## Higgs Searches with the ATLAS Experiment at the LHC Bruce Mellado University of Wisconsin-Madison



HEP Seminar, PSI 11/11/08

## Outline

#### **Introduction**

### Most relevant observation channels (SM)

- ≻Н⊸үү
- ≻Η→ττ
- ≻H→ZZ<sup>(\*)</sup>→4I
- $H \rightarrow WW^{(*)} \rightarrow H_{VV}$

Focus on what we can do with 10 fb<sup>-1</sup> of data at the LHC

#### **MSSM** Higgs

What can the Tevatron tell us?Feasibility of searches

#### Standard Model of Particle Physics



What is the origin of the particle masses?

Why some particles are heavier than others?

The discovery of the Higgs boson should answer these questions





4

## The Quest for the Higgs

Experimentalists have been looking for the Higgs since the 70's and 80's in decays of nuclei, π, K, B, Y, etc... yielding mass limit <5 GeV</p>

One of the goals of the LEP experiments (e⁺e⁻ collisions 1989-2000) was to search for a Higgs boson. The most stringent limit to date comes from the LEP experiments





#### First Possible Hint for a Higgs boson (2000)



## The LEP Limit

ALEPH observed an excess over background-only prediction with significance of 2.8 $\sigma$  at 115 GeV/c<sup>2</sup>



## **Electro-Weak Fits**

#### Experimental constraints so far:

➢Indirect measurements from fitting the EW data using new world average for M<sub>top</sub>=172.4±1.2 GeV and M<sub>w</sub>=80.399±0.025 GeV:

 $m_{\rm H} = 84^{+34}_{-26}$  GeV Data prefers low mass Higgs

 $m_{H} < 154 \text{ GeV} @ 95\%CL$  (including LEP exclusion  $m_{H} < 185 \text{ GeV}$ )



## **Present Tevatron Exclusion Limit**

Tevatron Run II Preliminary,  $L=3 \text{ fb}^{-1}$ 



## **Present Tevatron Exclusion Limit**



| Center of mass E    | 14 TeV                                            |
|---------------------|---------------------------------------------------|
| Design Luminosity   | 10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> |
| Luminosity Lifetime | 10 h                                              |
| Bunch spacing       | 25 ns                                             |

## The LHC







## Higgs Production at LHC



Main Decay Modes



## **Cross-sections at LHC**

# Search for Higgs and new physics hindered by huge background rates

Known SM particles produced much more copiously

# This makes low mass Higgs especially <u>challenging</u>

- >Narrow resonances
- >Complex signatures
  - Higgs in association with tops and jets.



## Low Mass Higgs Associated with Jets

Slicing phase space in regions with different S/B seems more optimal when inclusive analysis has little S/B



## SM Higgs + $\geq$ 2jets at the LHC

Wisconsin Pheno (D.Zeppenfeld, D.Rainwater, et al.) proposed to search for a Low Mass Higgs in association with two jets with jet veto

Central jet veto initially suggested in V.Barger, K.Cheung and T.Han in PRD 42 3052 (1990)



## SM Higgs + $\geq$ 1jet at the LHC







D712/mb-26/06/97



# Low Mass SM Higgs: H->yy





#### Higgs decay to yy







yy Backgrounds



Reducible yj and jj Backgrounds





Bruce Mellado, PSI 11/11/08

## Higgs Mass Reconstruction

In ATLAS Expect about 50% of events to have at least one converted photon. but can achieve <1.2% mass resolution</p>



## **Photon Identification**

#### **To separate jets from photons is crucial for Higgs discovery**

- > Need rejection of > 1000 against quark-initiated jets for  $\epsilon_{\gamma}$ =80% to keep fake background about 20% of total background
- > Expect rejection against gluon-jets to be 4-5 times greater

## Jet rejection will be evaluated with data

- Look into sub-leading jets in multi-jet final states with different P<sub>T</sub> thresholds
  - \*Avoid trigger bias
  - Apply trigger prescaling if needed
  - Correct for contribution from prompt photons



#### **Inclusive** $H \rightarrow \gamma \gamma$





## Low Mass SM H→ττ + jets

Because of the poor Higgs mass resolution obtained with H→ττ, inclusive analysis not possible. Need to reduce QCD backgrounds by using distinct topology of jets produced in association with Higgs



## $H \rightarrow \tau \tau$ Mass Reconstruction

In order to reconstruct the Z mass need to use the collinear approximation
Tau decay products are collinear to tau direction



 $A_{\tau_1}$  and  $x_{\tau_2}$  can be calculated if the missing  $E_T$  is known  $A_{\tau_1}$  Good missing  $E_T$  reconstruction is essential

Low Mass SM  $H \rightarrow \tau \tau + jets$ 

Reconstruct Higgs mass with collinear approxim

 $H(\rightarrow \tau \tau \rightarrow h) + \ge 1$  jet



Bruce Mellado, PSI 11/11/08

<u>ار</u> ار

1/1/

Η

 $\nu\nu$ 

e<sup>+</sup>

# ↓ Two independent ways of extracting Z→ττ shape▷ Data driven and MC driven▷ Similar procedure has been defined for H→WW<sup>(\*)</sup>



## Normalization of $Z \rightarrow \tau\tau$ using $Z \rightarrow ee, \mu\mu$

 $= Z \rightarrow ee, \mu\mu$  offers about 35 times more statistics w.r.t to  $Z \rightarrow \tau\tau \rightarrow II$ 

 $\succ$  Ratio of efficiencies depends weakly with  $M_{\rm HJ}$  and can be easily determined with MC after validation with data





Bruce Mellado, PSI 11/11/08

Higgs decay to Z<sup>0</sup>Z<sup>0</sup>







## SM Higgs $\rightarrow$ ZZ<sup>(\*)</sup> $\rightarrow$ 4I

Able to reconstruct a narrow resonance, with mass resolution close to 1%. Can achieve excellent signal-to-background > 1

➢ Major issue: Lepton ID and rejection of semi-leptonic decays of B decays. Suppress reducible background Zbb,tt→41





Bruce Mellado, PSI 11/11/08





Bruce Mellado, PSI 11/11/08





#### W<sup>+</sup>W<sup>-</sup> backgrounds



## SM Higgs $H \rightarrow WW^{(*)} \rightarrow 2I2_V$

Strong potential due to large signal yield, but no narrow resonance. Left basically with event counting experiment



## **Background Suppression and Extraction**

 Not able to use side-bands to subtract background. This makes signal extraction more challenging. Need to rely on data rather than on theoretical predictions
 Definition & understanding of control samples is crucial

#### ttbar suppression

- $\blacksquare$  Jet veto (understand low P<sub>T</sub> jets)
- Semi-inclusive b-tagging or "top killing" algorithm
- Combined rejection of >10 times







## Control Samples for $H \rightarrow WW^{(*)}$



↓ Main control sample is defined with two cuts
 ▷ △φ<sub>||</sub>>1.5 rad. and M<sub>||</sub>>80 GeV
 ↓ Because of tt contamination in main control sample, need b-tagged sample (M<sub>||</sub> cut is removed)

# MSSM Higgs

Minimal super-symmetric extension of Higgs sector

>Five Higgs: h (light), H, A, H<sup>±</sup> (heavy)

> Parameter space reduced to two:  $M_A$ , tan $\beta$ 

>Theoretical limit on light MSSM Higgs: h<135 GeV



# MSSM Higgs (cont)

|   | up type quark          | down type quark/ charged lepton | W and Z boson      |
|---|------------------------|---------------------------------|--------------------|
| h | $\cos lpha / \sin eta$ | $-\sin lpha / \cos eta$         | $\sin(lpha - eta)$ |
| Η | $\sin lpha / \sin eta$ | $\cos lpha / \cos eta$          | $\cos(lpha - eta)$ |
| А | $\coteta$              | aneta                           | none               |



## Does the data favor a MSSM Higgs?



# $\begin{array}{l} \text{MSSM Higgs Cross-sections} \\ (large tan \beta) \end{array}$



Bruce Mellado, PSI 11/11/08

#### Search for MSSM Higgs boson production in di-tau final states



#### Bruce Mellado, PSI 11/11/08

49

### Search for MSSM Higgs boson with 3b in final state



## LHC Discovery Potential



## **Outlook and Conclusions**

- The search for a Higgs boson is a priority of CMS and ATLAS. One experiment should be able to observe a SM Higgs with O(10) fb<sup>-1</sup> and also cover most of the MSSM plane
- Higgs searches at the LHC comprise a large number of final states involving all the signatures that the CMS and ATLAS detectors can reconstruct
  - $\succ$ Electrons, muons, photons,  $\tau$ , jets, b-jets
  - >Need to understand V,VV, (V=Z,W), tt,  $\gamma\gamma$ ,  $j\gamma$  and their production in association with jets

Higgs searches at the LHC promise is a rich program that promises to turn the LHC era into fascinating times for High Energy Physics