Towards reliable predictions for multiparticle processes at the LHC

Ansgar Denner, PSI

Particle Theory Seminar, PSI, June 12, 2008

in collaboration with A. Bredenstein, M. Ciccolini, S. Dittmaier, S. Pozzorini

- Motivation
- Higgs-boson production in vector-boson fusion
- Production of a top-anti-top and a bottom-anti-bottom pair
- Conclusion

In 2008 the Large Hadron Collider (LHC) will go into operation

proton-proton collider

energy: $E_{\rm CMS} = 14 \, {\rm TeV}$

luminosity: $10^{33} - 10^{34} \, s^{-1} cm^{-2}$

integrated lum.: $10-100 \,\mathrm{fb}^{-1}/\mathrm{y}$

experiments: ATLAS, CMS, LHC-B, ALICE

tasks for the LHC

- search for the Higgs boson (last missing piece of Standard Model) and study of its properties: mass, width, couplings, spin, parity
- search for physics beyond the Standard Model: supersymmetry, compositeness, extra dimensions, strings, ...

Importance of multiparticle processes at the LHC

- most interesting signals: heavy particles decaying into jets, leptons, photons ⇒ multiparticle final states
- irreducible backgrounds to these signals (often not fully accessible to measurements)

importance of NLO QCD corrections at the LHC

- at LHC systematics better than at Tevatron; very high statistics
- typical size of NLO corrections $\mathcal{O}(10 100\%)$
- need NLO to reduce scale and other higher-order uncertainties (high powers of α_S !),

challenges for NLO programs

- reliable predictions: numerical stability
- sufficient speed

Technical problems and solutions in multiparticle NLO

- number and complexity of loop diagrams grow very fast
 - \hookrightarrow computer algebra / automation

use alternative ways to calculate amplitude Ossola, Pittau, Papadopoulos '07

Bern, Dixon, Kosower, Dunbar, Britto, Cachazo, Feng, Forde, R.K.Ellis, Giele, Kunszt, Melnikov, Anastasiou, Mastrolia, ...

- gauge-invariant treatment of unstable particles, issue of complex masses
 - ← "complex-mass scheme" Denner, Dittmaier, Roth, Wieders, '05
- numerically stable evaluation of one-loop integrals with up to 5,6,... external legs (Gram determinants lead to instabilities)
 - \hookrightarrow \diamond new reduction schemes
 - higher numerical precision in critical regions
- complicated structure of singularities and matching of virtual and real corrections
 - \hookrightarrow subtraction and slicing techniques

Catani, Seymour, Dittmaier, Troscanyi, Phaf, Weinzierl; Giele, Glover, Keller, Laenen, ...

- multi-dimensional phase-space integration
 - \hookrightarrow Monte Carlo techniques Berends, Kleiss, Pittau, ...

PAUL SCHERRER INSTITUT

Many active groups/people

- MCFM: Campbell, R.K.Ellis, Zanderighi, Giele
- GOLEM: Binoth, Guffanti, Guillet, Heinrich, Karg, Kauer, Reiter, Sanguinetti
- Blackhat: Berger, Bern, Dixon, Febres Cordero, Forde, Ita, Kosower, Maître
- Lazopoulos, Melnikov, Petriello
- Ossola, Papadopoulos, Pittau
- Bredenstein, Denner, Dittmaier, Kallweit, Pozzorini
- Uwer, Weinzierl, ...

State of the art: several $2 \rightarrow 3$, but very few $2 \rightarrow 4$ calculations

- $e^+e^- \rightarrow 4f$ (EW) Denner, Dittmaier, Roth, Wieders '05
- $e^+e^- \rightarrow HH\nu\bar{\nu}$ (EW)

GRACE: Boudjema, Fujimoto, Ishikawa, Kaneko, Kurihara, Shimizu, Kato, Yasui '05

• $\gamma\gamma \rightarrow t\bar{t}b\bar{b}$ (QCD) Lei, Wen-Gan, Liang, Ren-You, Yi '07

 $pp \rightarrow H + 2jets + X$

PAUL SCHERRER INSTITUT

Significance of Higgs signal at LHC

Importance of vector-boson fusion (VBF) $pp \rightarrow H + 2jets + X$:

- important Higgs-production process for $100\,{\rm GeV}\lesssim M_{\rm H}\lesssim 200\,{\rm GeV}$ and large Higgs boson masses
- measurement of HVV couplings

expected statistical uncertainty for $\sigma \times B$: 5–10% Zeppenfeld et al. '00

process dominated by t- and u-channel diagrams $\Rightarrow t$ -channel approximation

dominant contribution has two forward jets

VBF cuts and background suppression:

- 2 hard "tagging" jets demanded: $p_{Tj} > 20 \,\text{GeV}, \quad |y_j| < 4.5$
- tagging jets forward-backward directed: $\Delta y_{\rm jj} > 4$, $y_{\rm j1} \cdot y_{\rm j2} < 0$
- \hookrightarrow suppression of background
 - from other (non-Higgs) processes, such as $t\bar{t}$ or WW production Zeppenfeld et al. '94–'99
 - induced by Higgs production via gluon fusion, such as $gg \rightarrow ggH$ Del Duca et al. '06; Campbell et al. '06

signature = Higgs + 2jets Forward + Higgs tagging ϕ - - - - Higgs becay η

- NLO QCD corrections to VBF in "t-channel approximation" (vertex corrections) colour exchange between quark lines suppressed \Rightarrow small QCD corrections
 - total cross section Han, Valencia, Willenbrock '92; Spira '98; Djouadi, Spira '00
 - \hookrightarrow corrections $\sim 5-10\%$, residual scale dependence: few per cent
 - realistic cuts distributions Figy, Oleari, Zeppenfeld '03; Berger, Campbell '04
 - \hookrightarrow corrections $\sim 10-20\%$, strongly phase-space dependent
- NLO QCD corrections to gluon-initiated channels
 Campbell, R.K.Ellis, Zanderighi '06 (effective Hgg coupling) \Rightarrow contribution to VBF $\sim 5\%$ Nikitenko, Vazquez '07
- complete NLO QCD+EW corrections to VBF Ciccolini, Denner, Dittmaier '07 \hookrightarrow NLO QCD \sim NLO EW $\sim 5-10\% \rightarrow$ discussed in this talk !
- QCD loop-induced interferences between VBF and gluon-initiated channels

Andersen, Binoth, Heinrich, Smillie '07 Bredenstein, Hagiwara, Jäger '08

- \rightarrow impact $\lesssim 10^{-3} \%$ (negligible!)
- SUSY QCD+EW corrections Hollik, Plehn, Rauch, Rzehak '08 \rightarrow |MSSM - SM| \lesssim 1% for SPS points (2-4% for low SUSY scales)

EW production of Higgs+2jets in LO

- many subcontributions from qq, $q\bar{q}$, and $\bar{q}\bar{q}$ channels (64 different initial states)
- each channel receives contributions
 from one or two topologies ("t, u, s"):

all contributions and interferences taken into account in LO and NLO

EW production of Higgs+2jets in NLO

- partonic channels for
 - ▶ one-loop diagrams: qq, $q\bar{q}$, $\bar{q}\bar{q}$
 - ▶ real QCD corrections qq, $q\bar{q}$, $\bar{q}\bar{q}$ (gluon emission), qg, $\bar{q}g$ (gluon induced)
 - ▶ real QED corrections qq, $q\bar{q}$, $\bar{q}\bar{q}$ (photon emission), $q\gamma$, $\bar{q}\gamma$ (photon induced)
- collinear initial-state singularities from QCD and QED splittings
 - $\,\hookrightarrow\,$ factorization and PDF redefinition for QCD and QED singularities

Recycling strategy: obtain all LO and NLO amplitudes via crossing from
NLO EW and QCD corrections to $H \rightarrow WW/ZZ \rightarrow 4f$ Bredenstein, Denner,
Dittmaier, Weber '06

Survey of Feynman diagrams for H + 2jets

+ tree graphs with real photons and gluons

- Tools: crucial methods already developped for $e^+e^- \rightarrow 4f$ Denner, Dittmaier, Roth, Wieders '05
 - generation of Feynman diagrams with FeynArts version 1 and 3

Küblbeck, Böhm, Denner, Eck '90,'92; Hahn '01

 algebraic simplifications using two independent in-house programs implemented in *Mathematica*, one building upon FORMCALC

Hahn, Perez-Victoria '99, Hahn '00

- reduction of tensor integrals according to Denner, Dittmaier, NPB658 (2003)175 [hep-ph/0212259], NPB734 (2006) 62 [hep-ph/0509141] → numerically stable results
- scalar integrals: evaluated with standard techniques and analytic continuation for complex masses

contributions

- complete NLO QCD and electroweak corrections
- leading two-loop corrections $\propto G_\mu^2 M_{\rm H}^4$ to VVH vertex in large $M_{\rm H}$ limit Ghinculov '95; Frink et al. '96

For details see Denner, Dittmaier NPB734 (2006) 62 [hep-ph/0509141]

- 1- and 2-point integrals: numerically stable direct calculation
- 3-point and 4-point integrals: Passarino–Veltman reduction
 - \hookrightarrow inverse Gram determinants of up to three momenta
 - \hookrightarrow serious numerical instabilities where $\det G \to 0$

(at phase-space boundary, but also within phase space!)

two hybrid methods

- (i) Passarino–Veltman ⊕ expansions in small Gram and other kinematical determinants (see also R.K.Ellis et al. '05)
- (ii) Passarino–Veltman ⊕ analytical special cases
 ⊕ semi-numerical method (in this calculation for checks only)
 (numerical calculation of logarithmic Feynman-parameter integral and algebraic reduction to this basis integral)
 (see also Binoth et al. '05; Ferroglia et al. '02)
- 5-point integrals \rightarrow five 4-point integrals Melrose '65; Denner, Dittmaier '02, '05 6-point integrals \rightarrow six 5-point integrals (see also Binoth et al. '05) without inverse Gram determinants and simultaneous reduction of rank by one

Matrix elements

• Weyl-van der Waerden spinor technique Dittmaier '98 \Rightarrow compact expressions

soft and collinear singularities:

- regularized with infinitesimal photon/gluon and quark masses
- dipole subtraction formalism Catani, Seymour '96; Dittmaier '99; Diener, Dittmaier, Hollik '05

$$\int \mathrm{d}\sigma_{2\to4} = \int \left[\mathrm{d}\sigma_{2\to4} - \sum_{\substack{i,j=1\\i\neq j}}^4 \mathrm{d}\sigma_{2\to4}^{\mathrm{dipole},ij} \right] + \sum_{\substack{i,j=1\\i\neq j}}^4 \mathcal{F}_{ij} \otimes \mathrm{d}\sigma_{2\to3}$$

numerically stable/efficient, but 12 subtraction terms

Phase-space slicing Giele, Glover '92; Giele et al. '93; Keller, Laenen '98; Harris, Owens '01

$$\int \mathrm{d}\sigma_{2\to4} = \int_{\substack{E > \delta_{\mathrm{s}}\sqrt{\hat{s}}/2\\\cos\theta < 1-\delta_{\mathrm{c}}}} \mathrm{d}\sigma_{2\to4} + F(\delta_{\mathrm{s}},\delta_{\mathrm{c}}) \otimes \mathrm{d}\sigma_{2\to3}$$

numerical cancellations/CPU-consuming, but "simple" and important check

phase-space integration

- multi-channel Monte Carlo integration with adaptive optimization Berends, Kleiss, Pittau '94; Kleiss, Pittau '94
 - ~ 250 channels to map peaks from all propagators and dipoles in all partonic channels

- UV structure of virtual corrections
 - $\hookrightarrow\,$ independence of reference mass μ of dimensional regularization
- IR structure of virtual + soft-gluon/photon corrections \hookrightarrow independence of $\ln m_{\gamma}$ (m_{γ} = infinitesimal photon mass)
- mass singularities of virtual + collinear gluon/photon corrections
 - \hookrightarrow independence of $\ln m_{f_i}$ (m_{f_i} = small masses of external fermions)
- gauge invariance of amplitudes with Γ_W, Γ_Z ≠ 0
 → identical results in 't Hooft–Feynman and background-field gauge
 - Denner, Dittmaier, Weiglein '94

- real corrections
 - \hookrightarrow squared amplitudes compared with MADGRAPH Stelzer, Long '94
- combination of virtual and real corrections
 - \hookrightarrow identical results with two-cutoff slicing and dipole subtraction
- two completely independent calculations of all ingredients!

Definition of observables

- Jet definition: k_T algorithm as used at Tevatron run II Blazey et al. '00

 → clusters partons with |η| < 5 into jets with jet resolution D = 0.8
 photons included in clustering

- VBF cuts: following Figy, Zeppenfeld '04
 - ► 2 hard "tagging" jets demanded: $p_{Tj_1} > p_{Tj_2} > 20 \text{ GeV}, |y_{j_{1,2}}| < 4.5$
 - ► tagging jets forward-backward directed: $|y_{j_1} y_{j_2}| > 4$, $y_{j_1} \cdot y_{j_2} < 0$
 - no cuts on Higgs momentum (should be adjusted to specific decays)

NLO settings:

- central scales: $\mu_{\rm R} = \mu_{\rm F} = M_{\rm W}$
- PDFs: MRST2004QED which includes QED corrections and γ PDF with $\alpha_{\rm S}(M_{\rm Z}) = 0.1187$, b-quark contributions neglected
- $\alpha_{\rm s}(\mu_{\rm R})$ with 5 active flavours (top-quark decoupled) and two-loop running
- α defined in G_{μ} scheme: $\alpha_{G_{\mu}} = \sqrt{2}G_{\mu}M_{\rm W}^2(1-M_{\rm W}^2/M_{\rm Z}^2)/\pi$
 - $\hookrightarrow\,$ absorbs running of α from Q=0 to EW scale and $\Delta\rho$ in $Wq\bar{q}'$ coupling

Total cross section for $\mathrm{pp} \to \mathrm{H} + 2\mathrm{jets} + X$

- QCD and EW corrections are of same generic size ($\sim 5\%$)
- sensitivity to cuts: large for QCD, small for EW corrections
- heavy-Higgs corrections at $M_{\rm H} \sim 700 \,{\rm GeV}$: $\underbrace{G_{\mu} M_{\rm H}^2}_{1-\rm loop} \sim \underbrace{(G_{\mu} M_{\rm H}^2)^2}_{2-\rm loop} \sim 4\%$
- scale uncertainty $\sim 2-3\%$ within $M_W/2 < \mu_{R/F} < 2M_W$ in NLO ($\sim 10\%$ in LO)

PAUL SCHERRER INSTITUT

Ciccolini, Denner, Dittmaier '07

	no cuts		VBF cuts		
$M_{ m H}[{ m GeV}]$	120 - 200	700	120 - 200	700	
various corrections:					_
$\delta_{ m QCD(diag)}[\%]$	4 - 0.5	+1	≈ -5	-7	$\mathcal{O}(5{-}10\%)$
$\delta_{ m QCD(int)}[\%]$	$\lesssim 0.2$	-0.1	< 0.1	< 0.1	negligible
$\delta_{{ m EW},qq} [\%]$	≈ -5	+6	pprox -7	+5	$\mathcal{O}(5{-}10\%)$
$\delta_{{ m EW},q\gamma} [\%]$	$\approx +1$	+2	$\approx +1$	+2	$\mathcal{O}(1\%)$
$\delta_{G^2_{\mu} M^4_{ m H}} [\%]$	< 0.1	+4	< 0.1	+4	negligible for $M_{\rm H} < 400 {\rm GeV}$
specific contributions:					_
$\Delta_{s-\mathrm{channel}}[\%]$	30 - 10	1	< 0.6	< 0.1	negligible with VBF cuts
$\Delta_{t/u-\text{interference}}[\%]$	< 0.5	< 0.1	< 0.1	< 0.1	negligible
$\Delta_{ m b-quarks}[\%]$	≈ 4	1	≈ 2	1	

PAUL SCHERRER INSTITUT

Comparison between subtraction and slicing methods

soft region: $E_{\gamma,g} < \delta_s \frac{\sqrt{\hat{s}}}{2}$,collinear cone: $1 - \cos(\theta_{\{\gamma,g\}q}) < \delta_c$ • slicing: 10^9 events, 144 CPU hsubtraction: 10^8 events, 64 CPU h $\Delta \sigma / \sigma_{LO} = 0.2\%$ $\Delta \sigma / \sigma_{LO} = 0.06\%$

PAUL SCHERRER INSTITUT

VBF cuts

100

10

1

0.1

0.01

0

EW and QCD corrections similar

EW corrections -20% at $p_{T,H} = 500 \,\text{GeV}$

VBF cuts

Ciccolini, Denner, Dittmaier '07

- tagging jets forward—backward
- QCD corrections distort shape significantly
- EW corrections depend only weakly on rapidity y_{j_1} (-4% -7%)

PAUL SCHERRER INSTITUT

VBF cuts

Ciccolini, Denner, Dittmaier '07

distribution in $\Delta \phi_{jj}$ sensitive to non-standard HVV couplings Figy, Zeppenfeld '04 EW corrections yield distortion of distribution by 4%

 $pp \rightarrow t\bar{t}b\bar{b} + X$

Background processes: Les Houches '05 wishlist

	Reaction	background for	existing calculations
1.	VVj	$\mathrm{t}\overline{\mathrm{t}}\mathrm{H}$, new physics	WWj: Dittmaier, Kallweit, Uwer '07 WWj: Campbell, R.K.Ellis, Zanderighi '07 WWj: Binoth, Guillet, Karg, Kauer, Sanguinetti (in progress)
2.	${ m t} {ar t} { m b} {ar b}$	$t\bar{t}H$	this talk
3.	${ m t}ar{ m t}jj$	$t\overline{t}H$	—
4.	$VV\mathrm{b}ar{\mathrm{b}}$	$VBF \rightarrow \mathrm{H} \rightarrow VV$, t $\overline{\mathrm{t}}$, NP	—
5.	VVjj	$VBF \to \mathrm{H} \to VV$	VBF: Jäger, Oleari, Zeppenfeld '06 + Bozzi '07
6.	V j j j	new physics	—
7.	VVV	SUSY trilepton signal	ZZZ: Lazopoulos, Melnikov, Petriello '07 WWZ: Hankele, Zeppenfeld '07

VVV: Binoth, Ossola, Papadopoulos, Pittau '07

Technical

validate NLO algorithms by calculating a non-trivial LHC process

- $2 \rightarrow 4$ process involving hexagons
- massless and massive particles, 6 coloured legs

phenomenological

associated $\mathrm{t\bar{t}H}(\mathrm{H}\rightarrow\mathrm{b\bar{b}})$ production

- \bullet can be observed in ${\rm H} \to b \bar{b}$ channel
- exploits large $BR(H \rightarrow b\bar{b})$ for light H
- measurement of top Yukawa coupling

Relevance of $t\bar{t}b\bar{b}$ for analysis of $t\bar{t}H$ production

Proposed analysis (ATLAS TDR)

- select final state $b\bar{b}b\bar{b}jjl\nu$ (4 b-quarks!)
- reconstruct $t\bar{t}b\bar{b}$ (b-tagging crucial)
- select region $|m_{b\bar{b}} M_{H}| < 30 \,\mathrm{GeV}$

Richter-Was and Sapinski, ATL-PHYS-98-132

backgrounds

- small S/B
- dominant B: $t\bar{t}b\bar{b}$ (QCD+EW), $t\bar{t}jj$
- 20% uncertainty on B kills measurement!
- data do not provide enough precision on normalization and shape of B
- scale dependence at LO > 100%
- ⇒ NLO crucial for reliable B prediction and ttH measurement

Benedetti at al. '07

private communication S. Kotov, ATLAS '08

Quark-antiquark and gluon induced processes

quark-antiquark channel

- 5 times less diagrams than gg channel
- not sufficient for LHC (small fraction of σ)
- demonstrate feasibility of calculation

diagrams and impact on $\sigma_{\rm LO}$

	qar q	gg	qg
LO	7	36	
virtual	188	1003	
real	64	341	64
$\sigma/\sigma_{ m tot}$	5%	95%	

Dependence of LO cross section on bb invariant-mass cut

Bredenstein, Denner, Dittmaier, Pozzorini

- relative weight: $\sigma_{\rm gg} \simeq 20 \sigma_{\rm q\bar{q}}$
- $\mathrm{q}\bar{\mathrm{q}}$ and gg have similar shape
- scale dependence \sim factor 2 $\mu_0 = m_{\rm t} + m_{
 m b\bar{b}, cut}/2$

PAUL SCHERRER INSTITUT

Tree (7) and one-loop (188) diagrams

two independent calculations

- generation of diagrams with FeynArts 1.0 and 3.2 Küblbeck et al. '90,'92; Hahn '01
- algebraic simplifications using two independent in-house programs implemented in *Mathematica*, one using FormCalc 5.2 Hahn '06 for preliminary algebraic manipulations (Dirac algebra, covariant decomposition)
- reduction of tensor integrals according to Denner, Dittmaier, NPB658 (2003)175 [hep-ph/0212259], NPB734 (2006) 62 [hep-ph/0509141]
 → numerically stable results

top quarks massive and bottom quarks massless

Structure of one-loop contributions to $\bar q q \to t \bar t b \bar b$

Standard matrix elements and colour structures for individual diagram Γ

$$\mathcal{M}^{(\Gamma)} = \underbrace{\mathcal{C}^{(\Gamma)}}_{\text{factorized}} \quad \sum_{m} \mathcal{F}^{(\Gamma)}_{m}(\{p_a \cdot p_b\}) \underbrace{\hat{\mathcal{M}}_{m}(\{p_a\}, \{\lambda\})}_{\text{factorized}}$$

factorized colour structure standard matrix elements

form factors $\mathcal{F}_m^{(\Gamma)}$

PAUL SCHERRER INSTITUT

$$\mathcal{F}_{m}^{(\Gamma)}(\{p_{a} \cdot p_{b}\}) = \sum_{j_{1} \dots j_{R}} \mathcal{K}_{m, j_{1} \dots j_{R}}^{(\Gamma)}(\{p_{a} \cdot p_{b}\}) \underbrace{\mathcal{T}_{j_{1} \dots j_{R}}(\{p_{a} \cdot p_{b}\})}_{\text{tensor loop coefficients}}$$

computed numerically diagram by diagram (no analytic reduction to scalar integrals) main goals

- reduction to small set of standard matrix elements $\hat{\mathcal{M}}_m$
- fast and stable numerical evaluation of tensor integrals $T_{j_1...j_R}$

• six colour structures for $\bar{q}q \rightarrow t\bar{t}b\bar{b}$

$$1 \otimes T^{a} \otimes T^{a}, \qquad T^{a} \otimes 1 \otimes T^{a}, \qquad T^{a} \otimes T^{a} \otimes 1,$$

$$1 \otimes 1 \otimes 1, \qquad f^{abc}T^{a} \otimes T^{b} \otimes T^{c}, \qquad d^{abc}T^{a} \otimes T^{b} \otimes T^{c}$$

rational terms originate from 1/(D-4) poles of tensor loop integrals

$$\mathcal{K}_{m,j_1\dots j_R}^{(\Gamma)}(D) \underbrace{T_{j_1\dots j_R}}_{\substack{m,j_1\dots j_R}} = \mathcal{K}_{m,j_1\dots j_R}^{(\Gamma)}(4) T_{j_1\dots j_R} + \mathcal{K}_{m,j_1\dots j_R}^{\prime(\Gamma)}(4) R_{j_1\dots j_R}$$
$$+ \mathcal{O}(D-4)$$

- residues $R_{j_1...j_R}$ of tensor integrals explicitly available
- after (D-4)-expansion continue calculation in D=4

after cancellation of 1/(D-4) poles work in 4 dimensions use Chisholm identity

$$i\varepsilon^{\alpha\beta\gamma\delta}\gamma_{\delta}\gamma^{5} = \gamma^{\alpha}\gamma^{\beta}\gamma^{\gamma} - g^{\alpha\beta}\gamma^{\gamma} + g^{\alpha\gamma}\gamma^{\beta} + g^{\beta\gamma}\gamma^{\alpha}$$

and identities that can be derived therefrom, like

$$\gamma^{\mu}\gamma^{\alpha}\gamma^{\beta}\omega_{\pm}\otimes\gamma_{\mu}\omega_{\mp} = \gamma^{\mu}\omega_{\pm}\otimes\gamma^{\alpha}\gamma^{\beta}\gamma_{\mu}\omega_{\mp}$$
$$\gamma^{\mu}\gamma^{\alpha}\gamma^{\nu}\omega_{\pm}\otimes\gamma_{\mu}\gamma^{\beta}\gamma_{\nu}\omega_{\mp} = 4\gamma^{\beta}\omega_{\pm}\otimes\gamma^{\alpha}\omega_{\mp}$$

construct a sophisticated algorithm to reduce # of γ -contractions and p/γ -terms \Rightarrow reduction of all Dirac structures to ≤ 200 standard matrix elements without introducing new denominators that might spoil numerical stability

Diagrams and matrix elements for $\bar{q}q \rightarrow t\bar{t}b\bar{b}g$

• 64 Feynman diagrams

 analytically with Weyl-van der Waerden spinors Dittmaier '98 and with Madgraph 4.1.33 Maltoni, Stelzer

soft and collinear singularities

- regularized dimensionally or with infinitesimal gluon and quark masses
- dipole subtraction Catani, Seymour '96; Catani, Dittmaier, Seymour, Trócsányi '02
 30 subtraction terms
- phase-space slicing Giele, Glover '92; Giele et al. '93; Keller, Laenen '98; Harris, Owens '01
- initial-state collinear singularities cancelled by $\overline{\mathrm{MS}}$ redefinition of PDFs

phase-space integration

• adaptive multi-channel Monte Carlo Berends, Kleiss, Pittau '94; Kleiss, Pittau '94; $\mathcal{O}(300)$ channels to map all peaks from propagators and dipoles

PAUL	SCHEI	RER	INST	TITUT
	$\left[- \right]$	—	Γ	

- leading order checked against SHERPA Gleisberg et al. '03
- virtual corrections
 - cancellation of UV, soft and collinear singularities
 - independent calculations agree pointwise and after phase space integration
- real corrections
 - cancellation of soft and collinear singularities
 - **Stelzer, Long '94** Stelzer, Long '94
 - independent calculations agree after phase space integration
- combination of virtual and real corrections
 - subtraction terms in independent calculations agree pointwise
 - independent calculations agree after phase space integration
 - identical results with two-cutoff slicing and dipole subtraction
- two completely independent calculations of all ingredients!

Definition of observables

PAUL SCHERRER INSTITUT

- jet definition: $k_{\rm T}$ algorithm as used at Tevatron run II Blazey et al. '00
 - ▶ select massless partons (g, q and b) with $|\eta| < 5$
 - reconstruct jets with $\sqrt{\Delta \phi^2 + \Delta y^2} > D = 0.8$
- cuts for b jets:
 - ▶ require two b-jets with $p_{T,j} > 20 \text{ GeV}$ and $y_j < 2.5$ (b tagging!)
 - ▶ $b\bar{b}$ invariant mass: $m_{b\bar{b}} > m_{b\bar{b},cut}$
 - no cuts on top momentum

NLO settings: [LO obtained with LO α_s , LO PDFs and 1-loop running]

- central scale: $\mu_0 = m_t + m_{b\bar{b},cut}/2$ ($m_t + M_H/2$ for $t\bar{t}H$)
- PDFs: CTEQ6M with $\alpha_{\rm S}(M_{\rm Z}) = 0.118$, b-quark contributions neglected
- $\alpha_{\rm s}(\mu_{\rm R})$ with 5 active flavours (top-quark decoupled) and two-loop running
- top mass: $m_{\rm t} = 172.6 \,{\rm GeV}$

The following results are PRELIMINARY

- $q\bar{q}$ channel only
- not all cross checks completed (but almost!)

Subtraction versus slicing for $\bar q q \to t \bar t b \bar b$

PRELIMINARY

- slicing cuts in partonic CM frame: soft region: $E_{g} < \delta_{s} \frac{\sqrt{\hat{s}}}{2}$, collinear cone: $1 - \cos(\theta_{gq}) < \delta_{c}$
- slicing: 10^9 events, subtraction: 2×10^8 events
- relative NLO correction: $\sim 2.5\%$, $\sigma_{\rm LO} = 85.520(26)$ fb, $\sigma_{\rm NLO} = 87.698(56)$ fb

Bredenstein, Denner, Dittmaier, Pozzorini

PRELIMINARY

LO, NLO: $\mu_{
m F}=\mu_{
m R}$ LO', NLO': $\mu_{
m F}=m_{
m t}^2/\mu_{
m R}$

- central scale $\mu_0 = m_t$
- dominant dependence from $\alpha_{\rm S}(\mu_{\rm R})^4$
- $\mu_{\rm F}$ -dependence much smaller
- huge LO dependence: up to factor 4 $m_{\rm t}/2 < \mu < 2m_{\rm t}$: +55%, -50%
- stabilization at NLO (close to maximum) $m_{\rm t}/2 < \mu < 2m_{\rm t}$: $\pm 17\%$

PRELIMINARY

Bredenstein, Denner, Dittmaier, Pozzorini

- strong reduction of scale dependence
- NLO consistent with LO uncertainty band
- shape of $m_{
 m b\bar{b}}$ distorted by corrections

Runtime and statistical precision $(\Delta\sigma/\sigma_{\rm LO})$ with 3 GHz Intel Xeon processor

	$\sigma/\sigma_{ m LO}$	# events (after cuts)	$\Delta\sigma/\sigma_{ m LO}$	runtime	time/event
tree	74.8%	6×10^7	3×10^{-4}	64min	60μ S
virtual	-4.3%	0.34×10^7	2.5×10^{-4}	12h	13 ms
real + dipoles	32.0%	11×10^7	5×10^{-4}	31h	1 ms
all	2.5%		6×10^{-4}	70h	

- speed of virtual corrections (13 ms/event) very encouraging
- for same precision (Δσ/σ) virtual corrections require less CPU-time than real corrections (scale-dependent statement!)

Conclusions

NLO calculations for multiparticle processes at the LHC

- necessary for adequate exploitation of experimental data
- lots of progress in recent years, many active groups

Higgs production in vector-boson fusion $pp \rightarrow H + 2jets + X$

- important channel for Higgs-boson search and study
- complete electroweak and QCD NLO corrections known electroweak corrections ~ −5%, comparable to QCD corrections → theoretical accuracy below uncertainties from PDFs and experiment

NLO calculation for $pp \rightarrow t\bar{t}b\bar{b} + X$

- very important for $\mathrm{t}\bar{\mathrm{t}}\mathrm{H}$ measurement
- $2 \rightarrow 4$ LHC process
- first results for $q\bar{q}$ channel available (scale dependence reduced by factor 3)
- calculation of gg channel in progress

Backup slides

BSM effects in azimuthal angle difference

Azimuthal angle difference $\Delta \phi_{jj}$ of tagging jets is sensitive to BSM effects:

Denner, Dittmaier, Roth, Wieders '05

Basic idea: (renormalized) mass² = location of propagator pole in complex p^2 plane \hookrightarrow consistent use of complex masses everywhere!

application to gauge-boson resonances:

- replace $M_W^2 \to \mu_W^2 = M_W^2 iM_W\Gamma_W$, $M_Z^2 \to \mu_Z^2 = M_Z^2 iM_Z\Gamma_Z$ and define (complex) weak mixing angle via $\cos^2 \theta_w \equiv c_w^2 = 1 - s_w^2 = \frac{\mu_W^2}{\mu_Z^2}$
- virtues:
 - gauge-invariant result (Ward identities, Slavnov–Taylor identities)
 - \hookrightarrow gauge-parameter independence, unitarity cancellations!
 - perturbative calculations as usual (complex counterterms!)
 - no double counting (bare Lagrangian unchanged!)
- drawbacks: spurious terms of $\mathcal{O}(\alpha\Gamma/M) = \mathcal{O}(\alpha^2) \Rightarrow$ beyond NLO accuracy (from Γ in *t*-channel/off-shell propagators and complex mixing angle)
- loop integrals with complex masses

Classification of QCD corrections

Possible Born diagrams:

diagrams (2) only for $q\bar{q}q\bar{q}$ and $q\bar{q}q'\bar{q}'$ channels (q' = weak-isospin partner of q)

classification of QCD corrections into four categories:

: (typical diagrams shown)

nondiag, g-split, gg-fusion = corrections to interferences (only for $q\bar{q}q\bar{q}$ and $q\bar{q}q'\bar{q}'$ channels) gg-fusion int.: see also Anderson, Smillie '06 and in $\mathcal{O}(\alpha^2 \alpha_s^3)$ Anderson et al. '07, Bredenstein et al. '08

electroweak (EW) corrections of similar size as QCD corrections EW corrections -4% - -7%

Particle Theory Seminar, PSI, June 12, 2008

Ciccolini, Denner, Dittmaier '07

VBF cuts

Ciccolini, Denner, Dittmaier '07

$M_{\rm H} \; [{\rm GeV}]$	120	150	200	400	700
$\sigma_{\rm LO} [{\rm fb}]$	1876.3(5)	1589.8(4)	1221.1(3)	487.31(9)	160.67(2)
$\sigma_{\rm NLO} \; [{\rm fb}]$	1665(1)	1407.5(8)	1091.3(5)	435.4(2)	160.36(5)
$\delta_{ m EW}~[\%]$	-6.47(2)	-6.27(2)	-4.98(1)	-3.99(1)	6.99(2)
$\delta_{\mathrm{EW},qq} ~ [\%]$	-7.57(2)	-7.42(2)	-6.19(1)	-5.37(1)	5.44(2)
δ_{γ} -induced $[\%]$	1.10	1.15	1.22	1.38	1.55
$\delta_{ m QCD}$ [%]	-4.77(4)	-5.20(4)	-5.65(3)	-6.67(3)	-7.18(2)
$\delta_{ m QCD,diag} \ [\%]$	-4.75(4)	-5.17(4)	-5.66(4)	-6.63(3)	-7.18(2)
$\delta_{\rm QCD,nondiag}$ [%]	-0.011	-0.0052(1)	0.0032(1)	0.0030	0.0022
$\delta_{ extsf{g-split}}$ [%]	-0.0085(1)	0.0084(1)	0.027	0.014	0.0074
$\delta_{ m gg-fusion}~[\%]$	-0.030	-0.030	-0.028(1)	-0.020	-0.014
$\delta_{G^2_{\mu} M^4_{ m H}} [\%]$	0.0035	0.0086(1)	0.027	0.43	4.06(1)

electroweak corrections -6.5% - +7%photon-induced corrections $\sim 1\%$ interference corrections $\sim 0.02\%$ 10^8 weighted events ~ 100 CPU h on Xeon 3 GHz PC per cross section

No cuts

Ciccolini, Denner, Dittmaier '07

$M_{\rm H} \; [{\rm GeV}]$	120	150	200	400	700
$\sigma_{ m LO} [{ m fb}]$	5943(1)	4331(1)	2855.4(6)	900.7(1)	270.51(4)
$\sigma_{ m NLO} \; [{ m fb}]$	5872(2)	4202(2)	2765(1)	871.8(3)	294.33(9)
$\delta_{ m EW}~[\%]$	-4.94(2)	-4.91(2)	-3.67(1)	-2.97(1)	7.74(2)
$\delta_{\mathrm{EW},qq} ~ [\%]$	-5.79(2)	-5.92(2)	-4.85(1)	-4.50(1)	5.99(2)
δ_{γ} -induced $[\%]$	0.85	1.00	1.18	1.53	1.75
$\delta_{ m QCD} \ [\%]$	3.75(5)	1.94(3)	0.49(3)	-0.24(3)	1.06(3)
$\delta_{ m QCD,diag} \ [\%]$	3.97(3)	2.04(3)	0.55(3)	-0.06(3)	1.14(3)
$\delta_{\rm QCD,nondiag}$ [%]	0.010(2)	0.027(2)	0.050(1)	0.026	0.013
$\delta_{ extbf{g-split}}$ [%]	-0.015(1)	0.059(1)	0.110(1)	0.040(1)	0.017(1)
$\delta_{ m gg-fusion} \ [\%]$	-0.19(1)	-0.20	-0.22	-0.24	-0.11(1)
$\delta_{G^2_{\mu} M^4_{ m H}} [\%]$	0.0027	0.0073	0.025	0.42	4.03(1)

electroweak corrections -5% - +8%photon-induced corrections $\sim 1\%$ interference corrections $\sim 0.1\%$ $5 imes 10^7$ weighted events $\sim 100~{
m CPU}~{
m h}$ on Xeon 3 GHz PC per cross section

Tuned comparison: only squared *t*- and *u*-channel diagrams, no interferences

VVH2 by M. Spira based on Hahn, Valencia, Willenbrock '92 no cuts

$M_{\rm H} \; [{\rm GeV}]$	120	150	170	200	400	700
$\sigma_{ m LO} [{ m fb}]$	4226.3(6)	3357.8(5)	2910.7(4)	2381.6(3)	817.6(1)	257.49(4)
$\sigma_{ m LO}^{_{ m VV2H}}[{ m fb}]$	4226.2(4)	3357.3(3)	2910.2(3)	2380.4(2)	817.33(8)	257.40(3)
$\sigma_{ m NLO} [{ m fb}]$	4424(4)	3520(3)	3052(3)	2505(2)	858.4(7)	268.2(2)
$\sigma_{ m NLO}^{_{ m VV2H}}~[{ m fb}]$	4415(1)	3519.7(8)	3055.8(7)	2503.4(6)	858.8(2)	268.03(6)

agreement within 0.2% \sim statistical error

VBF cuts: VBFNLO Zeppenfeld et al. VBF cuts

$M_{\rm H} \; [{\rm GeV}]$	120	150	170	200	400	700
$\sigma_{ m LO} [{ m fb}]$	1686.2(3)	1433.4(2)	1290.3(2)	1106.8(1)	451.27(5)	153.68(2)
$\sigma_{ m LO}^{_{ m VBFNLO}} [{ m fb}]$	1686.90(5)	1433.79(4)	1290.42(4)	1106.97(3)	451.31(1)	153.689(4)
$\sigma_{ m NLO} [{ m fb}]$	1728(2)	1463(1)	1313(2)	1121(1)	444.8(3)	147.2(1)
$\sigma_{ m NLO}^{_{ m VBFNLO}} [{ m fb}]$	1728.8(2)	1461.7(2)	1311.7(1)	1119.8(1)	444.71(3)	147.14(1)

agreement within 0.1% \sim statistical error

VBF cuts

Ciccolini, Denner, Dittmaier '07

QCD corrections peak in forward and backward direction

PAUL SCHERRER INSTITUT

VBF cuts

Ciccolini, Denner, Dittmaier '07

QCD and EW corrections become more and more negative for large $p_{\rm T,j_1}$ QCD and EW corrections add up for large $p_{\rm T,j_1}$

Particle Theory Seminar, PSI, June 12, 2008

PAUL SCHERRER INSTITUT

VBF cuts

Ciccolini, Denner, Dittmaier '07

QCD and EW corrections become more and more negative for large p_{T,j_2} QCD and EW corrections add up for large p_{T,j_1}

25 types of standard matrix elements (polarization dependent)

• 10 of "massless" type: one Dirac matrix per chain

• 15 of "massive" type: 2/0 Dirac matrices inside the $\mathrm{t}\bar{\mathrm{t}}$ chain*

*price to pay for the presence of massive top quarks