_{s}(t) = f_{+}(t) + \frac{t}{m_{K}^{2} - m_{\pi}^{2}} f_{-}(t)$$

 μ^{\pm}

V_µ

W

→ Normalisation :
$$\overline{f}_0(t) = \frac{f_s(t)}{f_+(0)}, f_0(0) = 1$$

3.2 Theoretical knowledge: the Callan-Treiman relation

Callan-Treiman Theorem: SU(2) x SU(2) theorem

$$C = \overline{f_0}(\Delta_{K\pi}) = \frac{F_K}{F_\pi f_+^{K^0}(0)} + \Delta_{CT}$$

$$\Delta_{K\pi} = m_K^2 - m_\pi^2$$

$$\Delta_{CT}^{NLO} = -3.5.10^{-3}$$
[Gasser & Leutwyler]

• Corrections of order m_u , m_d \rightarrow No chiral logarithms : $\Delta_{CT} \sim \mathcal{O}\left(m_{u,d} / 4\pi F_{\pi}\right)$

→ K⁰ decay : no small denominators due to $\pi^0 - \eta$ mixing $(\mathcal{O}((m_d - m_u)/m_s))$.

E.Passemar

$$C = \overline{f}_{0}(\Delta_{K\pi}) = \frac{F_{K} |\mathcal{A}_{eff}^{us}|}{F_{\pi} |\mathcal{A}_{eff}^{ud}|} \frac{1}{f_{+}(0) |\mathcal{V}_{eff}^{us}|} |\mathcal{V}_{eff}^{ud}|} \frac{|\mathcal{A}_{eff}^{ud}|}{|\mathcal{V}_{eff}^{ud}|} \frac{|\mathcal{V}_{eff}^{us}|}{|\mathcal{A}_{eff}^{ud}|} + \Delta_{CT}$$

- B_{exp} is known from experiment using the measured Br: $Br(K_{l2}/\pi_{l2})$, $\Gamma(K_{e3})$ and $|V_{ud}|$.
- Standard Model case : $\mathcal{V}_{eff} = -\mathcal{A}_{eff} = V_{CKM}$ $\longrightarrow \frac{\left|\mathcal{A}_{eff}^{ud}\right|}{\left|\mathcal{V}_{eff}^{ud}\right|} \frac{\left|\mathcal{V}_{eff}^{us}\right|}{\left|\mathcal{A}_{eff}^{us}\right|} = 1$ $\implies C_{SM} = 1.2439 \pm 0.0042 + \Delta_{CT}$ $\ln C_{SM} = 0.2183 \pm 0.0034 + \frac{\Delta_{CT}}{B_{exp}}$
- Relation which tests the Standard Model very accurately. If physics beyond the SM: ~1% difference between C and B_{exp}. Uncertainties from ∆_{CT} and B_{exp} on the permile level ⇒ opportunity to see a possible effect.

$$C = \overline{f}_{0}(\Delta_{K\pi}) = \frac{F_{K} \left| \mathcal{A}_{eff}^{us} \right|}{F_{\pi} \left| \mathcal{A}_{eff}^{ud} \right|} \frac{1}{f_{+}(0) \left| \mathcal{V}_{eff}^{us} \right|} \left| \mathcal{V}_{eff}^{ud} \right|} \frac{\left| \mathcal{A}_{eff}^{ud} \right| \left| \mathcal{V}_{eff}^{us} \right|}{\left| \mathcal{A}_{eff}^{ud} \right|} + \Delta_{CT}$$

$$B_{exp}$$

- B_{exp} is known from experiment using the measured Br: $Br(K_{12}/\pi_{12})$, $\Gamma(K_{e3})$ and $|\mathcal{V}_{ud}|$
- Standard Model case : $\mathcal{V}_{eff} = -\mathcal{A}_{eff} = V_{CKM} \implies \frac{\left|\mathcal{A}_{eff}^{ud}\right|}{\left|\mathcal{V}_{eff}^{ud}\right|} \frac{\left|\mathcal{V}_{eff}^{us}\right|}{\left|\mathcal{A}_{eff}^{us}\right|} = 1$ ۲

$$\implies C_{SM} = 1.2439 \pm 0.0042 + \Delta_{CT} \qquad \ln C_{SM} = 0.2183 \pm 0.0034 + \frac{\Delta_{CT}}{B}$$

$$\frac{\left|\mathcal{A}_{eff}^{ud}\right|}{\left|\mathcal{V}_{eff}^{ud}\right|}\frac{\left|\mathcal{V}_{eff}^{us}\right|}{\left|\mathcal{A}_{eff}^{us}\right|}=1+\frac{2(\varepsilon_{s}-\varepsilon_{NS})}{2(\varepsilon_{s}-\varepsilon_{NS})}$$

 Δ_{CT}

 $\Delta \varepsilon = \tilde{\Delta}_{CT} + 2(\varepsilon_s - \varepsilon_{NS})$

35

$$\Rightarrow \ln C = 0.2183 \pm 0.0034 + \Delta \varepsilon$$
 with
experimental
uncertainties
Passemar PSI, 6 March, 2008

assemai

• $\Delta_{CT} \sim 10^{-3}$: to extract a quantitative information on right-handed currents (RHCs), InC has to be measured with an accuracy of 10%.

How to measure InC ?

3.3 Experimental measurements

- Data available from KTeV, NA48 and KLOE.
- Necessity to parametrize the 2 form factors \overline{f}_+ and \overline{f}_0 to fit the measured distributions.
- Usually, use of linear parameterization or pole parameterization :

$$f_{lin}(t,\lambda) = 1 + \lambda \frac{t}{m_{\pi}^{2}} \qquad f_{pol}(t,m_{s}) = \frac{m_{s}^{2}}{m_{s}^{2} - t}$$

- Extrapolation with a linear parametrization: impossible to test the SM at the CT point with enough accuracy.
- A curvature exists and we can not neglect it !

How to improve the parametrization to measure C=f($\Delta_{K\pi}$)?

3.4 Dispersive parametrization for the scalar FF.

- Problem : How to construct a very precise representation of $f_0(t)$ between 0 and $\Delta_{K\pi}$?
- Knowledge :
 - $\rightarrow \overline{f_0}(0) = 1$
 - → $f_0(\Delta_{K\pi})$ = C, Callan-Treiman point
 - \rightarrow K π scattering phase
 - → Asymptotic behaviour of the form factor : $f_0(s) = O(1/s)$

A dispersion relation with two substractions at 0 and
$$\Delta_{K\pi}$$
 for $ln(\overline{f_0}(t))$:

$$\overline{f}_{0}(t) = \exp\left[\frac{t}{\Delta_{K\pi}} (\ln C - G(t))\right] \quad \text{with} \quad G(t) = \frac{\Delta_{K\pi}(\Delta_{K\pi} - t)}{\pi} \int_{t_{\pi K}}^{\infty} \frac{ds}{s} \frac{\phi(s)}{(s - \Delta_{K\pi})(s - t)}$$

 $\Rightarrow \phi(t)$ phase of form factor : $\overline{f_0}(t) = \left| \overline{f}_0(t) \right| e^{i\phi(t)}$

E.Passemar

Phase used

• Elastic up to ~1.5 GeV $\implies t < \Lambda : \phi(t) = \phi_{K\pi}(t) = \delta_{\pi,K}^{s,\frac{1}{2}}(t) \pm \Delta \delta_{\pi,K}^{s,\frac{1}{2}}(t)$ $t > \Lambda : \phi(t) = \phi_{as}(t) = \pi \pm \pi$

PSI, 6 March, 2008

• Apart from the parameter (InC) to be determined by a fit, very precise parametrization of the form factor in the physical region.

3.5 First measurement: a discrepancy with the SM ?

• Use of the dispersive parametrization to fit the measured distribution and to extract InC : $f(t) = \exp\left[\frac{t}{\Delta_{K\pi}} (\ln C - G(t))\right] \implies \ln C_{NA48} = 0.1438 \pm 0.014$

Experimental result for $\Delta \epsilon$

•
$$\Delta \varepsilon = \frac{\Delta_{CT}}{B_{exp}} + 2(\varepsilon_s - \varepsilon_{NS})$$
 $\Delta \varepsilon = -0.074 \pm 0.015$

Possibility to disentangle Δ_{CT} from the RHCs by a matching with the ChPT two loop representation for the form factors [Bernard & E.P'07].

•
$$\Delta \varepsilon = \frac{\Delta_{CT}}{B_{exp}}$$
 asks for $|\Delta_{CT}| \ge 20 |\Delta_{CT}^{NLO}|!$ with $\Delta_{CT}^{NLO} \sim -3.5.10^{-3}$

• If it is not the case the measurement gives us an information on the right-handed mixing matrix : ε_s is enhanced and inverse hierarchy in the right-handed sector !

3.6 But other « contradictory » measurements

• Only combined Ke3 + K μ 3 result for KLOE (to reduce the uncertainties) :

 $\ln C_{\rm KLOE} = 0.207 \pm 0.023$

large uncertainty

- Preliminary results for KTeV :
 - Kµ3 alone : $\ln C_{KTeV} = 0.195 \pm 0.014$
 - Combined Ke3 + K μ 3 : $\ln C_{KTeV} = 0.191 \pm 0.012$

- Consistent results at 1-1.5 σ from the SM, confirming the same direction but in disagreement with the NA48 result !
- K⁺ analysis in progress to solve this experimental puzzle.

PSI, 6 March, 2008

3.7 Conclusion

- Stringent test of the V+A coupling in $K_{\mu3}^L$ decays.
- Experimental situation not completly clear: from 1σ to 5σ away from the SM depending on the experiment. \blacksquare Mesurement of the direct coupling of right-handed quarks to W boson: $2(\varepsilon_s \varepsilon_{NS})$
- Tendancy of an enhancement of $\epsilon_{\rm S}$, inverted hierarchy of V_R.
- No other experiments where ε_s is involved.

4. Tests of the electroweak couplings to the Z boson.

4.1 Neutral current interactions.

$$\mathcal{L}_{Z} = \frac{e}{2\cos\theta_{w}\sin\theta_{w}} (1 - \xi^{2}\rho_{L}) \Big[\overline{N}\gamma_{\mu}(g_{V}^{N} - g_{A}^{N}\gamma_{5})N + \overline{L}\gamma_{\mu}(g_{V}^{L} - g_{A}^{L}\gamma_{5})L \\ + \overline{U}\gamma_{\mu}(g_{V}^{U} - g_{A}^{U}\gamma_{5})U + \overline{D}\gamma_{\mu}(g_{V}^{D} - g_{A}^{D}\gamma_{5})D \Big] Z_{\mu}$$
Normalized factor
absorbed in G_F

$$\cdot \frac{G_{F}}{\sqrt{2}} = \frac{g^{2}}{8m_{w}^{2}} (1 - \xi^{2}\rho_{L})^{2} \quad N = \begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix}, L = \begin{pmatrix} e \\ \mu \\ \tau \end{pmatrix}, U = \begin{pmatrix} u \\ c \\ t \end{pmatrix}, D = \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

$$\cdot g = \frac{e}{\sin\theta_{w}}$$

$$\cdot \sin\theta_{w}^{2} = 1 - \frac{m_{w}^{2}}{m_{Z}^{2}}$$

E.Passemar

PSI, 6 March, 2008

4.1 Neutral current interactions.

$$\mathcal{L}_{Z} = \frac{e}{2\cos\theta_{w}\sin\theta_{w}} (1 - \xi^{2}\rho_{L}) \Big[\overline{N}\gamma_{\mu}(g_{V}^{N} - g_{A}^{N}\gamma_{5})N + \overline{L}\gamma_{\mu}(g_{V}^{L} - g_{A}^{L}\gamma_{5})L \\ + \overline{U}\gamma_{\mu}(g_{V}^{U} - g_{A}^{U}\gamma_{5})U + \overline{D}\gamma_{\mu}(g_{V}^{D} - g_{A}^{D}\gamma_{5})D \Big] Z_{\mu}$$
Normalized factor
absorbed in G_F

New couplings at NLO appearing in g^f_V and g^f_{A:}

Н

- At NLO 6 parameters:
 - modification of the left couplings: δ
 - modification of the right couplings :
 - For the neutrinos and electrons : $\epsilon^{\nu},\,\epsilon^{e}$
 - For the quarks: ε^{u} , ε^{d}

• Normalisation factor:
$$1 - \xi^2 \rho_L \implies \tilde{s}^2 = \frac{s^2}{1 - \xi^2 \rho_L}$$

- Expectation: percent level.
- Universality of the couplings is assumed.

באעכ

4.2 FIT to Z pole observables

How to constrain these parameters ?
 Data from LEP and SLD.

• Definition of « pseudo-observables » : Γ_Z , Γ_{had} , Γ_{ff} , σ_{f} , A_{FB} , A_{f} ...

• Take the less correlated and the independant one for a FIT of the couplings: Γ_Z , σ_{had} , R_e , R_b , $A_{FB}^{e,b,c}$

$$\Gamma_{f} = N_{c}^{f} \frac{G_{F}}{6\sqrt{2}\pi} m_{Z}^{3} \left[\left(g_{V}^{f} \right)^{2} R_{V}^{f} + \left(g_{A}^{f} \right)^{2} R_{A}^{f} \right]$$

Corrections QCD+QED

Observables of the FIT :

Total decay width of Z : $\Gamma_z = \sum_f \Gamma_f$ •

• Hadronic pole cross section :
$$\sigma_{had} = \frac{12\pi}{m_z^2} \frac{\Gamma_e \Gamma_{had}}{\Gamma_z^2}$$

• Ratio R_b:
$$R_b = \frac{\Gamma_b}{\Gamma_{had}}$$
 (3R_b+2R_c=1)

• Ratio R₁:
$$R_1 = \frac{\Gamma_{had}}{\Gamma_1}$$

• The forward backward asymmetries:

 $g_V^e g_A^e$

$$\mathbf{A}_{FB}^{f} = \frac{n_F(\theta_f < 90^{\circ}) - n_B(\theta_f > 90^{\circ})}{n_F(\theta_f < 90^{\circ}) + n_B(\theta_f > 90^{\circ})}$$

$$A_{FB}^{f} = 3 \frac{g_{V}^{e} g_{A}^{e}}{\left[(g_{V}^{e})^{2} + (g_{A}^{e})^{2}\right]} \frac{g_{V}^{e} g_{A}^{e}}{\left[(g_{V}^{f})^{2} + (g_{A}^{f})^{2}\right]}$$

$$\frac{1}{2} A_{e} \frac{1}{2} A_{f}$$
E.Passemar
$$I = \frac{1}{2} A_{f}$$
PSI, 6 March, 2008

 $g_V^f g_A^f$

W leptonic Branching Ratios

• Interface charged/neutral currents: $\implies \delta$

$$\begin{array}{ccc}
W & \longrightarrow & \Gamma(W^{\pm} \to h^{\pm}) \propto \left\langle 0 \left| J^{\mu} \right| h \right\rangle \left\langle h \left| J^{\nu \dagger} \right| 0 \right\rangle \\
& & \text{hadrons} \\
\left\langle 0 \left| J^{\mu} \right| h \right\rangle = \left\langle 0 \left| \sum_{ij} (1 + \delta) V_{L}^{ij} \overline{u_{L}^{i}} \gamma_{\mu} d_{L}^{j} + \varepsilon V_{R}^{ij} \overline{u_{R}^{i}} \gamma_{\mu} d_{R}^{j} \right| h \right\rangle
\end{array}$$

$$\Gamma(W^{\pm} \to h^{\pm}) = (1 + 2\delta) \cdot \Gamma_{SM}(W^{\pm} \to h^{\pm})$$

Theoretical calculation: pertubative QCD

$$\Gamma_{Wtot} = \frac{G_F M_W^3}{6\sqrt{2}\pi} \left[3 + 6 \cdot (1 + 2\delta) \cdot \left[1 + \frac{\alpha_S \left(M_W \right)}{\pi} + 1.409 \left(\frac{\alpha_s \left(M_W \right)}{\pi} \right)^2 - 12.77 \left(\frac{\alpha_s \left(M_W \right)}{\pi} \right)^3 \right] \right]$$

Take the leptonic branching ratio:

$$\operatorname{Br}\left(\mathbf{W} \to l\nu\right) = \frac{\Gamma_{W \to l\nu}}{\Gamma_{Wtot}}$$

very accurate measurement from LEP : $Br(W \rightarrow lv) = 0.1084(9)$. Very sensitive to δ .

PSI, 6 March, 2008

E.Passemar

Results

- Fit to first order in ε (NLO) $\Longrightarrow \varepsilon^{v}$ not present in the fit
- $\alpha_{s}(M_{z})=0.1190$ fixed, impossible to determine simultaneously with the EW parameters.
- δ =-0.0054(44), **s** = 0.2308(4), ϵ^{e} = -0.0024(5),

 ϵ^{u} = -0.0223(104) , ϵ^{d} = -0.0355(257) , χ^{2} /dof=3.09/3.

Results FIT SM (LEP'06)

From the NLO fit

From the NLO fit

- Remarquable agreement at NLO (less than 1 σ), the anomaly A_{FB} for b quarks disappears without breaking the universality.
- Parameters susceptible to be modified at NNLO (only loop corrections + counter terms meaningful within the LEET) but hardly imaginable that the nice agreement with data will be spoiled.

Contributions of the different parameters to observables

4.3 Low energy Experiments

Using the values of the parameters determined in the FIT
 predictions at low energy.

- Atomic parity violation: test the couplings of electrons to the quarks inside the nucleus via neutral current.
 - Violating part amplitude: 2 contributions ($A_e V_q$) and ($V_e A_q$).
 - Limitate the uncertainties, take vector couplings for quarks (CVC).

$$\mathcal{L}_{NC}^{lq} = \frac{G_F}{\sqrt{2}} 4 g_A^e \overline{e} \gamma_\mu \gamma^5 e \left(g_V^u \overline{u} \gamma^\mu u + g_V^d \overline{d} \gamma^\mu d \right)$$

$$\implies Q_W = 4g_A^e \left[Z \left(2g_V^u + g_V^d \right) + N \left(g_V^u + 2g_V^d \right) \right]$$

Parity violation in Polarized Moller Scattering
 Measurement of the parity violating asymmetry (E-158)

$$A_{PV} = \frac{\sigma_R(e_R) - \sigma_L(e_L)}{\sigma_R(e_R) + \sigma_L(e_L)} = -\mathcal{A}(Q^2, y)Q_W^e$$

Kinematic factor
 $(y = Q^2 / s)$
$$Q_W^e = 4g_A^e g_V^e$$

• Results :

Observable	Measurement	NLO prediction
Q _W (¹³³ Cs)	-72.62 ± 0.46	-70.73 ± 4.44
Q _W (²⁰⁵ TI)	-116.40 ± 3.64	-111.95 ± 7.47
Q_W^{p}	Qweak ?	0.060 ± 0.017
Q_{W}^{e}	0.041± 0.005	0.074 ± 0.02

Observable	Measurement	NLO prediction
Q _W (¹³³ Cs)	-72.62 ± 0.46	-70.73 ± 4.44
Q _W (²⁰⁵ TI)	-116.40 ± 3.64	-111.95 ± 7.47
Q_W^{p}	Qweak ?	0.060 ± 0.017
	0.041± 0.005	0.074 ± 0.02
5 σ !		

Good agreements except for weak charge of electron

Accidental cancelation at NLO !
$$\left(4\tilde{s}^{2}(1-\varepsilon^{e}) \sim 1\right)$$

• We have to go to NNLO !

E.Passemar

PSI, 6 March, 2008

4.4 Conclusion

- Experimental tests to the Z pole successful !
- B quark asymmetry A_{FB} anomaly solved.
- Agreement with the low-energy experiments.

5. Conclusions and prospects

5.1 Conclusions

- Minimal low-energy effective theory tool to look for physics beyond the Standard Model.
- Prediction of NLO non standard couplings of fermions to W and Z bosons.
- The most dramatic effect: right-handed quark coupling to W $\implies \epsilon$.
- Quasi non-existent tests of the V-A couplings of quarks because of the confinement is use of precise hadronic physics, ChPT, short distances.
- $K_{\mu3}^L$ decay : ideal decay \implies experimental puzzle: the 5 discrepancy found by NA48 not confirmed. Measurement of RHCs
- Precision tests to the Z pole successful !

5.2 Prospects

- NLO : heavy quark sector.
- NNLO, loop effects : Flavour Changing Neutral Currents, CP violation, Dipolaire Electric Moments

 \bigvee V_R matrix completely unknown to constrain !

Additional slides

• GB Σ : link $L \longleftrightarrow R$ • Spurions X, Y, ω : link $C \longleftrightarrow E$

•Covariant constraints reducing the symmetry and the physical dof to

$$SU(2) \otimes U(1)_{Y} \Leftrightarrow D_{\mu}X = D_{\mu}Y = D_{\mu}\omega = 0$$

• $X \sim \xi Y \sim \eta \omega \sim \varsigma$ small expansion parameters :

$$\xi \cdot \eta = \frac{m_{top}}{\Lambda_W} = O(p), \ \varsigma \ll \xi, \eta \dots LNV$$

66

E.Passemar

3.2 Theoretical knowledge: the Callan-Treiman relation

• Callan-Treiman Theorem: SU(2) x SU(2) theorem

$$C = \overline{f_0}(\Delta_{K\pi}) = \frac{F_K}{F_\pi f_+^{K^0}(0)} + \Delta_{CT}$$

$$\Delta_{K\pi} = m_K^2 - m_\pi^2$$

- Corrections of order m_u , m_d \rightarrow No chiral logarithms : $\Delta_{CT} \sim \mathcal{O}\left(m_{u,d} / 4\pi F_{\pi}\right)$
 - → Isospin limit $m_d = m_{u:} \Delta_{CT}^{NLO} \sim -3.5.10^{-3}$ [Gasser & Leutwyler]
 - → K⁰ decay : no small denominators due to $\pi^0 \eta$ mixing $(\mathcal{O}((m_d m_u) / m_s))$.
 - → K⁺ decay case : enhancement by π^0 η mixing in the final state $\Delta_{c\tau}^{K^+} \sim few \ 10^{-2}$ (K⁰ ideal decay)
- Estimations of the higher order terms: corrections in $\mathcal{O}(m_{u,d})$ and $\mathcal{O}(m_s)$ $\Longrightarrow \quad \Delta_{cT} = (-3.5 \pm 8).10^{-3}$

E.Passemar

PSI, 6 March, 2008

3.3 Experimental measurements

- Data available from KTeV, NA48 and KLOE. ۲
- In fix target experiments (KTeV, NA48), it is impossible to measure directly the t-distribution (Initial energy of K₁ unknown) : for each event, 2 possible values of t

 \implies Trick: \rightarrow For NA48, choice of the most probable t value and bias accounted in the detector acceptance.

 \rightarrow For KTeV: use of tranverse t.

- For KLOE: K₁ produced at rest, the t-distribution is known but difficulty to separate the muons from the pions at low energy: use the neutrino distribution.
- Necessity to parametrize the 2 form factors f_+ and f_0 to fit the measured distributions.
- Usually, use of linear parameterization or pole parameterization :

$$f_{lin}(t,\lambda) = 1 + \lambda \frac{t}{m_{\pi}^{2}} \qquad f_{pol}(t,m_{s}) = \frac{m_{s}^{2}}{m_{s}^{2} - t}$$
PST 6 March 2008

F Passemai