

Low-energy observables in a SUSY model with spontaneously broken R-Parity

Jochen Meyer

Universität Würzburg - Fakultät für Physik und Astronomie Theoretische Physik II

October 23, 2008

Outline

- 2 The considered model with SRPV
- 3 Phenomenological aspects

4 Conclusions

Outline

- Introduction

 Supersymmetry
 The MSSM
 - R-Parity
- 2 The considered model with SRPV
- 3 Phenomenological aspects

4 Conclusions

What is Supersymmetry (SUSY)?

- connection between bosons and fermions
- no SUSY particle is observed yet \Longrightarrow broken symmetry

Why do we think about SUSY?

- solution of the hierarchy problem
- dark matter candidates
- unification of gauge couplings at the GUT-scale
- electroweak symmetry breaking (EWSB) automatically
- explanation of neutrino masses

Minimal Supersymmetric Standard Model (MSSM): particle content

chiral	superfield-	spin-0-	spin- $\frac{1}{2}$ -	quantum number of
supermultiplets	notation	particles	particles	$SU(3)_C, SU(2)_L, U(1)_Y$
squarks, quarks	\hat{Q}	$\left(\tilde{u}_L, \tilde{d}_L\right)$	(u_L,d_L)	$(3, 2, \frac{1}{6})$
$(\times 3 \text{ families})$	\hat{u}^c	\tilde{u}_R^*	u_R^{\dagger}	$(\bar{3}, 1, -\frac{2}{3})$
	\hat{d}^c	$ ilde{d}_R^*$	d_R^\dagger	$(\bar{3}, 1, \frac{1}{3})$
sleptons, leptons	\hat{L}	$(ilde{ u}_e, ilde{e}_L)$	(ν_e, e_L)	$(1, 2, -\frac{1}{2})$
$(\times 3 \text{ families})$	\hat{e}^c	$ ilde{e}_R^*$	e_R^{\dagger}	(1, 1, 1)
Higgs, higgsinos	\hat{H}_u	$\left(H_{u}^{+},H_{u}^{0}\right)$	$\left(\tilde{H}_{u}^{+}, \tilde{H}_{u}^{0}\right)$	$\begin{pmatrix} 1, & 2, & \frac{1}{2} \end{pmatrix}$
	\hat{H}_d	$\left(H_d^0, H_d^-\right)$	$\left(\tilde{H}_{d}^{0},\tilde{H}_{d}^{-}\right)$	$egin{pmatrix} 1, 2, -rac{1}{2} \end{pmatrix}$

gauge	spin- $\frac{1}{2}$ -	spin-1-	quantum number of
supermultiplets	particles	particles	$SU(3)_C, SU(2)_L, U(1)_Y$
gluinos, gluons	\tilde{g}	g	(8, 1, 0)
winos, W-bosons	$\tilde{W}^{\pm}, \tilde{W}^0_3$	W^{\pm}, W^{0}_{3}	(1, 3, 0)
bino, <i>B</i> -boson	\tilde{B}	B	(1, 1, 0)

Basic object to build the Lagrangian is the so-called Superpotential:

$$\mathcal{W}_{\text{MSSM}} = \epsilon_{ab} \left[h_u^{ij} \hat{Q}_i^a \hat{u}_j^c \hat{H}_u^b + h_d^{ij} \hat{Q}_i^b \hat{d}_j^c \hat{H}_d^a + h_e^{ij} \hat{L}_i^b \hat{e}_j^c \hat{H}_d^a - \hat{\mu} \hat{H}_d^a \hat{H}_u^b \right]$$

 $\hat{\mu}$ has to be of the order of the electroweak scale $\mathcal{O}(m_t) \Longrightarrow \hat{\mu}\text{-problem}$

Sfermion-fermion-gaugino interaction enter the Lagrangian through

$$-\sqrt{2}g\left(\phi^{*}T^{a}\psi\right)\lambda^{a}-\sqrt{2}g\lambda^{\dagger a}\left(\psi^{\dagger}T^{a}\phi\right)$$

Rotating the MSSM-Lagrangian from gauge into mass eigenbasis yields to the following mass spectra of SUSY-particles:

- squarks and sleptons are mixing in pairs
- four charginos $\chi_1^\pm,\,\chi_2^\pm$ as result of the mixing between $\tilde W^\pm,\,\tilde H_u^+$ and $\tilde H_d^-$
- the neutral fermions $\tilde{W}^0,$ $\tilde{B},$ \tilde{H}^0_u and \tilde{H}^0_d form the four neutralinos χ^0_1,\ldots,χ^0_4

Why do neutrinos not mix with neutralinos in the case of the MSSM? \implies R-Parity is conserved!

What is R-Parity? R-Parity is a Z_2 -symmetry.

$$P_{\mathsf{R}} = (-1)^{3(B-L)+2s}$$

B indicates the baryon number, L the lepton number and s the spin.

 \implies P = 1 for SM particles \implies P = -1 for SUSY particles

Conserved R-Parity forbids the terms

$$\mathcal{W}_{I\!\!R} = \underbrace{\epsilon_{ab} \left(\frac{1}{2} \lambda_{ijk} \hat{L}^a_i \hat{L}^b_j \hat{e}^c_k + \lambda'_{ijk} \hat{L}^a_i \hat{Q}^b_j \hat{d}^c_k - \varepsilon_i \hat{L}^a_i \hat{H}^b_u \right)}_{\Delta L = 1} + \underbrace{\frac{1}{2} \lambda''_{ijk} \hat{u}^c_i \hat{d}^c_j \hat{d}^c_k}_{\Delta B = 1}$$

Why should R-Parity be ...

... conserved?

- combined lepton (*I*) and baryon number violation (*B*) give rise to proton decay channels, e.g. $p \to \pi^0 e/\pi^+ \nu$
- no contributions to flavour-changing-neutral-currents (FCNC) and lepton-flavour-violation (LFV) on tree-level
- lightest SUSY particale cannot decay \Longrightarrow dark matter candidate

... broken?

• neutrino-neutralino-mixing \implies neutrino masses

Outline

The considered model with SRPV

- Superpotential
- Advantages and Effects
- Introducing neutrino physics
- 3 Phenomenological aspects

4 Conclusions

The superpotential reads

$$\begin{split} \mathcal{W} = & \epsilon_{ab} \left[h_u^{ij} \hat{Q}_i^a \hat{u}_j^c \hat{H}_u^b + h_d^{ij} \hat{Q}_i^b \hat{d}_j^c \hat{H}_d^a + h_e^{ij} \hat{L}_i^b \hat{e}_j^c \hat{H}_d^a \right. \\ & \left. + h_\nu^{ij} \hat{L}_i^a \hat{\nu}_j^c \hat{H}_u^b - h_0 \hat{H}_d^a \hat{H}_u^b \hat{\Phi} \right] + \frac{\lambda}{3!} \hat{\Phi}^3 + h^{ij} \hat{\Phi} \hat{\nu}_i^c \hat{S}_j \end{split}$$

A. Masiero and J. W. F. Valle, Phys. Lett. B251, 273-278 (1990)

with additional singlet superfields $\hat{\Phi}$, \hat{S}_i and $\hat{\nu}_i^c$ possesing lepton numbers (0, 1, -1). The terms can be identified as:

- known MSSM superpotential terms
- solution of the $\hat{\mu}$ -problem by an effective $\mu = h_0 \frac{v_{\Phi}}{\sqrt{2}}$ since the scalar component of $\hat{\Phi}$ acquires a VEV (as in NMSSM)
- spontaneously R-Parity violating (SRPV) terms

Advantages and effects:

- \mathbb{I} as a result of EWSB
- the VEVs $\langle \tilde{\nu}^c \rangle = \frac{v_R}{\sqrt{2}}$, $\langle \tilde{S} \rangle = \frac{v_S}{\sqrt{2}}$ and $\langle \tilde{\nu}_{Li} \rangle = \frac{v_{Li}}{\sqrt{2}}$ drive only $I\!\!L$ \implies no problems with proton decay
- $\hat{\mu}$ -problem is solved by the effective parameter $\mu = h_0 \frac{v_{\Phi}}{\sqrt{2}}$
- Due to the broken global symmetry a massless, CP-odd Nambu-Goldstone boson called Majoron arises.
- Neutrino masses are generated at tree level.

In the gauge eigenbasis

$$\left(\psi^0\right)^T = \left(\begin{array}{ccc} \tilde{B}^0, & \tilde{W}^0_3, & \tilde{H}^0_d, & \tilde{H}^0_u, & \nu^c, & S, & \Phi, & \nu_i \end{array}\right)$$

the neutralino mass matrix occurring in $\mathcal{L}_{neutral}^{mass} = -\frac{1}{2} (\psi^0)^T M_N \psi^0 + h.c.$ reads

$$M_N = \begin{pmatrix} M_{\chi^0} & m_{\chi^0\nu^c} & 0 & m_{\chi^0\Phi} & m_{\chi^0\nu} \\ m_{\chi^0\nu^c}^T & 0 & h\frac{v_\Phi}{\sqrt{2}} & h\frac{v_S}{\sqrt{2}} & m_D^T \\ 0 & h\frac{v_\Phi}{\sqrt{2}} & 0 & h\frac{v_R}{\sqrt{2}} & 0 \\ m_{\chi^0\Phi}^T & h\frac{v_S}{\sqrt{2}} & h\frac{v_R}{\sqrt{2}} & \lambda\frac{v_\Phi}{\sqrt{2}} & 0 \\ m_{\chi^0\nu}^T & m_D & 0 & 0 & 0 \end{pmatrix}$$

containing the Dirac mass matrix $(m_D)_i = \frac{1}{\sqrt{2}} h_{\nu}^i v_u$ and the R-Parity violating matrix $\left(m_{\chi^0 \nu}^T\right)_i = \left(-\frac{1}{2}g' v_{Li}, \frac{1}{2}g v_{Li}, 0, h_{\nu}^i \frac{v_R}{\sqrt{2}}\right)_i$

Seesaw-like diagonalization of the neutralino mass matrix leads to the effective neutrino mass matrix

 $\boldsymbol{m}_{\boldsymbol{\nu}\boldsymbol{\nu}}^{\text{eff}} = -\boldsymbol{M}_D^T \cdot \boldsymbol{M}_H^{-1} \cdot \boldsymbol{M}_D,$

Finally one can find the approximation

$$-\left(m_{\nu\nu}^{\text{eff}}\right)_{ij} = a\Lambda_i\Lambda_j + b\left(\epsilon_i\Lambda_j + \epsilon_j\Lambda_i\right) + c\epsilon_i\epsilon_j.$$

including the parameters

$$\Lambda_{i} = \epsilon_{i} v_{d} + \mu v_{Li} \quad \text{and} \quad \epsilon_{i} = h_{\nu}^{i} \frac{v_{R}}{\sqrt{2}}.$$

These two vectors are sufficient to control neutrino physics!

The considered model with SRPV

Introducing neutrino physics

Considering **only** $\vec{\Lambda}$ yields:

$$V^{(\nu)} = \begin{pmatrix} \frac{\sqrt{\Lambda_2^2 + \Lambda_3^2}}{|\vec{\Lambda}|} & 0 & \frac{\Lambda_1}{|\vec{\Lambda}|} \\ -\frac{\Lambda_1 \Lambda_2}{\sqrt{\Lambda_2^2 + \Lambda_3^2} |\vec{\Lambda}|} & \frac{\Lambda_3}{\sqrt{\Lambda_2^2 + \Lambda_3^2}} & \frac{\Lambda_2}{|\vec{\Lambda}|} \\ -\frac{\Lambda_1 \Lambda_3}{\sqrt{\Lambda_2^2 + \Lambda_3^2} |\vec{\Lambda}|} & -\frac{\Lambda_2}{\sqrt{\Lambda_2^2 + \Lambda_3^2}} & \frac{\Lambda_3}{|\vec{\Lambda}|} \end{pmatrix}$$

 \implies two angles for direct reading

$$\tan^2 \theta_{\mathsf{R}} \approx \left(\frac{\Lambda_1}{\sqrt{\Lambda_2^2 + \Lambda_3^2}} \right)^2 \quad \text{and} \quad \tan^2 \theta_{\mathsf{atm}} \approx \left(\frac{\Lambda_2}{\Lambda_3} \right)^2$$

Generation of third angle requires $\vec{\epsilon} = \left(V^{(\nu)}\right)^T \cdot \vec{\epsilon}$:

$$\tan^2\theta_{\rm sol}\approx \left(\frac{\tilde\epsilon_1}{\tilde\epsilon_2}\right)^2$$

Current neutrino oscillation data containing mixing angles and the mass differences $\Delta m_{ij}^2 = m_i^2 - m_j^2$:

parameter	best fit (1σ)	2σ	3σ	
$\Delta m^2_{21} \left[10^{-5} \mathrm{eV}^2 \right]$	$7.65\substack{+0.23 \\ -0.20}$	7.25 - 8.11	7.05 - 8.34	
$\Delta m_{31}^2 \left[10^{-2} \mathrm{eV}^2 \right]$	$2.40^{+0.12}_{-0.11}$	2.18 - 2.64	2.07 - 2.75	
$\sin^2 \theta_{12}$	$0.304_{-0.016}^{+0.022}$	0.27 - 0.35	0.25 - 0.37	
$\sin^2 heta_{23}$	$0.50^{+0.07}_{-0.06}$	0.39 - 0.63	0.36 - 0.67	
$\sin^2 \theta_{13}$	$0.01\substack{+0.016\\-0.011}$	≤ 0.040	≤ 0.056	

T. Schwetz, M. Tortola and J. W. F. Valle, arXiv:0808.2016 (2008)

All allowed values can be reached by variing $\vec{\Lambda}$ and $\vec{\epsilon}$ respectively the \mathcal{R} parameters.

Phenomenological aspects

Outline

1) Introduction

2 The considered model with SRPV

3 Phenomenological aspects

- Approach and Motivation
- Inclusive B-Meson decay $B \rightarrow X_S ll$
- Leptonic decays
- Chosen parameter space
- Numerical results

4 Conclusions

Approach and Motivation

- fitting the \mathbb{R} parameters to neutrino data
- searching pocesses which are giving additional constraints (e.g. loop suppressed or forbidden processes)

Phenomenological aspects

s

Inclusive B-Meson decay $B \rightarrow X_S ll$

$B \rightarrow X_S ll$ in SM

- loop suppressed
- matrix element:

$$\begin{split} \mathcal{M}_{\mathrm{SM}} = & \frac{G_F \alpha}{\sqrt{2}\pi} V_{ts}^* V_{tb} \cdot \\ & \left[(C_9^{\mathrm{eff}} - C_{10}) \bar{s}_L \gamma_\mu b_L \bar{l}_L \gamma^\mu l_L \right. \\ & + (C_9^{\mathrm{eff}} + C_{10}) \bar{s}_L \gamma_\mu b_L \bar{l}_R \gamma^\mu l_R \\ & - 2 C_7^{\mathrm{eff}} \bar{s} i \sigma_{\mu\nu} \frac{q^\nu}{q^2} (m_s P_L + m_b P_R) b \bar{l} \gamma^\mu l \right] \end{split}$$

$$\mathcal{B}(B \to X_s l^+ l^-) = (1.60 \pm 0.51) \cdot 10^{-6}$$

T. Huber et al., Nucl. Phys. B740, 105-137 (2006)

 $V_{tb} W V_{ts}$

 Z, γ

b

Phenomenological aspects

Inclusive B-Meson decay $B \rightarrow X_S ll$

Phenomenological aspects Leptonic decays

Leptonic decays

- violated lepton flavour conservation (LFC)
- not predicted by the SM or MSSM on tree-level

Phenomenological aspects Chosen parameter space

Two mSUGRA scenarios:

SPS1a:

parameter	value in GeV	parameter	value
$m_{1/2}$	250	sign(μ)	+1
m_0	100	$\tan \beta$	10
A_0	-100		

SPS4:

parameter	value in GeV	parameter	value
$m_{1/2}$	300	sign(μ)	+1
m_0	400	aneta	50
A_0	0		

RGEs of the MSSM are used to get the corresponding MSSM parameters at electroweak scale.

 \mathbb{R} violating parameters:

• determined by neutrino fit routine:

$$\Lambda_i = \epsilon_i v_d + \mu v_{Li}$$
 and $\epsilon_i = h_{\nu}^i \frac{v_R}{\sqrt{2}}$

• fixed by the effective parameter μ

$$\mu = h_0 \frac{v_\Phi}{\sqrt{2}}$$

Phenomenological aspects Numerical results

- all variations show only very poor dependences
- $\mathcal{B}(b \rightarrow sl_i^+ l_i^-)$: almost constant at $1.92 \cdot 10^{-6}$
- $\mathcal{B}(b \rightarrow sl_i^+l_j^-)$: unmeasurable small

\implies no additional constraints to \mathbb{R} parameters

Leptonic threebody decays

All variations show only very poor dependencies on \mathbb{R} parameters and are much below experimental bounds if measurable at all.

maximal magnitude of the branching ratios:

branching	SPS1a		SPS4		experimental
ratio	$ heta_{atm} o ec\Lambda$	$ heta_{\rm atm} ightarrow ec{\epsilon}$	$ heta_{atm} o ec\Lambda$	$ heta_{\rm atm} ightarrow ec{\epsilon}$	upper bound
${\cal B}\left(\mu ightarrow ee^+e^- ight)$	$O(10^{-26})$	$O(10^{-27})$	$O(10^{-25})$	$O(10^{-23})$	$1.0 \cdot 10^{-12}$
$\mathcal{B}\left(\tau^{-} \rightarrow e^{-}e^{+}e^{-}\right)$	$O(10^{-24})$	$O(10^{-25})$	$O(10^{-24})$	$O(10^{-21})$	$2.0 \cdot 10^{-7}$
$\mathcal{B}(\tau^- \to e^- \mu^+ e^-)$	$O(10^{-24})$	$O(10^{-32})$	$O(10^{-24})$	$O(10^{-21})$	$1.1 \cdot 10^{-7}$
$\mathcal{B}(\tau^- \to e^- \mu^- e^+)$	$O(10^{-23})$	$O(10^{-24})$	$O(10^{-23})$	$O(10^{-20})$	$2.7 \cdot 10^{-7}$
$\mathcal{B}(\tau^- \to e^- \mu^+ \mu^-)$	$O(10^{-20})$	$O(10^{-21})$	$O(10^{-19})$	$O(10^{-16})$	$3.3 \cdot 10^{-7}$
$\mathcal{B}(\tau^- \to \mu^- e^+ \mu^-)$	$O(10^{-23})$	$O(10^{-24})$	$O(10^{-23})$	$O(10^{-20})$	$1.3 \cdot 10^{-7}$
$\mathcal{B}\left(\tau^{-} \to \mu^{-} \mu^{+} \mu^{-}\right)$	$O(10^{-19})$	$O(10^{-20})$	$O(10^{-19})$	$O(10^{-16})$	$1.9 \cdot 10^{-7}$

U. Bellgardt et al., Nucl. Phys. B299, 1 (1988)

B. Aubert et al., Phys. Rev. Lett. 92, 121801 (2004)

 \implies no additional constraints to ${I\!\!R}$ parameters

Leptonic decay $\mu \rightarrow eJ$

experimental bound $2.6 \cdot 10^{-6}$ (TRIUMF) $\implies v_R$ must be at least about 1 TeV

J. C. Romão et al., Nucl. Phys. B363, 369-384 (1991) A. Jodidio et al., Phys. Rev. D34, 1967-1990 (1986)

experimental bound $2.6 \cdot 10^{-6}$ (TRIUMF) $\implies v_R$ must be at least about 100 GeV

Leptonic decay $\mu \rightarrow eJ$

SPS1: $\vec{\Lambda} \rightarrow \theta_{\text{atm}}$, variation of h_0 by $v_R = 1$ TeV SPS1: $\vec{\epsilon} \rightarrow \theta_{\text{atm}}$, variation of h_0 by $v_R = 1$ TeV

Leptonic decay $\tau \rightarrow eJ$

experimental bound $7.12 \cdot 10^{-3}$ (MARK-III) \implies no additional constraints

J. C. Romão et al., Nucl. Phys. B363, 369-384 (1991) R. M. Baltrusaitis et al., Phys. Rev. Lett. 55, 1842-1845 (1985)

Leptonic decay $\tau \rightarrow \mu J$

experimental bound $2.25 \cdot 10^{-2}$ (MARK-III) \implies no additional constraints

J. C. Romão et al., Nucl. Phys. B363, 369-384 (1991) R. M. Baltrusaitis et al., Phys. Rev. Lett. 55, 1842-1845 (1985)

Outline

1 Introduction

- 2 The considered model with SRPV
- 3 Phenomenological aspects

4 Conclusions

Conclusions

- $B \rightarrow X_s ll$ and leptonic threebody decays obtain no additional constraints to R parameters once neutrino physics are fulfilled
- $\mu \rightarrow eJ$ constricts the parameter space
- $\tau \rightarrow l J$ yield no crucial bounds yet