Higher order corrections to Higgs production in Weak Boson Fusion

Sophy Palmer

Institute for Particle Physics Phenomenology University of Durham

Paul Scherrer Institute December 2008

Work in collaboration with G Weiglein and T Figy

www.ippp.dur.ac.uk

Outline

- The Higgs Sector
- Weak Boson Fusion
- Higgs Weak Boson coupling
- 2 Outline of Calculation
 - WBF Corrections
 - Renormalisation
 - Calibration Process

3 Results

- Partonic Cross Sections
- Comparison with the literature
- Monte Carlo
- Calibration Process

The Higgs Sector Weak Boson Fusion Higgs - Weak Boson coupling

The MSSM Higgs Sector

 In the MSSM, the Higgs sector needs to contain two Higgs doublets, which leads to 5 physical Higgs states:

 h_0, H_0, A_0, H^+, H^-

- At tree level the Higgs sector is described by $\tan\beta$ and M_A
- The tree level masses m_h and m_H are found by diagonalising the Higgs mass matrix

$$\begin{split} M_{H}^{2,tree} &= \begin{pmatrix} M_{A}^{2}sin^{2}\beta + M_{Z}^{2}cos^{2}\beta & -(M_{A}^{2} + M_{Z}^{2})sin\beta cos\beta \\ -(M_{A}^{2} + M_{Z}^{2})sin\beta cos\beta & M_{A}^{2}cos^{2}\beta + M_{Z}^{2}sin^{2}\beta \end{pmatrix} \\ &\downarrow \text{diagonalisation, } \alpha \\ M_{H}^{2,tree} &= \begin{pmatrix} m_{H}^{2,tree} & 0 \\ 0 & m_{h}^{2,tree} \end{pmatrix} \end{split}$$

ヘロン 人間 とくほど 人 ほとう

ъ

The Higgs Sector Weak Boson Fusion Higgs - Weak Boson coupling

The Complex MSSM

- In general, some of the parameters of the MSSM can be complex. For instance,
 - gluino mass parameter M₃
 - trilinear coupling parameter A
- When complex phases are included, interesting (non-excluded) phenomenology can result
- Complex phases allow mixing between all three neutral Higgs bosons

$$M(p^{2}) = \begin{pmatrix} m_{h}^{2} - \hat{\Sigma}_{hh}(p^{2}) & -\hat{\Sigma}_{hH}(p^{2}) & -\hat{\Sigma}_{hA}(p^{2}) \\ -\hat{\Sigma}_{hH}(p^{2}) & m_{H}^{2} - \hat{\Sigma}_{HH}(p^{2}) & -\hat{\Sigma}_{HA}(p^{2}) \\ -\hat{\Sigma}_{hA}(p^{2}) & \hat{\Sigma}_{HA}(p^{2}) & m_{A}^{2} - \hat{\Sigma}_{AA}(p^{2}) \end{pmatrix}$$

イロト イポト イヨト イヨト

The Higgs Sector Weak Boson Fusion Higgs - Weak Boson coupling

Weak Boson Fusion

Weak boson fusion is expected to be the second largest contributor to Higgs Boson production at the LHC

The Higgs Sector Weak Boson Fusion Higgs - Weak Boson coupling

WBF - Status

- NLO QCD corrections in the SM have been implemented in public Monte Carlo codes (see, for instance, hep-ph/0407066, T Figy, C Oleari, D Zeppenfeld)
- The QCD corrections to weak boson fusion are relatively small
- Full SM one-loop corrections have been obtained and implemented in a Monte Carlo program (hep-ph/0710.4749, hep-ph/0806.3624, M Ciccolini, A Denner, S Dittmaier)
- An estimation of $\mathcal{O}(\alpha^3 \alpha_s^2)$ contributions has been published (hep-ph/0809.3693, J Vollinga)
- The pure SUSY-loop corrections to the total cross section have been investigated (hep-ph/0804.2676, W Hollik, T Plehn, M Rauch, H Rzehak)
- Loop level interference effects have been calculated (hep-ph/0709.3513, J Andersen, T Binoth, G Heinrich, J Smillie; hep-ph/0801.4231, A Bredenstein, K Hagiwara, B Jäger)

The Higgs Sector Weak Boson Fusion Higgs - Weak Boson coupling

vbfnlo

By using Monte Carlo programs, cross section distributions can be calculated, providing a useful tool for experimentalists. **vbfnlo*** is a public parton level Monte Carlo program that provides predictions for weak boson fusion in the Standard Model and includes NLO QCD corrections.

- Arbitrary cuts can be implemented
- Various scales and PDF sets can be chosen
- Several relevant processes are included:
 - Higgs production
 - Single W/Z boson production with leptonic decay
 - WW/ZZ pair production with subsequent leptonic decays of W/Z bosons

*hep-ph/0306109, T Figy, C Oleari, D Zeppenfeld

Available at http://www-itp.particle.uni-karlsruhe.de/~vbfnloweb/

ヘロト ヘワト ヘビト ヘビト

The Higgs Sector Weak Boson Fusion Higgs - Weak Boson coupling

Effective Couplings

• The most general HVV coupling is:

$$\begin{array}{ll} T^{\mu\nu}\left(q_{1},q_{2}\right) &=& a_{1}\left(q_{1},q_{2}\right)g^{\mu\nu}+a_{2}\left(q_{1},q_{2}\right)\left(q_{1}\bullet q_{2}g^{\mu\nu}-q_{2}^{\mu}q_{1}^{\nu}\right)\\ &+a_{3}\left(q_{1},q_{2}\right)\epsilon^{\mu\nu\rho\sigma}q_{1\sigma}q_{2\rho}\end{array}$$

At tree level

$$a_1^{SM} = rac{ieM_W}{sin(heta_W)}; \quad a_1^{MSSM} = rac{ieM_W}{sin(heta_W)} sin(eta - lpha); \qquad a_2 = 0; \qquad a_3 = 0;$$

• New physics (e.g. a heavy particle loop) can be represented by the effective coupling $T^{\mu\nu}$

The Higgs Sector Weak Boson Fusion Higgs - Weak Boson coupling

VVH Coupling and Azimuthal Angles

The LHC will (hopefully) provide information about

- Strength of the HVV coupling
- Tensor structure of the HVV coupling

Figure from: hep-ph/0609075, T Figy, V Hankele, G Klamke, D Zeppenfeld

WBF Corrections Renormalisation Calibration Process

Calculation of Higher Order Corrections to WBF

• The programs* FeynArts, FormCalc, LoopTools and FeynHiggs have been used

- Higgs vertex couplings and weak boson self energies are incorporated into an effective coupling *T^{μν}*
- For these diagram-types, the full Standard Model corrections and all fermion/sfermion corrections in the MSSM are included

*Programs available at www.feynarts.de and www.feynhiggs.de

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

WBF Corrections Renormalisation Calibration Process

Calculation of Higher Order Corrections to WBF

- When only (s)fermionic corrections are being considered, the corrections to qqV are calculated using the counterterm coupling
- When bosons are included too, the full matrix element is calculated
- qqV vertex corrections are included for the full Standard Model and for fermions and sfermions in the MSSM

WBF Corrections Renormalisation Calibration Process

Bosonic Corrections to WBF

- All bosonic corrections have been implemented in the Standard Model
- Outlook: Implementing these diagram-types in the MSSM

WBF Corrections Renormalisation Calibration Process

Boxes and pentagons

- The boxes and pentagons are included by calculating the full matrix element squared, using code generated by a modified version of FormCalc
- In order to check this procedure, the Born amplitude and the corrections to the Higgs vertex were calculated using this method, and the results cross checked against the simpler formfactor calculation

・ 同 ト ・ ヨ ト ・ ヨ ト

WBF Corrections Renormalisation Calibration Process

Higgs propagator corrections in the MSSM

- Radiative corrections lead to further mixing between Higgs bosons
- Finite wavefunction normalisation factors have been used to give outgoing particles the correct on-shell properties to take this mixing into account

$$\left(\begin{array}{c}\hat{\Gamma}_{1}\\\hat{\Gamma}_{2}\\\hat{\Gamma}_{3}\end{array}\right) = \hat{Z} \left(\begin{array}{c}\hat{\Gamma}_{h}\\\hat{\Gamma}_{H}\\\hat{\Gamma}_{A}\end{array}\right)$$

WBF Corrections Renormalisation Calibration Process

Higgs propagator corrections in the MSSM

• The non-unitary \hat{Z} matrix is given by

$$\hat{Z} = \begin{pmatrix} \sqrt{Z_h} & \sqrt{Z_h}Z_{hH} & \sqrt{Z_h}Z_{hA} \\ \sqrt{Z_H}Z_{Hh} & \sqrt{Z_H} & \sqrt{Z_h}Z_{HA} \\ \sqrt{Z_h}Z_{Ah} & \sqrt{Z_A}Z_{AH} & \sqrt{Z_A} \end{pmatrix}$$

- When producing a Higgs *i*, √Z_i is a normalisation factor (dependent on the *ii* propagator), and Z_{ij} involves the *ij* propagator and takes account of diagrams where there is a tree level Higgs *j* connected directly to the vertex.
- These corrections can be very important numerically. They are calculated using FeynHiggs, which includes the dominant two-loop contributions as well as the full one-loop corrections.

WBF Corrections Renormalisation Calibration Process

Δm_b corrections

• Higher order corrections can significantly affect the relation between the bottom quark mass and the Yukawa coupling λ_b

$$\lambda_b = rac{m_b}{v_1}
ightarrow rac{m_b}{v_1} rac{1}{1+\Delta m_b}$$

- Δm_b is output by FeynHiggs
- These corrections can potentially be large, especially for the heavy Higgs

くロト (過) (目) (日)

WBF Corrections Renormalisation Calibration Process

The Higgs vertex

 In the Standard Model, the HWW counterterm coupling is simply

$$\Gamma_{HWW}^{CT} = \frac{ieM_W}{sin(\theta_w)} \left(\delta \tilde{Z}_e + \frac{1}{2} \frac{\delta M_W^2}{M_W^2} + \delta Z_W - \frac{\delta sin(\theta_w)}{sin(\theta_w)} + \frac{1}{2} \delta Z_H \right)$$

 In the MSSM, however, this counterterm is more complicated

$$\Gamma_{hWW}^{CT} = \frac{ieM_W}{sin(\theta_W)}sin(\beta - \alpha)\left(\delta \tilde{Z}_e + \frac{1}{2}\frac{\delta M_W^2}{M_W^2} + \delta Z_W + \frac{\delta sin(\theta_W)}{sin(\theta_W)} + \frac{1}{2}\delta Z_h + sin(\beta)cos(\beta)\frac{cos(\beta - \alpha)}{sin(\beta - \alpha)}\delta tan(\beta)\right) + \frac{1}{2}\frac{ieM_W}{sin(\theta_W)}cos(\beta - \alpha)\delta Z_{Hh}$$

• We work in a scheme where α is not renormalised

WBF Corrections Renormalisation Calibration Process

....

Renormalisation constants

(

• The Higgs field renormalisation terms are calculated in the *DR* scheme

$$\delta Z_{h} = -\left[Re\Sigma'_{hh}(m_{h}^{2})\right]^{div} \qquad \delta Z_{H} = -\left[Re\Sigma'_{HH}(m_{H}^{2})\right]^{div}$$
$$\delta Z_{hH} = \frac{\sin(\alpha)\cos(\alpha)}{\cos(2\alpha)}\left(\delta Z_{h} - \delta Z_{H}\right) \qquad \delta \tan\beta = \frac{1}{2\cos(2\alpha)}\left(\delta Z_{h} - \delta Z_{H}\right)$$

 The lowest order electromagnetic coupling α_{em} is parametrised either by the coupling at the scale M_Z or by the Fermi constant

$$\alpha_{em}(M_Z) = \frac{\alpha_{em}(0)}{1 - \Delta \alpha} \qquad \qquad \alpha_{em} = \frac{\sqrt{2}G_F M_W^2 \cos^2(\theta_W)}{\pi (1 + \Delta r)}$$

イロト イポト イヨト イヨト

WBF Corrections Renormalisation Calibration Process

Charge Renormalisation

• The constant $\delta \tilde{Z}_e$ incorporates both charge renormalisation and the $\Delta \alpha$ or Δr contributions $\delta \tilde{Z}_e = \delta Z_e - \frac{1}{2} \Delta \alpha$ $\delta \tilde{Z}_e = \delta Z_e - \frac{1}{2} \Delta r$

Charge renormalisation has the form

$$\delta Z_e = \frac{1}{2} \Pi^{\gamma}(0) - \frac{\sin(\theta_w)}{\cos(\theta_w)} \frac{\Sigma_{\gamma Z}(0)}{M_Z^2}$$

• In the fermion / sfermion sector, $\delta \tilde{Z}_e$ can be written as

$$\delta \tilde{Z}_{e} = \frac{\delta \sin(\theta_{w})}{\sin \theta_{w}} - \frac{1}{2} \left(\frac{\Sigma_{W}(0) - \delta M_{W}^{2}}{M_{W}^{2}} \right)$$

・ロト ・ 同ト ・ ヨト ・ ヨト

WBF Corrections Renormalisation Calibration Process

Soft and collinear divergences

- We work in the limit of zero quark mass for the external (1st and 2nd generation) quarks
- The IR and collinear divergences are regularised by a small photon mass and small quark masses respectively
- We use the dipole subtraction formalism described in hep-ph/9904440*
- As an additional check on the IR divergences, we have also used the soft photon approximation as an alternative to dipole subtraction

*hep-ph/9904440, S Dittmaier

ヘロト ヘ戸ト ヘヨト ヘヨト

WBF Corrections Renormalisation Calibration Process

Renormalisation checks

Several checks have been performed to ensure that the final answer is finite:

- The UV divergences are checked analytically in the 3rd generation quark (and squark) sector and checked numerically in the other sectors
- In the fermion / sfermion sector, the Standard Model and MSSM corrections are separately finite
- In the fermion / sfermion sector, the Higgs vertex, the quark vertex and the weak boson self energy contributions are all separately finite
- The result is independent of all renormalisation parameters (the UV divergence, the regulator quark mass and the photon mass)

WBF Corrections Renormalisation Calibration Process

Calibration Process

$$Q+ar{q}
ightarrow Q'+Z+ar{q}'$$

The search for (and understanding of) Higgs production via weak boson fusion at the LHC depends on understanding the detector response

- Feynman diagrams are analagous for Z / H production
- *M_Z* ~ *M_H*, so the kinematics of the tag jets are similar

Introduction Partonic Cross Sections Outline of Calculation Comparison with the lite Results Monte Carlo Summary Calibration Process

MSSM benchmark scenarios

- In the MSSM M_A / M_{H^+} and tan β are taken to be free parameters
- Other parameters are fixed according to a benchmark prescription
- The benchmarks used here are
 - Gluophobic Higgs scenario
 - No-mixing scenario
 - *M_h*-max scenario
 - Small α_{eff} scenario
 - CPX scenario

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

 Partonic cross sections have been calculated for the process: u + c → u + h₀ + c

 The partonic cross section is ~ 0.25 pb, with loop corrections at the % level

< ロ > < 同 > < 三 >

Partonic Cross Sections Comparison with the literature Monte Carlo Calibration Process

Partonic Cross Section - h_0

For the partonic process: $u + c \rightarrow u + h_0 + c$

イロト イポト イヨト イヨト

• Partonic cross sections have been calculated for the process: $u + c \rightarrow u + H_0 + c$

 The loop corrections are extremely large, but the total cross section is still very small

イロト イポト イヨト イヨト

Introduction Partonic Outline of Calculation Compa Results Monte (Summary Calibrat

Partonic Cross Sections Comparison with the literature Monte Carlo Calibration Process

Experimental cuts

- We use the PDF set MRST2004qed
- Cuts are implemented*
 - *p*_t > 20 GeV
 - $|\eta_{ij}| \leq 4.5$
 - $|\eta_{j_1} \eta_{j_2}| > 4$
- A range of distributions are output

*Cuts from hep-ph/0403297: T Figy, D Zeppenfeld

くロト (過) (目) (日)

æ

Introduction Partonic Cross Sections Outline of Calculation Results Monte Carlo Summary Calibration Process

Comparison: Standard Model

The adapted vbfnlo code compares well with the previously published full Standard Model calculations*.

M _H [GeV]	120	150	200
<i>σ_{LO}</i> , hep-ph/0710.4749 [fb]	1876	1590	1221
σ_{LO} , vbfnlo [fb]	1874	1588	1220
$\Delta\sigma_{\it NLO}$, hep-ph/0710.4749 [fb]	-220	-188	-132
$\Delta\sigma_{\it NLO}$, vbfnlo [fb]	-217	-190	-128

hep-ph/0710.4749, M Ciccolini, A Denner, S Dittmaier

イロト イポト イヨト イヨト

Partonic Cross Sections Comparison with the literature Monte Carlo Calibration Process

Comparison: Standard Model

- Numerical inputs, cuts and PDF sets are the same
- The results presented in **hep-ph/0710.4749** include more corrections than the adapted vbfnlo
- vbfnlo assumes the Higgs decays into two massless particles
- These <code>vbfnlo</code> cross sections have numerical errors of $\sim\pm0.5pb$ at LO and $\sim\pm5pb$ at NLO

くロト (過) (目) (日)

	Partonic Cross Sections	
Jutline of Calculation	Comparison with the literatur	
Results	Monte Carlo	
Summary	Calibration Process	

Comparison: the real MSSM

SPS	$\frac{\Delta\sigma}{\sigma}$ [%]	$\frac{\Delta\sigma}{\sigma}$ [%]
point	hep-ph/0804.2676	vbfnlo
1a	-0.469	-0.44
1b	-0.229	-0.21
2	0.129	0.17
3	-0.216	-0.31
4	-0.355	0.01
5	-0.912	-2.01
6	-0.309	-0.32
7	-0.317	-0.07
8	-0.206	-0.01
9	-0.071	-0.03

- The pure SUSY-loop contributions have been published*
- The adapted vbfnlo can study weak boson fusion calculating loops with only fermions, loops with only sfermions or both contributions
- Different corrections are included in the published and the adapted vbfnlo results a more detailed comparison is in progress

* hep-ph/0804.2676, W Hollik, T Plehn, M Rauch, and H Rzehak

Partonic Cross Sections Comparison with the literatur Monte Carlo Calibration Process

Decoupling regime: h_1 formfactor a_1

Partonic Cross Sections Comparison with the literat Monte Carlo Calibration Process

Decoupling regime: h_1 formfactor a_1

イロト イポト イヨト イヨト

Partonic Cross Sections Comparison with the literatu Monte Carlo Calibration Process

Decoupling regime: h_1 formfactors a_2 and a_3

Summary

 $M_A/M_{H^+} = 500 {
m GeV}$

 These values are almost certainly too small to be experimentally visible*

*EPJC 51, 386, C Ruwiedel, M Schumacher, N Wermes

Partonic Cross Sections Comparison with the literature Monte Carlo Calibration Process

Non-decoupling regime: h_1 formfactor a_1

Partonic Cross Sections Comparison with the literature Monte Carlo Calibration Process

Non-decoupling regime: h_1 formfactor a_1

크 > < 크

Partonic Cross Sections Comparison with the literatur Monte Carlo Calibration Process

Non-decoupling regime: h_1 formfactors a_2 and a_3

In the MSSM, tan β is varied between 3 and 53 $M_A/M_{H^+} = 150 \text{GeV}$

イロト イポト イヨト イヨト

Introduction Partonic Cross Sections Outline of Calculation Comparison with the literatur Results Monte Carlo Summary Calibration Process

h_2 formfactor a_1

イロト イポト イヨト イヨト

Comparison with the literat Monte Carlo Calibration Process

h_2 formfactors a_2 and a_3

In the MSSM, tan β is varied between 3 and 53 M_A/M_{H^+} = 500GeV

→ Ξ → → Ξ

< < >> < </>

Introduction Partonic Cross Section Outline of Calculation Comparison with the Results Monte Carlo Summary Calibration Process

h_3 formfactors

In the MSSM, tan β is varied between 3 and 53 M_A/M_{H^+} = 150GeV

ъ

< E.

Introduction Partonic Cross Sections Outline of Calculation Comparison with the literature Results Monte Carlo Summary Calibration Process

h_3 formfactors

In the MSSM, tan β is varied between 3 and 53 M_A/M_{H^+} = 150GeV

イロト イポト イヨト イヨト

ъ

Introduction Partonic Cross Sections Outline of Calculation Comparison with the literati Results Monte Carlo Summary Calibration Process

Monte Carlo Results

Producing the light CP-even Higgs in the real MSSM

 M_h -max scenario, $M_A = 500 \text{ GeV}$ (decoupling regime) tan $\beta = 8$, $M_h = 129.8 \text{ GeV}$

< 🗇 🕨

Introduction Partonic Cross Sections Outline of Calculation Comparison with the litera Results Monte Carlo Summary Calibration Process

Monte Carlo Results

Producing the lightest Higgs in the complex MSSM

Introduction Partonic Cross Sections Outline of Calculation Comparison with the literat Results Monte Carlo Summary Calibration Process

Monte Carlo Results

Producing the second lightest Higgs in the complex MSSM

Z production - Partonic Cross Sections

For the partonic process: $u + s \rightarrow d + Z + c$

Gluophobic scenario, $M_A = 500 \text{ GeV}$

æ

ъ

Partonic Cross Sections Comparison with the literatur Monte Carlo Calibration Process

Z Production - MC Results

Sophy Palmer Loop Corrections to Weak Boson Fusion

ъ

Summary

- Weak boson fusion provides
 - Higgs discovery channel
 - Study of electroweak symmetry breaking and BSM
- Complete corrections in the SM have been calculated and implemented in a modified vbfnlo
- The fermion/sfermion loop corrections in the MSSM have been implemented
- There is reasonable agreement with the literature
- $\bullet\,$ Fermion/sfermion corrections are typically \sim 3-4% for the production of the lightest Higgs in the decoupling regime
- Corrections for the heavier Higgs bosons are generally large
- A possible calibration process is being studied
- Outlook: Remaining SUSY corrections