Predictions for Higgs signal and background processes with many-particle final states at the LHC

Stefan Dittmaier

MPI Munich

Contents

- **1** Introduction
- 2 The decays Higgs \rightarrow WW/ZZ \rightarrow 4 fermions
- 3 Higgs production via weak vector-boson fusion
- 4 Background processes with multi-particle final states
- 5 Technical issues in "NLO multi-leg calculations"
- 6 Conclusions

1 Introduction

Experiments at LEP/SLC/Tevatron

- confirmation of Standard Model as quantum field theory (quantum corrections significant)
- top mass m_t indirectly constrained by quantum corrections \leftrightarrow in agreement with m_t measurement of Tevatron
- Higgs mass M_H indirectly constrained by quantum corrections
 → impact on Higgs searches

Great success of precision physics

- $-M_{
 m H} > 114.4 \, {
 m GeV}$ (LEPHIGGS '02) ${
 m e^+e^-} \longrightarrow {
 m ZH}$ at LEP2
- $-M_{
 m H} < 144\,{
 m GeV}$ (LEPEWWG '07)

fit to precision data i.e. via quantum corrections

Higgs search at present and future colliders

Higgs bosons couple proportional to particle masses:

 \Rightarrow Higgs production mainly via coupling to W/Z bosons or top quarks

Higgs search at present and future colliders

Higgs bosons couple proportional to particle masses:

 \Rightarrow Higgs production mainly via coupling to W/Z bosons or top quarks

Processes at hadron colliders ($\rm p\bar{p}/\rm pp$):

Higgs search at present and future colliders

Higgs bosons couple proportional to particle masses:

 \Rightarrow Higgs production mainly via coupling to W/Z bosons or top quarks

Processes at hadron colliders ($\rm p\bar{p}/\rm pp$):

Cross sections and significance of the Higgs signal at the LHC

Typical size perturbative corrections at next-to-leading order (NLO):

QCD: $\mathcal{O}(\alpha_s) \sim 10-100\%$ Electroweak: $\mathcal{O}(\alpha) \sim 10\%$

← calculate / control higher orders to reduce theoretical uncertainty down to the level of PDF ($q\bar{q} \sim 5\%$, $gg \sim 10\%$) and experimental uncertainties Complication: many channels involve multi-particle final states.

2 The decays Higgs \rightarrow WW/ZZ \rightarrow 4 fermions

Importance of decays $H \rightarrow WW^{(*)}/ZZ^{(*)}$ at the LHC:

– most important Higgs decay channels for $M_{\rm H} \gtrsim 125 \, {\rm GeV}$

– most precise determination of $M_{\rm H}$ via ${\rm H}{\rightarrow}{\rm ZZ}{\rightarrow}4l$ for $M_{\rm H}\gtrsim 130\,{\rm GeV}$

Theoretical description of $H \rightarrow WW^{(*)}/ZZ^{(*)}$:

- previous work on partial decay widths not sufficient:
 - ◇ $O(\alpha)$ corrections to H → WW/ZZ with stable W's/Z's Fleischer, Jegerlehner '81; Kniehl '91; Bardin, Vilenskii, Khristova '91
 - ◇ lowest-order predictions for H → WW^(*)/ZZ^(*)
 e.g. by Hdecay (Djouadi, Kalinowski, Spira '98)
- however: proper description of distributions required
 - ◊ for the kinematical reconstruction of Z's, W's, and H
 - $\, \hookrightarrow \, \text{ invariant-mass distributions} \,$
 - ◊ for the verification of spin 0 and CP parity of the Higgs boson
 - → angular and invariant-mass distributions
 Nelson '88; Soni, Xu '93; Chang et al.'93;
 Skjold, Osland '93; Barger et al.'93;
 Arens, Sehgal '94; Buszello et al.'02; Choi et al.'03

Recent progress:

PSI Villigen, March 3, 2008

• PROPHECY4F: Monte Carlo generator for $H \rightarrow WW/ZZ \rightarrow 4f$

with EW and QCD corrections

Bredenstein, Denner, S.D., Weber '06

• combination of production and decay:

 $(gg \rightarrow H \text{ in NNLO QCD}) \otimes (H \rightarrow WW/ZZ \rightarrow 4l \text{ in LO})$ Anastasiou et al. '07,'08; Frederix, Grazzini '08: Grazzini '08

Survey of Feynman diagrams for NLO EW and QCD corrections to ${\rm H} \rightarrow 4f$

Typical one-loop diagrams:

diagrams = $\mathcal{O}(200-400)$

+ photon / gluon bremsstrahlung

Features of PROPHECY4F: Bredenstein, Denner, S.D., Weber '06

- $\mathcal{O}(\alpha)$ and $\mathcal{O}(\alpha_s)$ corrections to all channels $H \to WW/ZZ \to 4f$
- final-state radiation off leptons beyond $\mathcal{O}(\alpha)$ via structure functions
- leading 2-loop heavy-Higgs effects $\propto G_{\mu}^2 M_{\rm H}^4$ Ghinculov '95; Frink, Kniehl, Kreimer, Riesselmann '96
- multi-channel Monte Carlo integration (checked by VEGAS) Berends, Kleiss, Pittau '94; Kleiss, Pittau '94
- improved Born approximation for simplified evaluation

Main complications in the loop calculation:

- numerical instabilities in Passarino–Veltman reduction of tensor integrals
 - \hookrightarrow new reduction methods developed Denner, S.D. '02,'05
- gauge-invariant treatment of W and Z resonances
 - ← "complex-mass scheme" Denner, S.D., Roth, Wieders '05

New concepts already used in $\mathcal{O}(\alpha)$ correction to $e^+e^- \rightarrow 4f$ Denner, S.D., Roth, Wieders '05

The complex-mass scheme for unstable particles

Problem of unstable particles:

description of resonances requires resummation of propagator corrections

 \rightarrow mixing of perturbative orders potentially violates gauge invariance

Dyson series and propagator poles (scalar example)

$$G^{\phi\phi}(p) = \frac{i}{p^2 - m^2} + \frac{i}{p^2 - m^2} i\Sigma(p^2) \frac{i}{p^2 - m^2} + \dots = \frac{i}{p^2 - m^2 + \Sigma(p^2)}$$

 $\Sigma(p^2) =$ renormalized self-energy, m = ren. mass

stable particle: $\operatorname{Im}\{\Sigma(p^2)\} = 0 \text{ at } p^2 \sim m^2$

 \hookrightarrow propagator pole for real value of p^2 , renormalization condition for physical mass m: $\Sigma(m^2) = 0$

unstable particle: $\operatorname{Im}\{\Sigma(p^2)\} \neq 0 \text{ at } p^2 \sim m^2$

 \hookrightarrow location μ^2 of propagator pole is complex, possible definition of mass M and width Γ : $\mu^2 = M^2 - iM\Gamma$

The complex-mass scheme at NLO

Basic idea: mass² = location of propagator pole in complex p^2 plane \hookrightarrow consistent use of complex masses everywhere !

Application to gauge-boson resonances:

• replace $M_W^2 \rightarrow \mu_W^2 = M_W^2 - iM_W\Gamma_W$, $M_Z^2 \rightarrow \mu_Z^2 = M_Z^2 - iM_Z\Gamma_Z$

and define (complex) weak mixing angle via

$$c_{\rm W}^2 = 1 - s_{\rm W}^2 = \frac{\mu_{\rm W}^2}{\mu_{\rm Z}^2}$$

• virtues:

- gauge-invariant result (Slavnov–Taylor identities, gauge-parameter independence)
 - \hookrightarrow unitarity cancellations respected !
- perturbative calculations as usual (loops and counterterms)
- on double counting of contributions (bare Lagrangian unchanged !)
- drawbacks:
 - ♦ unitarity-violating spurious terms of $\mathcal{O}(\alpha^2) \rightarrow$ but beyond NLO accuracy ! (from *t*-channel/off-shell propagators and complex mixing angle)
 - complex gauge-boson masses also in loop integrals

Comparison to other proposals:

• naive fixed-width schemes:

$$\frac{1}{p^2 - M^2} \rightarrow \frac{1}{p^2 - M^2 + iM\Gamma}$$

in all or at least in resonant propagators

- → breaks gauge invariance only mildly (?),
 but partial inclusion of widths in loops screws up singularity structure
- pole expansions Stuart '91; Aeppli et al. '93, '94; etc.
 - → consistent, gauge invariant,
 but not reliable at threshold or in off-shell tails of resonances
- effective field theory approach Beneke et al. '04; Hoang, Reisser '04
 - → gauge invariant, involves pole expansions,
 but can be combined with threshold expansions
- complex-mass scheme Denner, S.D., Roth, Wackeroth '99; Denner, S.D., Roth, Wieders '05
 - \hookrightarrow gauge invariant, valid everywhere in phase space

Some results for $H
ightarrow \mathbf{ZZ}
ightarrow 4l$

Partial decay width for $H \to ZZ \to e^- e^+ \mu^- \mu^+$ G_{μ} -scheme

Comparison with HDECAY

Note: peak structure in HDECAY is an artefact of the on-shell approximation above threshold.

Sensitivity of distributions to non-standard effects in $H \rightarrow ZZ \rightarrow f_1 \bar{f}_1 f_2 \bar{f}_2$

invariant Z mass:

Choi, Miller, Mühlleitner, Zerwas '02

 $M_* = M_{f_1\bar{f}_1}$

histograms = SM simulation for $L = 300 \, \text{fb}^{-1}$

 \hookrightarrow distributions sensitive to spin and parity

Electroweak corrections to the invariant Z mass

 G_{μ} -scheme

 γ recombination if $M_{\mathrm{e}\gamma/\mu\gamma} < 5 \,\mathrm{GeV}$

Large corrections from photon radiation in Z reconstruction

G_{μ} -scheme

Combination of $gg ightarrow { m H}$ production with ${ m H} ightarrow { m WW}/{ m ZZ} ightarrow 4l$ decay

QCD corrections to $gg \rightarrow H$:

NNLO QCD corrections to $gg \to H \to WW \to l l \nu \nu$

 $\phi_{ll} =$ angle between charged decay leptons in the transverse plane

 ${\it K}$ factors in general depend on decay phase space.

3 Higgs production via weak vector-boson fusion (VBF)

VBF cuts and background suppression:

- 2 hard "tagging" jets demanded: $p_{\rm Tj} > 20 \,{
 m GeV}$, $|y_{\rm j}| < 4.5$
- tagging jets forward-backward directed: $\Delta y_{jj} > 4$, $y_{j1} \cdot y_{j2} < 0$.
- \hookrightarrow Suppression of background
 - from other (non-Higgs) processes, such as $t\bar{t}$ or WW production Zeppenfeld et al. '94-'99
 - induced by Higgs production via gluon fusion, such as $gg \rightarrow ggH$ _{Del Duca et al. '06; Campbell et al. '06}

Recent progress: complete NLO QCD and EW corrections

Features of the calculation:

- NLO corrections to all LO diagrams and interferences included:
- leading 2-loop heavy-Higgs effects $\propto G_{\mu}^2 M_{\rm H}^4$ Ghinculov '95; Frink, Kniehl, Kreimer, Riesselmann '96
- fully flexible Monte Carlo generator

Classification of QCD corrections

Possible Born diagrams:

diagrams (2) only for $q\bar{q}q\bar{q}$ and $q\bar{q}q'\bar{q}'$ channels (q' = weak-isospin partner of q)

Classification of QCD corrections into four categories: (typical diagrams shown)

(a) contains previously known "t-channel approximation"

(b,c,d) = corrections to interferences (only for $q\bar{q}q\bar{q}$ and $q\bar{q}q'\bar{q}'$ channels)

Size of specific corrections and subcontributions to cross sections:

	no cuts		VBF cuts		
$M_{ m H}[{ m GeV}]$	120 - 200	700	120 - 200	700	
various corrections:					_
$\delta_{ m QCD(a)}[\%]$	4 - 0.5	+1	≈ -5	-7	$\mathcal{O}(5{-}10\%)$
$\delta_{ m QCD(b+c+d)}[\%]$	$\lesssim 0.2$	-0.1	< 0.1	< 0.1	negligible
$\delta_{\mathrm{EW},qq} [\%]$	≈ -6	+6	pprox -7	+5	$\mathcal{O}(5{-}10\%)$
$\delta_{{ m EW},q\gamma} [\%]$	$\approx +1$	+2	$\approx +1$	+2	
$\delta_{G^2_{\mu} M^4_{ m H}} [\%]$	< 0.1	+4	< 0.1	+4	negligible for $M_{\rm H} < 400 {\rm GeV}$
specific contributions:					_
$\Delta_{s-\text{channel}}[\%]$	30 - 10	1	< 0.6	< 0.1	negligible with VBF cuts
$\Delta_{t/u-\text{interference}}[\%]$	< 0.5	< 0.1	< 0.1	< 0.1	negligible
$\Delta_{\mathrm{b-quarks}}[\%]$	≈ 4	1	≈ 2	1	

Distribution in the azimuthal angle difference $\Delta \phi_{\rm jj}$ of the tagging jets

Sensitivity to non-standard effects:

Hankele, Klämke, Zeppenfeld, Figy '06

Corrections to the $\Delta \phi_{jj}$ distribution:

Ciccolini, Denner, S.D. '07

Corrections induce small distortions (which are larger for p_T and y distributions).

4 Background processes with multi-particle final states

At the LHC the background to some signals cannot be measured ! → precise predictions for many background processes required

Examples for important missing NLO predictions for background:

background for "Les Houches wishlist '05" $pp \rightarrow WW + jet$ $t\bar{t}H$, new physics S.D., Kallweit, Uwer '07; Campbell, R.K.Ellis, Zanderighi '07 $pp \rightarrow t\bar{t}bb$ ttH $t\overline{t}H$ $pp \rightarrow t\bar{t} + 2jets$ $pp \rightarrow VVb\bar{b}$ $VBF \rightarrow H \rightarrow VV, t\bar{t}H, new physics$ $pp \rightarrow VV + 2jets$ $VBF \rightarrow H \rightarrow VV$ VBF: Jäger et al. '06; Bozzi et al. '07 $pp \rightarrow V + 3 jets$ tt, new physics SUSY tri-lepton $pp \rightarrow VVV$ ZZZ: Lazopoulos et al. '07

 \hookrightarrow Many long-termed NLO calculations for theorists ! (several 10⁴ diagrams, many "(wo)men-decades")

Note: calculations only possible with technical progress of recent years

An example: simulation of $\mathrm{H} \to \mathrm{WW}$ via VBF at ATLAS

Higgs signal appears as "Jacobian peak" in transverse mass of the W-boson pair. $(t\bar{t}j$ is major background component.)

NLO QCD corrections to $pp \rightarrow t\bar{t}+jet + X$ and $pp \rightarrow W^+W^-+jet + X$

S.D., Uwer, Weinzierl '07

• $t\bar{t}$ +jet:

- o understand top-quark dynamics
- $\diamond\,$ background to ${\rm t\bar{t}H}$ and Higgs via VBF
- WW+jet:
 - $\diamond\,$ background to $\mathrm{H} \rightarrow \mathrm{WW}$
 - background to SUSY searches

S.D., Kallweit, Uwer '07

Cross sections at the LHC: NLO corrections significantly stabilize predictions

PSI Villigen, March 3, 2008

$ttH, H \rightarrow b\bar{b}$ (30 fb⁻¹) Slide borrowed from S.Horvat (MPI/ATLAS) '07

Backgrounds: $t\overline{t}jj$, $t\overline{t}b\overline{b}$ (irreducible). Many discriminating variables:

jj (W): mass, momentum, $\Delta R(j, j)$ *bjj* (top-quark): mass, $\Delta R(b, jj)$ $b\ell\nu$ (top-quark): mass, $\Delta R(b, \ell\nu)$ *bjj*, $b\ell\nu$ (tt-pair): mass, $\Delta R(bjj, b\ell\nu)$

$$(\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2})$$

Important issues:

- NLO cross-sections for the signal, *ttbb*, *ttjj*.
- Signal and background shape are very similar.
 - \Rightarrow Essential to reduce the theoretical uncertainties on x-sections.

5 Technical issues in "NLO multi-leg calculations"

Complications in NLO corrections to many-particle processes:

- huge amount of algebra, long final expressions
 - \hookrightarrow computer algebra / automation
- multi-dimensional phase-space integration
 - \hookrightarrow Monte Carlo techniques
- complicated structure of singularities and matching of virtual and real corrections
 - → subtraction
 R.K.Ellis et al. '81; S.D.Ellis et al. '89; Mangano et al. '92; Kunszt/Soper '92;
 Frixione et al. '96; Nagy/Z. Trócsányi '96; Campbell et al. '98;
 Catani/Seymour '96; S.D. '99; Phaf/Weinzierl '01; Catani et al. '02

and slicing techniques

Giele/Glover '92; Giele et al. '93; Keller/Laenen '98; Harris/Owens '01, etc.

• numerically stable evaluation of one-loop integrals with up to 5,6,... external legs

 → techniques to solve problems with inverse kinematical (e.g. Gram) det's Stuart et al. '88/'90/'97; v.Oldenborgh/Vermaseren '90; Campbell et al. 96; Ferroglia et al. '02; del Aguila/Pittau '04; Binoth et al. '02/'05; Denner/S.D. '02/'05; v.Hameren et al. '05; R.K.Ellis et al. '05; Anastasiou/Daleo '05; Ossola et al. '06/'07; Lazopoulos et al. '07; Forde '07; R.K.Ellis et al. '07; Kilgore '07; Giele et al. '08

[But: many proposed methods not (yet?) used in complicated applications]

• treatment of unstable particles, issue of complex masses

Dipole subtraction formalism

 \rightarrow process-independent treatment of singularities in real NLO corrections

worked out for

QCD with massless partons (Catani, Seymour '96)
 γ radiation off massive fermions (S.D. '99)
 QCD with massive partons Phaf, Weinzierl '01 Catani, S.D., Seymour, Trócsányi '02

basic idea: NLO correction to process with m partons

$$\sigma^{\rm NLO} = \underbrace{\int_{m+1} \left[\mathrm{d}\sigma^{\rm real} - \mathrm{d}\sigma^{\rm sub} \right]}_{\text{finite}} + \underbrace{\int_{m} \left[\mathrm{d}\sigma^{\rm virtual} + \mathrm{d}\bar{\sigma}^{\rm sub}_{1} \right]}_{\text{finite}} + \int_{0}^{1} \mathrm{d}x \underbrace{\int_{m} \left[\mathrm{d}\sigma^{\rm fact}(x) + \left(\mathrm{d}\bar{\sigma}^{\rm sub}(x) \right)_{+} \right]}_{\text{finite}}_{\text{finite}}$$

conditions on $d\sigma^{sub}$:

- sum rule: $-\int_{m+1} \mathrm{d}\sigma^{\mathrm{sub}} + \int_m \mathrm{d}\bar{\sigma}_1^{\mathrm{sub}} + \int_0^1 \mathrm{d}x \int_m \left(\mathrm{d}\bar{\sigma}^{\mathrm{sub}}(x)\right)_+ = 0$
- asymptotics: $\sigma^{
 m sub} \sim \sigma^{
 m real}$ in all collinear/IR regions

Strategy for extracting or translating IR (soft / collinear) singularities in loops:

Idea: convert integrals $I^{(D)}$ in $D=4-2\epsilon$ dim.

 \rightarrow 4-dim. integrals $I^{(\lambda)}$ with mass regulator λ

Procedure: consider finite and regularization-scheme-independent difference

$$\begin{split} \left[I^{(D)} - I^{(D)}_{\text{sing}} \right] \Big|_{D \to 4} &= \left[I^{(\lambda)} - I^{(\lambda)}_{\text{sing}} \right] \Big|_{\lambda \to 0} \\ \\ \Rightarrow \ I^{(D)} &= I^{(D)}_{\text{sing}} \ + \ \left[I^{(\lambda)} - I^{(\lambda)}_{\text{sing}} \right] \Big|_{\lambda \to 0} \ + \ \mathcal{O}(\epsilon) \end{split}$$

Note: mass-singular part can be universally constructed from 3-point integrals \hookrightarrow general result known explicitly S.D. '03

An example from $gg \rightarrow t\bar{t}g$:

Numerical evaluation of one-loop integrals

Passarino–Veltman reduction of tensor to scalar integrals

- \hookrightarrow inverse Gram determinants of external momenta
- \hookrightarrow serious numerical instabilities where $det(Gram) \rightarrow 0$ (at phase-space boundary but not only !)

Our solutions: Denner, S.D., Nucl.Phys. B734 (2006) 62 [hep-ph/0509141]

- 1- and 2-point integrals \rightarrow stable direct calculation
- 3- and 4-point integrals \rightarrow two hybrid methods
 - (i) Passarino–Veltman \oplus seminumerical method \oplus analytical special cases
 - (ii) Passarino–Veltman \oplus expansions in small Gram and other kin. determinants
- 5- and 6-point integrals
 - \hookrightarrow stable reduction to lower-point integrals without Gram determinants
- \Rightarrow Techniques ready for further applications

(dim. regularization for IR singularities possible; complex masses supported)

Practical experience

 \hookrightarrow Power + reliability of techniques can only be assessed via non-trivial applications !

A typical example with small Gram determinant:

Stefan Dittmaier (MPI Munich), Predictions for Higgs signal and background processes with many-particle final states at the LHC - 34

A typical example with small Gram determinant:

Stefan Dittmaier (MPI Munich), Predictions for Higgs signal and background processes with many-particle final states at the LHC - 34

A typical example with small Gram determinant:

Stefan Dittmaier (MPI Munich), Predictions for Higgs signal and background processes with many-particle final states at the LHC - 34

6 Conclusions

Radiative corrections and the search for the Higgs boson

- Bounds on the Higgs mass from LEP2 search and precision physics: $114 \,\mathrm{GeV} < M_{\mathrm{H}} \lesssim 200 \,\mathrm{GeV}$
- LHC has sensitivity to SM-like Higgs up to $M_{\rm H} \lesssim 1 \, {\rm TeV}$ QCD corrections = substantial part of predictions
 - $\diamond\,$ signal processes up to $\mathcal{O}(5{-}20\%)$ known in SM
 - \hookrightarrow continuous refinements (e.g. QCD resummations, EW corrections)
 - extended Higgs sectors (THDM, MSSM, etc.)
 - \hookrightarrow many improvements necessary (e.g. $pp \rightarrow b\bar{b}h/H/A$)
 - background processes
 - $\hookrightarrow\,$ hard work at theoretical frontier (e.g. $pp \to t\bar{t}b\bar{b})$

6 Conclusions

Radiative corrections and the search for the Higgs boson

- Bounds on the Higgs mass from LEP2 search and precision physics: $114 \,\text{GeV} < M_{\text{H}} \lesssim 200 \,\text{GeV}$
- LHC has sensitivity to SM-like Higgs up to $M_{\rm H} \lesssim 1 \, {\rm TeV}$ QCD corrections = substantial part of predictions
 - $\diamond\,$ signal processes up to $\mathcal{O}(5{-}20\%)$ known in SM
 - \hookrightarrow continuous refinements (e.g. QCD resummations, EW corrections)
 - extended Higgs sectors (THDM, MSSM, etc.)
 - \hookrightarrow many improvements necessary (e.g. $pp \rightarrow b\bar{b}h/H/A$)
 - background processes
 - $\hookrightarrow\,$ hard work at theoretical frontier (e.g. $pp \to t\bar{t}b\bar{b})$
- \Rightarrow Theory is on track, but there is still a long way !

Please support young people who take the challenge !

6 Conclusions

Radiative corrections and the search for the Higgs boson

- Bounds on the Higgs mass from LEP2 search and precision physics: $114 \,\text{GeV} < M_{\text{H}} \lesssim 200 \,\text{GeV}$
- LHC has sensitivity to SM-like Higgs up to $M_{\rm H} \lesssim 1 \, {\rm TeV}$ QCD corrections = substantial part of predictions
 - $\diamond\,$ signal processes up to $\mathcal{O}(5{-}20\%)$ known in SM
 - \hookrightarrow continuous refinements (e.g. QCD resummations, EW corrections)

Otherwise

- extended Higgs sectors (THDM, MSSM, etc.)
 - $\hookrightarrow\,$ many improvements necessary (e.g. $\rm pp \rightarrow b\bar{b}h/H/A)$
- background processes
 - $\hookrightarrow\,$ hard work at theoretical frontier (e.g. $pp \to t\bar{t}b\bar{b})$
- \Rightarrow Theory is on track, but there is still a long way !

Please support young people who take the challenge !

