Standard Model Yukawa corrections to bbH production at the LHC

LE Duc Ninh

leduc@lapp.in2p3.fr

Laboratoire d'Annecy-le-Vieux de Physique THeorique (LAPTH)

partly based on ref. arXiv:hep-ph/0711.2005; Phys. Rev. D in press

(work in collaboration with F. Boudjema)

Outline

- Tree level (LO).
- QCD correction at NLO.
- EW correction at NLO.
- **Solution** EW correction when $\lambda_{bbH} = 0$.
- Landau singularities.
 - The problem
 - Conditions for Landau singularities
 - Nature of the singularities
 - How to solve the problem?
 - Examples
- Conclusions and outlooks.

At last, the LHC will start in a few months

Primary goal: Discover the Higgs (+ surprises: SUSY?, Extra-dim, ??.??)

Higgs production at the LHC

M. Spira, A. Djouadi

- If the Higgs couples mainly to heavy particles, e.g. $t, Z, W, b, \tau \dots$
- Higgs production associated with heavy quarks can provide a direct measurement of the quark-Higgs Yukawa coupling.

Why $pp \rightarrow b\overline{b}H$? (I)

M. Spira, A. Djouadi

- At the LHC, $M_H < 300 \text{GeV}$: $\sigma(pp \rightarrow b\bar{b}H) > \sigma(pp \rightarrow t\bar{t}H)$ because of large phase space and participation of small-x gluons.
- One-loop $2 \rightarrow 3$ process at the LHC: example of one-loop multileg processes incorporating a lot of techniques. Interplay between QCD and EW corrections.

Why $pp \rightarrow b\overline{b}H$? (II)

• $\lambda_{bbH} = ?$

- MSSM: if $\tan \beta \equiv v_1/v_2$ is large, the bottom-Higgs Yukawa coupling is enhanced, leading to large cross section.
- **Tagging b-jets with high \mathbf{p}_T to identify the process, QCD background is reduced.**
- The final state observed in experiment depends on the value of the Higgs mass. If we want to look at photonic or leptonic production:
 - For $M_H < 140 GeV$: $H \rightarrow \gamma \gamma (BR \sim 10^{-3}) \Rightarrow pp \rightarrow 2b2\gamma$,
 - For $140 GeV < M_H < 180 GeV$: $H \to WW^* \to l\nu l\nu \Rightarrow pp \to 2b2l2\nu$,
 - For $M_H > 2M_Z$: $H \to ZZ \to 4l \Rightarrow pp \to 2b4l$.

$\sigma(q\bar{q})/\sigma(gg)$: neglecting $q\bar{q}$ contribution

PDFs included; $\sqrt{s} = 14$ TeV, $M_H = 120 GeV$; standard cut = ($|\mathbf{p}_T^{b,\bar{b}}| > 20$ GeV, $|\eta^{b,\bar{b}}| < 2.5$)

 $\sigma(qq)/\sigma(gg) = 0.7\% \rightarrow qq$ -contribution can be neglected.

000

00

 \cap

Total cross section

 $\sigma(pp \rightarrow b\bar{b}H) \approx \int_0^1 dx_1 g(x_1, Q) \int_0^1 dx_2 g(x_2, Q) \hat{\sigma}(g_1 g_2 \rightarrow b\bar{b}H)$

Q: arbitrary renormalisation/factorisation scale.

NLO QCD correction

2 groups: S. Dittmaier, M. Krämer, M. Spira, Phys. Rev. D70 (2004); S. Dawson et al. Phys. Rev. D69 (2004).

Why EW correction?

* EW radiative correction: There are two dominant mechanisms to produce the Higgs via:

* The questions:

- $If \lambda_{bbH} = m_b = 0 \text{ then } \delta_{EW} \neq 0?$

Helicity structures: Tree level

Process: $g(p_1, \lambda_1) + g(p_2, \lambda_2) \rightarrow b(p_3, \lambda_3) + \overline{b}(p_4, \lambda_4) + H(p_5)$.

Helicity structures: Tree level

Process: $g(p_1, \lambda_1) + g(p_2, \lambda_2) \rightarrow b(p_3, \lambda_3) + \overline{b}(p_4, \lambda_4) + H(p_5)$.

$$\begin{aligned} & \mathbf{m}_{b} = 0 \text{ BUT } \lambda_{bbH} \neq 0: \\ & \mathbf{A}_{0}(\hat{\lambda}) = \bar{u}(\lambda_{3})\Gamma_{\lambda_{1},\lambda_{2}}^{\text{even}} v(\lambda_{4}) = \delta_{\lambda_{3},-\lambda_{4}}\mathcal{A}_{0}^{\text{even}} \text{ (Chiral symmetry)} \\ & \mathbf{A}_{0}(-\lambda_{1},-\lambda_{2};-\lambda_{3},-\lambda_{4}) = -\mathcal{A}_{0}(\lambda_{1},\lambda_{2};\lambda_{3},\lambda_{4})^{*} \text{ (QCD Parity conservation)} \\ & \Rightarrow \{\mathcal{A}_{0}(++-+),\mathcal{A}_{0}(+--+),\mathcal{A}_{0}(-+-+),\mathcal{A}_{0}(---+)\}: \text{ even structure} \\ & \mathbf{m}_{b} \neq 0: \text{ mass insertion} \\ & \mathbf{A}_{0}(\hat{\lambda}) = \bar{u}(\lambda_{3}) \left(\Gamma_{\lambda_{1},\lambda_{2}}^{\text{even}} + \Gamma_{\lambda_{1},\lambda_{2}}^{\text{odd}}\right) v(\lambda_{4}) \\ & = \delta_{\lambda_{3},-\lambda_{4}} \left(\mathcal{A}_{0}^{\text{even}} + m_{b}\tilde{\mathcal{A}}_{0}^{\text{odd}}\right) + \delta_{\lambda_{3},\lambda_{4}}m_{b}\tilde{\mathcal{A}}_{0}^{\text{even}} \\ & \mathbf{A}_{0}(-\lambda_{1},-\lambda_{2};-\lambda_{3},-\lambda_{4}) = \lambda_{3}\lambda_{4}\mathcal{A}_{0}(\lambda_{1},\lambda_{2};\lambda_{3},\lambda_{4})^{*} \text{ (QCD Parity conservation)} \\ & \Rightarrow \#4 \mathcal{A}_{0}(\lambda_{1},\lambda_{2};\lambda,-\lambda) \text{ (even) AND } \#4 \mathcal{A}_{0}(\lambda_{1},\lambda_{2};\lambda,\lambda) \text{ (odd)} \end{aligned}$$

Helicity structures: Tree level

Process: $g(p_1, \lambda_1) + g(p_2, \lambda_2) \rightarrow b(p_3, \lambda_3) + \overline{b}(p_4, \lambda_4) + H(p_5)$.

Helicity structures: One-loop

 $\mathbf{D} \quad m_b = 0 \text{ BUT } \lambda_{bbH} \neq 0: m_t \text{ insertion}$

$$\mathcal{A}(\lambda_1, \lambda_2; \lambda_3, \lambda_4) = \bar{u}(\lambda_3) \left(\Gamma^{\text{even}}_{\lambda_1, \lambda_2} + \Gamma^{\text{odd}}_{\lambda_1, \lambda_2} \right) v(\lambda_4) = \delta_{\lambda_3, -\lambda_4} \mathcal{A}^{\text{even}} + \delta_{\lambda_3, \lambda_4} \mathcal{A}^{\text{odd}}$$

 $m_b \neq 0$: mass insertion

$$\mathcal{A}(\lambda_1, \lambda_2; \lambda_3, \lambda_4) = \delta_{\lambda_3, -\lambda_4} \left(\mathcal{A}^{\text{even}} + m_b \tilde{\mathcal{A}}^{\text{odd}} \right) + \delta_{\lambda_3, \lambda_4} \left(\mathcal{A}^{\text{odd}} + m_b \tilde{\mathcal{A}}^{\text{even}} \right)$$

one-loop correction $\rightarrow \mathcal{A}^{odd}$

One-loop EW correction: diagrams

- \blacksquare # diagrams: 115 (19 boxes, 8 pentagons)
- Each group is QCD gauge invariant

λ_{bbH} expansion

The total cross section as a function of λ_{bbH} can always be written in the form

$$\sigma(\lambda_{bbH}) = \sigma(\lambda_{bbH} = 0) + \lambda_{bbH}^2 \sigma'(\lambda_{bbH} = 0) + \cdots$$
$$\lambda_{bbH}^2 \sigma'(\lambda_{bbH} = 0) = \sigma_0 [1 + \delta_{EW}(m_t, M_H)],$$
$$\sigma(\lambda_{bbH} = 0) = \sigma_{EW}(\lambda_{bbH} \neq 0).$$

Approximation: the leading EW contribution comes from the Feynman diagrams with the top quark and charged Goldstones (W_L^{\pm}) funning in the loops (Yukawa correction).

	Γ^{even}	Loqq	
tree-level	λ_{bbH}	0	
(a)	$\lambda_t^2 \lambda_{bbH}$	$\lambda_b \lambda_t \lambda_{bbH} \approx 0$	
(b)	$\lambda_b\lambda_t\lambda_{ttH}$	$\lambda_t^2\lambda_{ttH}$, (P_R)	
(c)	$\lambda_b\lambda_t\lambda_{\chi\chi H}$	$\lambda_t^2\lambda_{\chi\chi H}$, (P_R)	

For $m_b = 0$: $\Gamma_{even} \to \lambda_{bbH}^2 \sigma'(\lambda_{bbH} = 0)$ and $\Gamma_{odd} \to \sigma(\lambda_{bbH} = 0)$.

Renormalisation: On-shell

Vertices:

$$\begin{split} \delta^{\mu}_{bbg} &= 2g_{s}\gamma^{\mu} (\delta Z^{1/2}_{b_{L}} P_{L} + \delta Z^{1/2}_{b_{R}} P_{R}) \,, \\ \delta_{bbH} &= \lambda_{bbH} [\frac{\delta m_{b}}{m_{b}} + \delta Z^{1/2}_{b_{L}} + \delta Z^{1/2}_{b_{R}} + (\delta Z^{1/2}_{H} - \delta \upsilon)] \end{split}$$

Remark: In the approximation we use, $(\delta Z_H^{1/2} - \delta v) = f(\lambda_{ttH}, \lambda_{\chi^+\chi^-H})$ is UV finite and

can be seen as a universal correction to Higgs production processes.

Three groups of QCD gauge invariance

- Three groups of QCD gauge invariance
- HAM: 16 helicity states (*Kleiss and Stirling 1985; Ballestrero and Maina 1994*)

- Three groups of QCD gauge invariance
- HAM: 16 helicity states (Kleiss and Stirling 1985; Ballestrero and Maina 1994)
- 2 codes (massless and massive bottom): FORM → Fortran with optimisation (856K for massive case)

- Three groups of QCD gauge invariance
- HAM: 16 helicity states (Kleiss and Stirling 1985; Ballestrero and Maina 1994)
- 2 codes (massless and massive bottom): FORM → Fortran with optimisation (856K for massive case)

 $\mathcal{A}(\hat{\lambda})^{T,U,S} = \underline{CME}(a,b) \times Cc \times \underline{FFE} \times \underline{SME}(\lambda_i),$

- Three groups of QCD gauge invariance
- HAM: 16 helicity states (Kleiss and Stirling 1985; Ballestrero and Maina 1994)
- 2 codes (massless and massive bottom): FORM → Fortran with optimisation (856K for massive case)

$$\mathcal{A}(\hat{\lambda})^{T,U,S} = CME(a,b) \times Cc \times FFE \times SME(\lambda_i),$$

 $\ \, \bullet \ \, CME(a,b) \in \{(T^{a}T^{b}),(T^{b}T^{a}),[T^{a},T^{b}]\}$

$$\begin{aligned} \mathcal{A}(\hat{\lambda}) &= \mathcal{A}(\hat{\lambda})^T + \mathcal{A}(\hat{\lambda})^U + \mathcal{A}(\hat{\lambda})^S \\ &\equiv \{T^a, T^b\} \mathcal{A}(\hat{\lambda})^{Abel} + [T^a, T^b] \mathcal{A}(\hat{\lambda})^{NAbel}, \\ \mathcal{A}(\hat{\lambda})^{Abel} &= \frac{1}{2} (\mathcal{A}(\hat{\lambda})^T + \mathcal{A}(\hat{\lambda})^U); \quad \mathcal{A}(\hat{\lambda})^{NAbel} = \mathcal{A}(\hat{\lambda})^S + \frac{1}{2} (\mathcal{A}(\hat{\lambda})^T - \mathcal{A}(\hat{\lambda})^U) \\ &| \mathcal{A}(\hat{\lambda}) |^2 &= \frac{1}{256} \left(\frac{28}{3} |\mathcal{A}(\hat{\lambda})^{Abel} |^2 + 12 |\mathcal{A}(\hat{\lambda})^{NAbel} |^2\right) \end{aligned}$$

- Three groups of QCD gauge invariance
- HAM: 16 helicity states (Kleiss and Stirling 1985; Ballestrero and Maina 1994)
- 2 codes (massless and massive bottom): FORM → Fortran with optimisation (856K for massive case)

$$\mathcal{A}(\hat{\lambda})^{T,U,S} = CME(a,b) \times Cc \times FFE \times SME(\lambda_i),$$

D $CME(a,b) \in \{(T^aT^b), (T^bT^a), [T^a, T^b]\}$

$$\begin{aligned} \mathcal{A}(\hat{\lambda}) &= \mathcal{A}(\hat{\lambda})^T + \mathcal{A}(\hat{\lambda})^U + \mathcal{A}(\hat{\lambda})^S \\ &\equiv \{T^a, T^b\} \mathcal{A}(\hat{\lambda})^{Abel} + [T^a, T^b] \mathcal{A}(\hat{\lambda})^{NAbel}, \\ \mathcal{A}(\hat{\lambda})^{Abel} &= \frac{1}{2} (\mathcal{A}(\hat{\lambda})^T + \mathcal{A}(\hat{\lambda})^U); \ \mathcal{A}(\hat{\lambda})^{NAbel} = \mathcal{A}(\hat{\lambda})^S + \frac{1}{2} (\mathcal{A}(\hat{\lambda})^T - \mathcal{A}(\hat{\lambda})^U) \\ &| \mathcal{A}(\hat{\lambda}) |^2 &= \frac{1}{256} \left(\frac{28}{3} |\mathcal{A}(\hat{\lambda})^{Abel} |^2 + 12 |\mathcal{A}(\hat{\lambda})^{NAbel} |^2\right) \end{aligned}$$

Cc, common coefficients (coupling constants, normalised factors, etc)

- Three groups of QCD gauge invariance
- HAM: 16 helicity states (Kleiss and Stirling 1985; Ballestrero and Maina 1994)
- 2 codes (massless and massive bottom): FORM → Fortran with optimisation (856K for massive case)

$$\mathcal{A}(\hat{\lambda})^{T,U,S} = CME(a,b) \times Cc \times FFE \times SME(\lambda_i),$$

DCDE $(a,b) \in \{(T^a T^b), (T^b T^a), [T^a, T^b]\}$

$$\begin{aligned} \mathcal{A}(\hat{\lambda}) &= \mathcal{A}(\hat{\lambda})^T + \mathcal{A}(\hat{\lambda})^U + \mathcal{A}(\hat{\lambda})^S \\ &\equiv \{T^a, T^b\} \mathcal{A}(\hat{\lambda})^{Abel} + [T^a, T^b] \mathcal{A}(\hat{\lambda})^{NAbel}, \\ \mathcal{A}(\hat{\lambda})^{Abel} &= \frac{1}{2} (\mathcal{A}(\hat{\lambda})^T + \mathcal{A}(\hat{\lambda})^U); \ \mathcal{A}(\hat{\lambda})^{NAbel} = \mathcal{A}(\hat{\lambda})^S + \frac{1}{2} (\mathcal{A}(\hat{\lambda})^T - \mathcal{A}(\hat{\lambda})^U) \\ &| \mathcal{A}(\hat{\lambda}) |^2 &= \frac{1}{256} \left(\frac{28}{3} | \mathcal{A}(\hat{\lambda})^{Abel} |^2 + 12 | \mathcal{A}(\hat{\lambda})^{NAbel} |^2 \right) \end{aligned}$$

- Cc, common coefficients (coupling constants, normalised factors, etc)
- **P FFE**, form factor element, $f(pi.pj, m_i^2)$ (loop integrals): time-consuming part

- Three groups of QCD gauge invariance
- HAM: 16 helicity states (*Kleiss and Stirling 1985; Ballestrero and Maina 1994*)
- 2 codes (massless and massive bottom): FORM → Fortran with optimisation (856K for massive case)

$$\mathcal{A}(\hat{\lambda})^{T,U,S} = CME(a,b) \times Cc \times FFE \times SME(\lambda_i),$$

D $CME(a,b) \in \{(T^aT^b), (T^bT^a), [T^a, T^b]\}$

$$\begin{aligned} \mathcal{A}(\hat{\lambda}) &= \mathcal{A}(\hat{\lambda})^T + \mathcal{A}(\hat{\lambda})^U + \mathcal{A}(\hat{\lambda})^S \\ &\equiv \{T^a, T^b\} \mathcal{A}(\hat{\lambda})^{Abel} + [T^a, T^b] \mathcal{A}(\hat{\lambda})^{NAbel}, \\ \mathcal{A}(\hat{\lambda})^{Abel} &= \frac{1}{2} (\mathcal{A}(\hat{\lambda})^T + \mathcal{A}(\hat{\lambda})^U); \ \mathcal{A}(\hat{\lambda})^{NAbel} = \mathcal{A}(\hat{\lambda})^S + \frac{1}{2} (\mathcal{A}(\hat{\lambda})^T - \mathcal{A}(\hat{\lambda})^U) \\ &| \mathcal{A}(\hat{\lambda}) |^2 &= \frac{1}{256} \left(\frac{28}{3} | \mathcal{A}(\hat{\lambda})^{Abel} |^2 + 12 | \mathcal{A}(\hat{\lambda})^{NAbel} |^2 \right) \end{aligned}$$

- \square Cc, common coefficients (coupling constants, normalised factors, etc)
- **P FFE**, form factor element, $f(pi.pj, m_i^2)$ (loop integrals): time-consuming part
- $SME(\hat{\lambda})$, standard matrix element, $f(\lambda_i, m_b, \gamma_5)$: #12(tree) & #68(1-loop) →

 $SME_1(\lambda_1, \lambda_2, \lambda_3, \lambda_4) = [\bar{u}(\lambda_3, p_3)v(\lambda_4, p_4)] \times [\varepsilon_{\mu}(\lambda_1, p_1, p_2)p_4^{\mu}] \times [\varepsilon_{\nu}(\lambda_2, p_2, p_1)p_4^{\nu}],$ $= BME_1(\lambda_3, \lambda_4) \times BME_2(\lambda_1) \times BME_3(\lambda_2),$

BME, basic matrix element, #31(1-loop).

$$SME_{1}(\lambda_{1},\lambda_{2},\lambda_{3},\lambda_{4}) = [\bar{u}(\lambda_{3},p_{3})v(\lambda_{4},p_{4})] \times [\varepsilon_{\mu}(\lambda_{1},p_{1},p_{2})p_{4}^{\mu}] \times [\varepsilon_{\nu}(\lambda_{2},p_{2},p_{1})p_{4}^{\nu}],$$

$$= BME_{1}(\lambda_{3},\lambda_{4}) \times BME_{2}(\lambda_{1}) \times BME_{3}(\lambda_{2}),$$

BME, basic matrix element, #31(1-loop).

Loop integrals: used library LoopTools (FF); 2 - 4-point functions: Passarino and Veltman, 5-point function: Denner and Dittmaier.

$$SME_{1}(\lambda_{1},\lambda_{2},\lambda_{3},\lambda_{4}) = [\bar{u}(\lambda_{3},p_{3})v(\lambda_{4},p_{4})] \times [\varepsilon_{\mu}(\lambda_{1},p_{1},p_{2})p_{4}^{\mu}] \times [\varepsilon_{\nu}(\lambda_{2},p_{2},p_{1})p_{4}^{\nu}],$$

$$= BME_{1}(\lambda_{3},\lambda_{4}) \times BME_{2}(\lambda_{1}) \times BME_{3}(\lambda_{2}),$$

BME, basic matrix element, #31(1-loop).

- Loop integrals: used library LoopTools (FF); 2 4-point functions: Passarino and Veltman, 5-point function: Denner and Dittmaier.
- Phase space integration:
 - BASES (S. Kawabata, Monte Carlo with important sampling): no zero Gram determinant ($detG \equiv det(2p_i.p_j)$) detected, error = 0.08% for $N_{call} = 10^5$.
 - DADMUL (Genz and Malik, adaptive quadrature algorithm): detects zero Gram determinant associated with the 3pt and 4pt functions → imposing some tiny cuts, $\theta_{cut}^{b,\bar{b}} = |\sin \phi^{\bar{b}}|_{cut} = 10^{-6}, \rightarrow \text{get stable results which agree with BASES.}$
 - 5pt functions: no problem (Caley determinant = Landau det., to appear later).

Checks

Tree level:

- QCD gauge invariant
- checked against the results of CalcHEP
- One-loop
 - UV-finite
 - each helicity amplitude is QCD gauge invariant

$$\epsilon_{\mu}(p_i,\lambda_i;q_i) = \frac{\bar{u}(p_i,\lambda_i)\gamma_{\mu}u(q_i,\lambda_i)}{[4(p_i,q_i)]^{1/2}} \quad (q_i^2=0),$$

$$\varepsilon^{\mu}(p,\lambda;q') = e^{i\phi(q',q)}\varepsilon^{\mu}(p,\lambda;q) + \beta(q',q)p^{\mu},$$

$$|\mathcal{A}(\lambda_1,\lambda_2;\lambda_3,\lambda_4;q_1,q_2)|^2 = |\mathcal{A}(\lambda_1,\lambda_2;\lambda_3,\lambda_4;q'_1,q'_2)|^2.$$

Cross section

Input parameters: $\sqrt{s} = 14$ TeV, $m_b = 4.62$ GeV, $m_t = 174$ GeV, $Q = M_Z$.

- Cuts: $p_T^{b,\bar{b}} > 20 \text{GeV}$, $|\eta_{b,\bar{b}}| < 2.5$.
- \bullet $\sigma_{LO,NLO}$ decrease as the Higgs mass increases. The contrary behaviour for δ_{EW} .

Higgs: pseudorapidity distributions

EW correction to the Higgs pseudorapidity distribution is also small.

Higgs: p_T -distributions

EW correction to the Higgs transverse momentum distribution is small (can be 8% but not

in the interesting region).

$\lambda_{bbH} = 0$

- $I NLO: \sigma_{NLO} \propto 2Re[A_0A_1^*] \propto \lambda_{bbH} = 0.$

 $\sigma(\lambda_{bbH}\,=\,0)\,\propto\,|A_1|^2(M_H,m_t)$

 $\sigma_{EW}(\lambda_{bbH}=0): M_H < 2M_W$

it rapidly increases when $M_H \rightarrow 2M_W$.

η_H -distributions($\lambda_{bbH} = 0$)@EW

p_T^H -distributions($\lambda_{bbH} = 0$)@EW

Distributions are very different from the tree level and NLO ones (helicity structures are com-

pletely different). >

p_T^b -distributions($\lambda_{bbH} = 0$)@EW

Final result @EW

 $\sigma_{top-loop}(\lambda_{bbH}=0)$: part of inclusive H x-section

if $M_H = 120$ GeV, standard cut & $M_{b\bar{b}} > 20$ GeV:

$\sigma_0[fb]$	$\sigma_{EW}[fb]$	$\sigma_{top-loop}[fb]$	$\sigma_{(EW+top-loop)}[fb]$
28.095	0.8346	41.9864	43.773

 $\sigma_{EW}(\lambda_{bbH}=0) \propto |A_1|^2$: problem

Facts:

- \square $Re(A_1A_0^*)$: Integration over the phase space gives stable results for $M_H \ge 2M_W$.
- $|A_1|^2$: Integration over the phase space becomes extremely unstable if $M_H \ge 2M_W$.

How to explain these observations?

$M_H \ge 2M_W \text{ AND } \sqrt{\hat{s}} \ge 2m_t \text{ (LHC)}$

look at the sub-process $gg \rightarrow b\bar{b}H$, more facts:

- If $M_H \ge 2M_W$ and $\sqrt{\hat{s}} < 2m_t \rightarrow \text{no problem}$
- If $m_t = M_W \rightarrow$ no problem whatever the values of M_H and $\sqrt{\hat{s}}$ are

$M_H \ge 2M_W \text{ AND } \sqrt{\hat{s}} \ge 2m_t \text{ (LHC)}$

look at the sub-process $gg \rightarrow b\bar{b}H$, more facts:

- If $M_H \ge 2M_W$ and $\sqrt{\hat{s}} < 2m_t \rightarrow$ no problem
- If $m_t = M_W \rightarrow$ no problem whatever the values of M_H and $\sqrt{\hat{s}}$ are

We found that this problem of numerical instabilities occurs in the 4pt and 5pt functions

$M_H \ge 2M_W \text{ AND } \sqrt{\hat{s}} \ge 2m_t \text{ (LHC)}$

look at the sub-process $gg \rightarrow b\bar{b}H$, more facts:

- If $M_H \ge 2M_W$ and $\sqrt{\hat{s}} < 2m_t \rightarrow$ no problem
- If $m_t = M_W \rightarrow$ no problem whatever the values of M_H and $\sqrt{\hat{s}}$ are

We found that this problem of numerical instabilities occurs in the 4pt and 5pt functions

- Landau singularity occurs when $M_H \ge 2M_W$ and $\sqrt{\hat{s}} \ge 2m_t$, *i.e.* particles in the loop are simultaneously on-shell.
- \blacksquare H, W, t are unstable particles.

Landau equations

L.D. Landau, Nucl. Phys. 13 (1959) 181; Polkinghorne, Olive, Landshoff, Eden, The analytic S-Matrix (1966)

Landau equations

L.D. Landau, Nucl. Phys. 13 (1959) 181; Polkinghorne, Olive, Landshoff, Eden, The analytic S-Matrix (1966)

$$T_{0}^{p^{1}} \propto \int_{0}^{\infty} \prod_{i=1}^{N} dx_{i} \int \frac{d^{D}q}{(2\pi)^{D}} \frac{\delta(\sum_{i=1}^{N} x_{i} - 1)}{[\sum_{i=1}^{N} x_{i}(q_{i}^{2} - m_{i}^{2})]^{N}} \\ \begin{cases} \forall i \ x_{i}(q_{i}^{2} - m_{i}^{2}) = 0\\ \sum_{i=1}^{M} x_{i}q_{i} & = 0 \end{cases}$$

- $g^* \to b\bar{b}H:$
 - $x_i > 0$, four-point function, the leading Landau singularity.
 - $x_i = 0$, three-point functions, anomalous thresholds (lower-order singularities).
 - $x_i = x_j = 0$ with $i \neq j$, two-point functions, normal thresholds.

Landau equations

L.D. Landau, Nucl. Phys. 13 (1959) 181; Polkinghorne, Olive, Landshoff, Eden, The analytic S-Matrix (1966)

$$T_{0}^{p^{1}} \propto \int_{0}^{\infty} \prod_{i=1}^{N} dx_{i} \int \frac{d^{D}q}{(2\pi)^{D}} \frac{\delta(\sum_{i=1}^{N} x_{i} - 1)}{[\sum_{i=1}^{N} x_{i}(q_{i}^{2} - m_{i}^{2})]^{N}} \\ \begin{cases} \forall i \ x_{i}(q_{i}^{2} - m_{i}^{2}) = 0 \\ \sum_{i=1}^{M} x_{i}q_{i} & = 0 \end{cases}$$

- $g^* \to b\bar{b}H:$
 - $x_i > 0$, four-point function, the leading Landau singularity.
 - $\mathbf{I}_{i} = 0$, three-point functions, anomalous thresholds (lower-order singularities).
 - $x_i = x_j = 0$ with $i \neq j$, two-point functions, normal thresholds.
 - It is interesting to know:
 - IR-divergence: $x_1 = \ldots x_{N-1} = 0$, $m_N = 0$
 - **•** Collinear divergence: $x_1 = ... x_{N-2} = 0$, $m_{N-1} = m_N = p_N^2 = 0$
- To find singularities: look at the Landau equations.

5pt function

 E_0 has no leading Landau singularity, but has several lower order Landau singularities. Another way to see is to look at the reduction formula (Denner and Dittmaier)

$$E_0 = -\sum_{i=1}^{5} \frac{det(Q_i)}{det(Q)} D_0(i),$$

$$Q_{ij} \equiv 2q_i \cdot q_j = m_i^2 + m_j^2 - (q_i - q_j)^2; \quad i, j \in \{1, \dots, M\},$$
and Q_i is obtained by replacing all entries in the *i*th column with 1.
Landau matrix

2 conditions

Landau equations:

$$\begin{cases} Q_{11}x_1 + Q_{12}x_2 + \cdots + Q_{1M}x_M &= 0, \\ Q_{21}x_1 + Q_{22}x_2 + \cdots + Q_{2M}x_M &= 0, \\ \vdots & & \\ Q_{M1}x_1 + Q_{M2}x_2 + \cdots + Q_{MM}x_M &= 0. \end{cases}$$

2 conditions: implemented in a code to check for singularities in the scalar functions

det(Q) = 0

Sign condition (occurring in the physical region):

 $x_i > 0, i = 1, \dots, M \iff x_j = det(\hat{Q}_{jM})/det(\hat{Q}_{MM}) > 0, j = 1, \dots, M-1$

 $det(\hat{Q}_{MM}) = d[det(Q)]/dQ_{MM}, \ det(\hat{Q}_{1j}) = \frac{1}{2}d[det(Q)]/dQ_{1j}.$

Landau determinant: $g^* \rightarrow bbH$

Gram determinant: $det(G_3) = 2(s + M_H^2 - s_1 - s_2)(s_1s_2 - sM_H^2)$

P The kinematically allowed region: $det(G_3) \ge 0$

$$M_H^2 \leq s_1 \leq s,$$

$$M_H^2 \frac{s}{s_1} \leq s_2 \leq M_H^2 + s - s_1$$

Real & Imaginary parts: $g^* \rightarrow bbH$

$$D_0 = D_0(M_H^2, 0, s, 0, s_1, s_2, M_W^2, M_W^2, m_t^2, m_t^2).$$

Input parameters: $\sqrt{s} = 353 GeV > 2m_t$, $M_H = 165 GeV > 2M_W$.

Take
$$\sqrt{s_1} = \sqrt{2(m_t^2 + M_W^2)} \approx 271.06 GeV \rightarrow$$

Nature of the singularity

Nature of the singularity

Complex masses: $g^* \to b\bar{b}H$

LoopTools(FF) with complex masses: up to 3pt functions.

$$D_0(\Gamma_t, \Gamma_W) = \frac{1}{\sqrt{\det(Q)}} \sum_{i=1}^2 \sum_{j=1}^4 (-1)^{i+j} \int_0^1 dy \frac{1}{y-y_i} \ln(A_j y^2 + B_j y + C_j)$$

written in terms of 32 spence functions. Carefully checked:

Complex masses: $g^* \to b\bar{b}H$

LoopTools(FF) with complex masses: up to 3pt functions.

$$D_0(\Gamma_t, \Gamma_W) = \frac{1}{\sqrt{\det(Q)}} \sum_{i=1}^2 \sum_{j=1}^4 (-1)^{i+j} \int_0^1 dy \frac{1}{y-y_i} \ln(A_j y^2 + B_j y + C_j)$$

written in terms of 32 spence functions. Carefully checked:

- $\Gamma_{t,W}pprox 0$: compared to the real mass case
- $\Gamma_{t,W}$ very large: compared with numerical integration method
- $\, {f
 ho}\,$ Boundary of phase space (segmentation): $D_0(\Gamma_t,\Gamma_W)\propto \sum_{i=1}^4 C_0^{(i)}(\Gamma_t,\Gamma_W)$ confirmed

Complex masses: $g^* \to b\overline{b}H$

LoopTools(FF) with complex masses: up to 3pt functions.

$$D_0(\Gamma_t, \Gamma_W) = \frac{1}{\sqrt{\det(Q)}} \sum_{i=1}^2 \sum_{j=1}^4 (-1)^{i+j} \int_0^1 dy \frac{1}{y-y_i} \ln(A_j y^2 + B_j y + C_j)$$

written in terms of 32 spence functions. Carefully checked:

- $\Gamma_{t,W}pprox 0$: compared to the real mass case
- $\Gamma_{t,W}$ very large: compared with numerical integration method
- $\, {m
 ho}\,$ Boundary of phase space (segmentation): $D_0(\Gamma_t,\Gamma_W)\propto \sum_{i=1}^4 C_0^{(i)}(\Gamma_t,\Gamma_W)$ confirmed

$gg \to WW$

■ $m_u = m_d = 0$ (*T. Binoth, M. Ciccolini, N. Kauer and M. Krämer; hep-ph/0611170; gg* $\rightarrow W^*W^*$). Leading Landau singularity occurs in the scalar 4pt function (see diagram) when $det(Q_4) = (tu - M_W^4)^2 = 0$ (and t < 0, u < 0) Gram determinant: $det(G_3) = 2s(tu - M_W^4) = -2s^2k_t^2$. On the boundary: $det(Q_4) = det(G_3)^2/(4s^2) = 0 \rightarrow$ more complicated. Fact: double precision \rightarrow problem with numerical instabilities, quadruple precision \rightarrow no problem! \implies cancellation between the numerator and denominator.

 $m_u = m_d = m$. The leading Landau singularity is regularised.

-240 -220 -200 -180 -160 -140 -120 -100

-80

-60

-40

-20 (t[GeV²]

$2\gamma \to 4\gamma$

(C. Bernicot and J.-Ph. Guillet arXiv: hep-ph/0711.4713; also Nagy and Soper)

- $\blacksquare m_e = 0$, the same phenomenon as $gg \to WW$.
- The deep can be explained by looking at the 2 conditions for Landau singularity (it is not really singular as the Landau determinant is not exactly zero).
- If det(Q) = 0, there is no problem because the numerator vanishes.
- Sinematical structure: $W(unstable) = 2\gamma$ (stable).

Multi-leg ($N \ge 6$) \rightarrow interesting structures will appear.

$V_1V_1 \rightarrow V_2V_2$

$$det(Q_4) = [tu - (M_2^2 - M_1^2)^2][(t - 4m^2)(u - 4m^2) - (M_2^2 + M_1^2 - 4m^2)^2]$$

$$det(G_3) = 2s[tu - (M_2^2 - M_1^2)^2] \ge 0$$

- M₁ = $M_2 = M_Z$ (Denner, Dittmaier and Hahn; hep-ph/9612390): Leading Landau singularity happens: $(t - 4m^2)(u - 4m^2) = (2M_Z^2 - 4m^2)^2$ ($x_i > 0$) Solution: calculate the fully inclusive cross-section.
- $M_1^2 \leq 0 \text{ and } M_2 = M_Z \text{ then } (t 4m^2)(u 4m^2) > (2M_Z^2 4m^2)^2.$ No leading Landau singularity.

Conclusions and outlooks

- $pp → b\bar{b}H$ at LHC: NLO EW correction is small in the SM, typically -4% for $M_H = 120$ GeV.
- $\sigma(\lambda_{bbH} = 0)$ can be large, about $0.17\sigma_{LO}$ for $M_H \approx 150$ GeV.
- **D** To deal with the leading Landau singularity and also $\delta Z_H^{1/2}$, $\Gamma_{t,W}$ must be taken into account:
 - $D_0(\Gamma \neq 0)$: analytical method ('t Hooft and Veltman?, xloops: parallel/orthogonal decomposition + expansion of hypergeometrical function, ...) and numerical integration (contour deformation, ε extrapolation, ...)
 - Renormalisation scheme with complex masses.
- Problem with Landau singularities: be careful!
 - 2 conditions for Landau singularities are re-formulated.
 - Nature of the singularities is explained, exact formulae are given.
 - Unstable internal particles: solved by introducing widths.
 - Massless configurations like $gg \rightarrow WW$ (or $2\gamma \rightarrow 4\gamma$): numerator vanishes at the singular point. OR keep the mass.