CP violating asymmetries induced by supersymmetry

DI Sebastian Frank

Institute for High Energy Physics Austrian Academy of Sciences

Supervision: Prof. Dr. Majerotto, Dr. Eberl

PSI Particle Theory Seminar September 2008

Outline

- 2 Introduction
 - Supersymmetry (SUSY)
 - The Minimal Supersymmetric Standard Model (MSSM)

OP violating decay rate asymmetry

- Introduction
- Contributions
- Numerical results

Summary

-∢ ≣ →

Baryon asymmetry of the universe

- Exists much more baryonic matter than anti-matter
- Standard Model (SM) cannot explain baryon asymmetry of the universe!
- Evidence from acoustic peaks (early universe baryon-photon plasma oscillations) deduced from Cosmic Microwave Background measurements

Baryon-to-photon ratio

$$\eta \equiv \frac{n_B}{s} \equiv \frac{n_b - n_{\bar{b}}}{s} = (6.1^{+0.3}_{-0.2}) \times 10^{-10}$$

 $s \dots$ entropy density (roughly photon density) $n_b(n_{\overline{b}}) \dots$ number densities of baryons (anti-baryons)

Baryogenesis

Problem

How obtains η this small value from initial condition $\eta = 0$?

Criteria of a solution

Three necessary conditions for baryogenesis: Sakharov requirements

- Baryon number violation
- 2 Departure from thermal equilibrium
- Oharge (C) and Charge-Parity (CP) violation

SM can meet Sakharov criteria but baryon asymmetry is *too small*!

Possible solution

- Supersymmetric extensions of SM can contain new sources of CP violation
- Lead to increase and thus possible explanation of baryon asymmetry
- Special case: Minimal Supersymmetric Standard Model (MSSM) introduces new parameters
- If some parameters are chosen *complex*, radiative corrections at one-loop can lead to *new CP violating asymmetries*

Supersymmetry (SUSY) The Minimal Supersymmetric Standard Model (MSSM)

Supersymmetry (SUSY)

Main idea

Symmetry between bosons and fermions

- Superpartner: same quantum numbers and mass but different spin
- Simplest case: superpartner for every particle of the SM
- Until now no superpartners found
 - Have a high mass
 - Explainable with spontaneous breaking of supersymmetry

Supersymmetry (SUSY) The Minimal Supersymmetric Standard Model (MSSM)

Particle content of the MSSM

- All particles obtain a superpartner
- Particle and superpartner form supermultiplets
- More than one Higgs particle
- Naming convention
 - Prefix 's' for spin = 0 superpartner (sleptons, squarks, ...)
 - suffix '-ino' for spin = ¹/₂ superpartner (gluino, Higgsinos ...)
- Superpartner mix because of electroweak symmetry breaking

Supersymmetry (SUSY) The Minimal Supersymmetric Standard Model (MSSM)

Particle content of the MSSM Chiral supermultiplets

Names Spin 0 Spin 1/2 $SU(3)_C, SU(2)_L, U(1)_Y$ Õ $(\widetilde{u}_L \ \widetilde{d}_L)$ $(3, 2, \frac{1}{6})$ squarks, quarks $(u_L \ d_L)$ $(\overline{3}, 1, -\frac{2}{2})$ u_{R}^{\dagger} $(\times 3 \text{ families})$ \widetilde{U}_{R}^{*} īī d \widetilde{d}_{R}^{*} $(\bar{\bf 3}, {\bf 1}, \frac{1}{3})$ d_{R}^{\dagger} ĩ $(\widetilde{\nu} \ \widetilde{e}_L)$ $(1, 2, -\frac{1}{2})$ sleptons, leptons (νe_L) (×3 families) ē $\widetilde{\boldsymbol{e}}_{\boldsymbol{B}}^{*}$ e_{P}^{\dagger} **(1, 1, 1)** Higgs, Higgsinos H_{μ} (H_2^1) H_2^2) (H_2^1) H_2^2) $(1, 2, +\frac{1}{2})$ H_{1}^{2}) (\widetilde{H}_1^1) \widetilde{H}_{1}^{2}) H_d (H_{1}^{1}) $(1, 2, -\frac{1}{2})$

Spin-0 fields are complex scalars Spin-1/2 fields are left-handed two-component Weyl fermions

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Supersymmetry (SUSY) The Minimal Supersymmetric Standard Model (MSSM)

Particle content of the MSSM

Gauge supermultiplets & mixing

Names	Spin 1/2	Spin 1	$SU(3)_{C}, SU(2)_{L}, U(1)_{Y}$	
gluino, gluon	ĝ	g	(8 , 1 , 0)	
winos, W bosons	$\widetilde{\lambda}^{\pm}$ $\widetilde{\lambda}^{3}$	$W^{\pm} W^{0}$	(1 , 3 , 0)	
bino, B boson	$\widetilde{\lambda}'$	B^0	(1 , 1 , 0)	

• Remember:

Interaction eigenstates no longer mass eigenstates (physical particles)!

• Needs to consider mixing of interaction eigenstates to mass eigenstates

ヘロト ヘアト ヘビト ヘビト

1

Supersymmetry (SUSY) The Minimal Supersymmetric Standard Model (MSSM)

Particle content of the MSSM

Mixing of eigenstates

Names	Spin	P_R	Gauge Eigenstates	Mass Eigenstates
Higgs bosons	0	+1	$H_2^0 H_1^0 H_1^+ H_1^-$	$h^0 H^0 A^0 H^{\pm}$
			$\widetilde{u}_L \ \widetilde{u}_R \ \widetilde{d}_L \ \widetilde{d}_R$	$\widetilde{u}_1 \ \widetilde{u}_2 \ \widetilde{d}_1 \ \widetilde{d}_2$
squarks	0	-1	$\widetilde{C}_L \ \widetilde{C}_R \ \widetilde{S}_L \ \widetilde{S}_R$	$\widetilde{C}_1 \ \widetilde{C}_2 \ \widetilde{S}_1 \ \widetilde{S}_2$
			$\widetilde{t}_L \widetilde{t}_R \widetilde{b}_L \widetilde{b}_R$	$\widetilde{t}_1 \ \widetilde{t}_2 \ \widetilde{b}_1 \ \widetilde{b}_2$
			$\widetilde{\mathbf{e}}_L \ \widetilde{\mathbf{e}}_R \ \widetilde{\mathbf{ u}}_e$	$\widetilde{e}_1 \ \widetilde{e}_2 \ \widetilde{\nu}_e$
sleptons	0	-1	$\widetilde{\mu}_L \; \widetilde{\mu}_{R} \; \widetilde{ u}_{\mu}$	$\widetilde{\mu}_1$ $\widetilde{\mu}_2$ $\widetilde{ u}_\mu$
			$\widetilde{ au}_L \ \widetilde{ au}_R \ \widetilde{ uu}_ au$	$\widetilde{ au}_1$ $\widetilde{ au}_2$ $\widetilde{ au}_{ au}$
neutralinos	1/2	-1	$\widetilde{\lambda}' \widetilde{\lambda}^3 \widetilde{H}_2^2 \widetilde{H}_1^1$	$\widetilde{\chi}^0_1 \ \widetilde{\chi}^0_2 \ \widetilde{\chi}^0_3 \ \widetilde{\chi}^0_4$
charginos	1/2	-1	$\widetilde{\lambda}^{\pm}$ \widetilde{H}_{2}^{1} \widetilde{H}_{1}^{2}	$\widetilde{\chi}_1^{\pm}$ $\widetilde{\chi}_2^{\pm}$
gluino	1/2	-1	\widetilde{g}	\widetilde{g}

DI Sebastian Frank CP violating asymmetries induced by supersymmetry

イロト イポト イヨト イヨト

ъ

Introduction Contributions Numerical results

Definitions

- C transformation changes sign of charge, changes particle to its anti-particle
- P transformation changes sign of coordinate system, turns right-handed coordinate system into a left-handed one or vice versa $P: \psi(t, \vec{x}) \rightarrow \psi(t, -\vec{x})$
- CP transformation applied to Lagrangian changes
 - Signs of momentums and charges
 - Left- and right-handed parts
 - Conjugates coupling matrices
- If coupling matrices are *complex*, CP violation can occur!

イロト 不得 とくほ とくほとう

Introduction Contributions Numerical results

Definitions

- Decay rate asymmetry $\delta^{CP} = \frac{\Gamma^+ \Gamma^-}{\Gamma^+ + \Gamma^-}$
- Γ^{+,-} decay rate of a process (regular, CP transformed)
- Special case: $\Gamma^+ = \Gamma(\tilde{t}_i \to b \, \tilde{\chi}_k^+), \, \Gamma^- = \Gamma(\tilde{t}_i^* \to \bar{b} \, \tilde{\chi}_k^{+c})$
- Branching ratio $BR = \frac{\Gamma}{\Gamma_{\text{total}}}$
- δ^{CP} × BR probability how often certain decay is CP violated (compared to rest)

Introduction Contributions Numerical results

Decay rate asymmetry δ^{CP}

Decay rate asymmetry δ^{CP} is \neq 0 only if

- including radiative corrections with at least one-loop (both CP transformation and calculating adjoint matrix M[↑] (in Γ ∝ ∑_s M[↑]M) conjugate tree-level couplings -> at tree-level net effect zero)
- coupling between particles complex (due to complex MSSM parameters) (CP transformation conjugates tree-level couplings)
- at least a second decay channel open (i.e. in addition to t
 *˜*_i → b X
 *˜*_k another like t
 *˜*_i → t *̃*g) (From CPT Theorem: only total decay width Γ_{total} CP invariant, but r necessarily partial decay widths!)

Introduction Contributions Numerical results

Decay rate asymmetry δ^{CP}

Decay rate asymmetry δ^{CP} is \neq 0 only if

- including radiative corrections with at least one-loop (both CP transformation and calculating adjoint matrix \mathcal{M}^{\dagger} (in $\Gamma \propto \sum_{s} \mathcal{M}^{\dagger} \mathcal{M}$) conjugate tree-level couplings -> at tree-level net effect zero)
- coupling between particles complex (due to complex MSSM parameters) (CP transformation conjugates tree-level couplings)
- at least a second decay channel open
 (i.e. in addition to t
 *˜*_i → b χ
 *˜*_k another like t
 *˜*_i → t g
 (From CPT Theorem: only total decay width Γ_{total} CP invariant, but no necessarily partial decay widths!)

イロト 不得 とくほ とくほ とうほ

Introduction Contributions Numerical results

Decay rate asymmetry δ^{CP}

Decay rate asymmetry δ^{CP} is \neq 0 only if

- including radiative corrections with at least one-loop (both CP transformation and calculating adjoint matrix \mathcal{M}^{\dagger} (in $\Gamma \propto \sum_{s} \mathcal{M}^{\dagger} \mathcal{M}$) conjugate tree-level couplings -> at tree-level net effect zero)
- coupling between particles complex (due to complex MSSM parameters) (CP transformation conjugates tree-level couplings)

3 at least a second decay channel open (i.e. in addition to $\tilde{t}_i \rightarrow b \, \tilde{\chi}_k^+$ another like $\tilde{t}_i \rightarrow t \, \tilde{g}$) (From CPT Theorem: only total decay width Γ_{total} CP invariant, but

necessarily partial decay widths!)

イロト 不得 とくほ とくほ とうほ

Introduction Contributions Numerical results

Decay rate asymmetry δ^{CP}

Decay rate asymmetry δ^{CP} is \neq 0 only if

- including radiative corrections with at least one-loop (both CP transformation and calculating adjoint matrix \mathcal{M}^{\dagger} (in $\Gamma \propto \sum_{s} \mathcal{M}^{\dagger} \mathcal{M}$) conjugate tree-level couplings -> at tree-level net effect zero)
- coupling between particles complex (due to complex MSSM parameters) (CP transformation conjugates tree-level couplings)
- 3 at least a second decay channel open
 (i.e. in addition to t
 *˜*_i → b χ
 *˜*_k another like t
 *˜*_i → t g
 ˜)
 (From CPT Theorem: only total decay width Γ_{total} CP invariant, but not necessarily partial decay widths!)

イロト 不得 とくほ とくほ とうほ

Introduction Contributions Numerical results

Most important contributions (expected) All gluino contributions

- Gluino \tilde{g} couples like gluon g with strong interaction force
- If decay t̃_i → t g̃ kinematically possible, these contributions should dominate over all others

Introduction Contributions Numerical results

All vertex contributions

DI Sebastian Frank CP violating asymmetries induced by supersymmetry

Introduction Contributions Numerical results

All stop-selfenergy contributions

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Introduction Contributions Numerical results

All chargino-selfenergy contributions

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Introduction Contributions Numerical results

Calculation

- Derived most important contributions analytically and numerically by myself (including derivation of mass matrices, couplings, generic structures etc)
- Calculation of full one-loop corrections with FeynArts/FormCalc/LoopTools (successfully checked with own computations)
- Input parameters of SM and MSSM for a typical scenario
- Complex parameters can violate experimental limit of electric dipole moment of electron
 - Checked automatically with self-written routine

ヘロト ヘアト ヘビト ヘビト

Introduction Contributions Numerical results

Some input parameters of SM and MSSM

- Coupling of strong interaction force α_s is taken running in dimensional reduction regularization scheme DR, renormalized at scale of decaying particle (SPA convention)
- Gluino mass $m_{\tilde{g}}$ calculated from α_s via GUT relations
- Yukawa couplings of third generation (s)quarks (*h_t*, *h_b*) are taken running
- SUSY breaking mass parameters M_{Q̃}, M_ũ, M_{d̃}, M_{l̃} and M_ē set equal in all generations
- Trilinear breaking parameters of 1st and 2nd generation set to zero $(A_{u,d,e} = A_{c,s,\mu} = 0)$
- We further simplify and set |M₁| = M₂/2 (GUT relation),
 M_{Q̃} = M_ũ = M_{d̃}, M_{L̃} = M_ẽ, |A_t| = |A_b| = |A_τ| and φ_{At} = φ_{Ab} = φ_{Aτ}
- Due to stringent experimental constraints, we set $\varphi_{\mu} = 0$ (phase of Higgsino mass) and focus just on phase of A_f (the phase of SUSY breaking gaugino mass M_1 is negligible in our case)

Introduction Contributions Numerical results

Some numerical results $\tilde{t}_1 \rightarrow b \tilde{\chi}_1^+$ (All contributions)

- Actually vary input parameter M_{Q̃} (SUSY breaking mass) from 500 to 1500 GeV but show output parameter m_{t̃1} for convenience
- $\tan \beta$ is ratio of the two VEVs of Higgs fields
- Threshold of decay $ilde{t}_1
 ightarrow t\, ilde{g}$ at $m_{ ilde{t}_1}\sim$ 708 GeV
- Dominance of gluino contributions over all insignificant others

•
$$\delta^{CP}_{
m max}\sim$$
 22 %, $(\delta^{CP} imes BR)_{
m max}\sim$ 2.4 %

Introduction Contributions Numerical results

Some numerical results $\tilde{t}_1 \rightarrow b \tilde{\chi}_1^+$ (Gluino-to-all ratio)

• After threshold at $m_{\tilde{t}_1} \sim$ 708 GeV gluino processes account for \sim 98 % of all processes

• Kink at $m_{\tilde{t}_1} \sim 1175$ GeV comes from threshold of $\tilde{t}_1 \rightarrow t \, \tilde{\chi}_3^0$

э

Introduction Contributions Numerical results

Some numerical results $\tilde{t}_1 \rightarrow b \tilde{\chi}_1^+$ (Comparison of gluino contributions)

 $\begin{array}{c}
\tilde{t}_{1} \rightarrow b \, \tilde{\chi}_{1}^{+} \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10. \\
10.$

- (1) Gluino in selfenergy-loop,
 (2) Gluino in vertex correction
- Contrary to expectation only one gluino contribution dominates!
- Reason lies in coupling *b_j* − *t* − *x̃*⁺₁ embedded in vertex correction, however no simple explanation possible *c* ≥ *x* ∈

Introduction Contributions Numerical results

Some numerical results $\tilde{t}_1 \rightarrow b \tilde{\chi}_1^+$ (All contributions)

- Complex phase of breaking parameter A_t highly influences δ^{CP} (only source of CP violation in our scenario)
- Overall maximum of scenario: $\delta^{CP}_{max} \sim$ 24 %

ヘロト ヘワト ヘビト ヘビト

ъ

Introduction Contributions Numerical results

Some numerical results $\tilde{t}_1 \rightarrow b \tilde{\chi}_1^+$ (All contributions)

- Closure of dominating decay channel t
 ₁ → t g
 _i, because SUSY breaking gaugino mass M₂ is related to gluino mass m<sub>g
 _j
 </sub>
- The higher mass $M_{\tilde{Q}}(m_{\tilde{t}_1})$, the later this closure happens
- Overall maximum of scenario: $\delta^{CP} imes BR \sim 3.5$ %

Summary

- Baryogenesis needs CP violation exceeding the one in SM
- Minimal Supersymmetric Standard Model (MSSM) with complex parameters leads to new CP violation
- One-loop corrections to *t
 _i*→ *b χ*⁺_k leads to CP violating decay rate asymmetry δ^{CP}
- Detailed numerical analysis of δ^{CP} and $\delta^{CP} \times BR$
- δ^{CP} rises up to \sim 24 %, $\delta^{CP} \times BR$ up to \sim 3.5 %
- Asymmetry δ^{CP} will be measurable at LHC

ヘロト ヘワト ヘビト ヘビト