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Motivations

B̄ → Xsγ most precise short-distance information currently available for ∆B = 1 FCNC

e−

e+ b̄

b
ū or d̄

u or d

γ

e+e− → Υ(4s) → B+B−, B0B̄0

first found by CLEO collaboration in 1994

B(B̄ → Xsγ)exp
Eγ >1.6 GeV = (3.55 ± 0.26) × 10−4

[HFAG2006]

less sensitive to non-perturbative effects
dominant ones: O(Λ2/m2

b), O(Λ2/m2
c), O(αsΛ/mb)

=⇒ Γ(B̄ → Xsγ) ≈ Γ(b → Xparton
s γ)

= Γ(b → sγ) + Γ(b → sγg) + . . .
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Motivations

loop induced in SM and highly sensitive to new
physics which is not suppressed by factors of α as
compared to SM contributions
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Experimental precision already better than theoretical NLO prediction

B(B̄ → Xsγ)th,NLO
Eγ >1.6 GeV = (3.57 ± 0.30) × 10−4

[Misiak et al 2001,Buras et al 2002]

B(B̄ → Xsγ)exp = (3.55 ± 0.26) × 10−4

[HFAG 2006]

Super-B factory: 5% uncertainty possible
(more statistics, lower Eγ )
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Experimental precision already better than theoretical NLO prediction

B(B̄ → Xsγ)th,NLO
Eγ >1.6 GeV = (3.57 ± 0.30) × 10−4

[Misiak et al 2001,Buras et al 2002]

B(B̄ → Xsγ)exp = (3.55 ± 0.26) × 10−4

[HFAG 2006]

Super-B factory: 5% uncertainty possible
(more statistics, lower Eγ )

⇒ strong constraints on new physics require better theoretical precision
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Motivations

B(B̄ → Xsγ)exp
Eγ >1.6 GeV = (3.55 ± 0.26) × 10−4

[HFAG 2006]

Contributions to the theory prediction

B(B̄ → Xsγ)Eγ>1.6 GeV = B(B̄ → Xceν̄)exp
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expected NNLO corrections to B (∼ 7%) are of the same size as the experimental error
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Motivations

Charm quark mass definition ambiguity

dependence of B(B̄ → Xsγ)theo

on mc enters through the 〈sγ|O1,2|b〉

which start contributing at O (αs)
b s

γ
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c

mpole
c /mpole

b
= 0.29 ± 0.02

B(B̄ → Xsγ)theo = (3.32 ± 0.30) × 10−4

mc(mb/2)/mpole
b

= 0.22 ± 0.04

B(B̄ → Xsγ)theo = (3.70 ± 0.30) × 10−4

[Aubertetal 02]

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

Kagan and Neubert

Gambino and Misiak

CLEO 95
ALEPH 98

BELLE 01
CLEO 01

BABAR 02

World Average

-4
 1

0
×

) γ s
 X

→
B

(B
 

R.Boughezal, PSI, 30th October 2008 – p.8/27



Motivations

Charm quark mass definition ambiguity

dependence of B(B̄ → Xsγ)theo

on mc enters through the 〈sγ|O1,2|b〉

which start contributing at O (αs)
b s

γ

O1, O2

c

mpole
c /mpole

b
= 0.29 ± 0.02

B(B̄ → Xsγ)theo = (3.32 ± 0.30) × 10−4

mc(mb/2)/mpole
b

= 0.22 ± 0.04

B(B̄ → Xsγ)theo = (3.70 ± 0.30) × 10−4

[Aubertetal 02]

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

Kagan and Neubert

Gambino and Misiak

CLEO 95
ALEPH 98

BELLE 01
CLEO 01

BABAR 02

World Average

-4
 1

0
×

) γ s
 X

→
B

(B
 

difference between using mc(µ) and mpole
c is a NNLO effect

in the branching ratio
=⇒ resolving the ambiguity requires going to the NNLO level
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Theoretical framework

diagrams involve scales with large hierarchy

MW , Mt ≫ mb ≫ ms =⇒ large log

„
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Theoretical framework

Calculation done in three steps:

Matching find the Wilson coefficients Ci(µ) by comparing the full
and the effective theory at the mass scale µ ≈ MW

⇒ no large logarithms and only vacuum diagrams

Mixing compute the anomalous dimensions of the operators and solve
the renormalization group equations to go down with the Wilson
coefficients to µ ≈ mb

d

dµ
Cj(µ) = Ci(µ)γij(µ)

Matrix elements calculate the matrix elements of all the operators
at µ ≈ mb ⇒ no large logarithms as no heavy masses are present
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Current state-of-the-art for NNLO corrections

1. Matching

2-loop matching for (O1, . . . ,O6) [Bobeth,Misiak,Urban 00]

3-loop matching for O7 and O8 [Misiak,Steinhauser 04]

2. Mixing

3-loop: (O1, . . . , O6) and (O7, O8) sectors [Gorbahn,Haisch 05]

[Gorbahn,Haisch,Misiak 05]

4-loop (O1, . . . , O6) −→ (O7, O8) [Czakon,Haisch,Misiak 06]
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[Gorbahn,Haisch,Misiak 05]

4-loop (O1, . . . , O6) −→ (O7, O8) [Czakon,Haisch,Misiak 06]

3. Matrix elements
O1, O2, O7, O8 large β0 [Bieri,Greub,Steinhauser 03]

O7 [Blokland,Czarnecki,Misiak,Slusarczyk,Tkachov 05]

[Asatrian,Hovhannisyan,Poghosyan,Ewerth,Greub,Hurth 06]

O7, photon spectrum [Melnikov,Mitov 05] [Asatrian,Ewerth,Ferroglia,Gambino,Greub 06]

O1, O2 leading term for mc ≫ mb [Misiak,Steinhauser 06]
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The NNLO estimated Branching Ratio

B(B̄ → Xsγ)theo
Eγ >1.6 GeV = (3.15 ± 0.23) × 10−4

[Misiak et al 06] [Misiak,Steinhauser 06]

Decomposition of Uncertainty

non-perturbative 5% O(αsΛ/mb)

parametric 3% αs(MZ), Bexp
SL , mc . . .

mc interpolation 3% (O1,2 matrix elements)

higher order 3% (µb, µc, µ0 dependence)
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More about the interpolation uncertainty
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no large cc̄ threshold effects at mc = mb/2
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is the source of the interpolation uncertainty
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Reducing the overall uncertainty of B(B̄ → Xsγ)theo,NNLO

Eγ>1.6 GeV

removing the interpolation uncertainty

=⇒ need a complete calculation of 〈sγ|O1,2|b〉 at mc 6= 0
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−→ working on the virtual part [R. B, Czakon, Schutzmeier]
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reducing the interpolation uncertainty

=⇒ need a complete calculation of 〈sγ|O1,2|b〉 at mc = 0
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in progress [R. B, Czakon, Schutzmeier]
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Removing the interpolation uncertainty: virtual part

approx. 400 3-loop on-shell vertex diagrams with two scales mb & mc

around 500 masters are involved in the bare amplitude

symbolic reduction down to masters is not yet complete for the full 3-loop vertex

O
`

α2

snf

´

correction to 〈sγ|O1,2|b〉:
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around 500 masters are involved in the bare amplitude

symbolic reduction down to masters is not yet complete for the full 3-loop vertex

O
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snf

´

correction to 〈sγ|O1,2|b〉:

b s

γ

c

O2

masters were calculated with Mellin Barnes
first way: a numerical integration of the MB
representations is performed for specific values
of z using the MB package
[MB : Czakon 05] ,
[MBrepresentation : Chachamis, Czakon 06]

second way:

perform an expansion in z = m2
c/m2

b by
closing contours
coefficients of the expansion are given by at
most a 1-dimensional MB integral expressed
as a sum over residues
sum these infinite series using XSummer

[Moch & Uwer 05]
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MB alone was not enough to calculate
all the masters due to poor convergence

use differential equations solved numerically

boundaries were obtained using diagrammatic
large mass expansion for mc ≫ mb
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〈sγ|O2|b〉O(α2
snf )

Results for the massive fermionic contributions:
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−→ moderate negative corrections wrt. massless
approximation
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numerical impact of the mass corrections on B(B̄ → Xsγ) = + 1.1% for µb = 2.5 GeV

R.Boughezal, PSI, 30th October 2008 – p.16/27



Reducing the interpolation uncertainty

calculating O
`

α2

s

´

correction to 〈sγ|O1,2|b〉 at mc = 0 helps significantly
in reducing the interpolation uncertainty

=⇒
b b

s

c

O2 O7

+ . . .

up to 4-particle cuts: γs, γsg, γsgg, γsqq̄
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correction to 〈sγ|O1,2|b〉 at mc = 0 helps significantly
in reducing the interpolation uncertainty
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up to 4-particle cuts: γs, γsg, γsgg, γsqq̄

506 diagrams expressed through 42093 integrals

if we do not distinguish between masters that differ only in their imaginary part:
∼ 300 masters have to be calculated BUT HOW ?

Mellin Barnes [Smirnov ′
99, Tausk ′

99]

Differential equations [Gehrmann, Remiddi ′
00]

Sector decomposition [Binoth, Heinrich ′
00]

Nested Sums [Moch, Uwer, Weinzierl ′
01]

Difference equations [Laporta ′
01]
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How to get the masters ?

the 4-loop on-shell cut masters:

Mellin Barnes
do we know how to use it for integrals with on-shell unitarity cuts ?

dimension of the representations for 4-loop cut self energy integrals
with up to 4 internal massive lines is an issue

convergence of the representation is an other issue
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How to get the masters ?

the 4-loop on-shell cut masters:

Mellin Barnes
do we know how to use it for integrals with on-shell unitarity cuts ?

dimension of the representations for 4-loop cut self energy integrals
with up to 4 internal massive lines is an issue

convergence of the representation is an other issue

Differential equations

work off-shell (p2
b 6= m2

b) ⇒ introduced a new parameter to the masters

need boundaries

Difference equations

needed boundaries are 3-loop massive boxes with on-shell unitarity cuts

Nested Sums
do all the masters have the form of a harmonic sum ?

Sector decomposition

high precision results vs. running time . . .

so what is the way out ?
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Winning strategy: combining methods

Merging methods is the way to go, but a long
chain of steps:
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Winning strategy: combining methods

Merging methods is the way to go, but a long
chain of steps:

evaluation of off-shell master integrals Vi(z, ǫ) with
help of numerical differential equations (deqns)
[Caffo, Czyz, Remiddi 98]

d

dz
Vi(z, ǫ) = Aij(z, ǫ)Vj(z, ǫ), z = p2

b/m2
b

Idea:
calculate integrals at some ”simple” point
(e.g. p2

b ≪ m2
b )

Integrate system of deqns starting at this limit up
to the on-shell condition z = 1
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Winning strategy: combining methods

Merging methods is the way to go, but a long
chain of steps:

evaluation of off-shell master integrals Vi(z, ǫ) with
help of numerical differential equations (deqns)
[Caffo, Czyz, Remiddi 98]

d

dz
Vi(z, ǫ) = Aij(z, ǫ)Vj(z, ǫ), z = p2

b/m2
b

Idea:
calculate integrals at some ”simple” point
(e.g. p2

b ≪ m2
b )

Integrate system of deqns starting at this limit up
to the on-shell condition z = 1

→ but:deqns singular in both endpoints! (and on naive con-
tour z ∈ R)
⇒ solution:combine expansions with numerical integration in
complex plane
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Winning strategy: combining methods

Merging methods is the way to go, but a long
chain of steps:

expand in ǫ and z in the limit z → 0 with ansatz:

Vi(z, ǫ) =
X

nmk

c
0
inmkǫ

n
z

m
log

k
z

solve recursively for c0
inmk up to high powers in z

boundary conditions:

Mellin Barnes & diagrammatic large-mass
expansions for p2

b ≪ m2
b

⇒ high precision values for z ≈ 0
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Winning strategy: combining methods

Merging methods is the way to go, but a long
chain of steps:

expand in ǫ and z in the limit z → 0 with ansatz:

Vi(z, ǫ) =
X

nmk

c
0
inmkǫ

n
z

m
log

k
z

solve recursively for c0
inmk up to high powers in z

boundary conditions:

Mellin Barnes & diagrammatic large-mass
expansions for p2

b ≪ m2
b

⇒ high precision values for z ≈ 0

use these values as starting point for numerical
integration (in complex plane) up to z ≈ 1

( ZVODE, Hindmarsh et al )

perform another power logarithmic expansion around
z → 1 and solve coefficients c1

inmk recursively

use numerical integration to fix the remaining c1
inmk
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Winning strategy: combining methods

Merging methods is the way to go, but a long
chain of steps:

expand in ǫ and z in the limit z → 0 with ansatz:

Vi(z, ǫ) =
X

nmk

c
0
inmkǫ

n
z

m
log

k
z

solve recursively for c0
inmk up to high powers in z

boundary conditions:

Mellin Barnes & diagrammatic large-mass
expansions for p2

b ≪ m2
b

⇒ high precision values for z ≈ 0

use these values as starting point for numerical
integration (in complex plane) up to z ≈ 1

( ZVODE, Hindmarsh et al )

perform another power logarithmic expansion around
z → 1 and solve coefficients c1

inmk recursively

use numerical integration to fix the remaining c1
inmk

result for z = 1 is the leading term
R.Boughezal, PSI, 30th October 2008 – p.20/27



Boundaries for DEQs: 2- and 3-particle cuts

derive a MB representation for loops on the left and
the right of the cut

integrate over the phase space analytically

perform an analytic continuation in ε for ε → 0

[MB.m, M.Czakon]

expand in z = p2
b/m2

b where p2
b ≪ m2

b by closing
contours in the multi-fold MB integrals

use Barnes Lemmas to remove some integrations if
possible

for multi-fold MB integrals (up to 3) integrate
numerically → we use a C++ implementation

of the double-exponential integration method
[H. Takahasi & M. Mori] in quad-double precision

(≈ 64 digits) based on the qd library [Bailey, Hida, Li]

⇒ all boundaries obtained with at least 16 digits

b b
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a boundary example

PR214(1,1,1,1,1,1,1,1,0,0,0,0,0,0) =

a three-parameter MB representation:

1

(2πi)3

Z i∞

−i∞

dy1dy2dy3 (z)
y3s

y1
12 s

y2
13Γ(. . .) with z = p

2
b/m

2
b

after integrating over the three-particle phase space:

1

(2πi)3

Z i∞

−i∞

dy1dy2dy3(z)1−2ep+y1+y2+y3Γ(. . .)

After analytic continuation ε → 0 and Laurent expansion in ε, the leading power of z for z → 0

is extracted from the remaining MB integrals by taking residues
⇒ only one MB-parameter is left for terms of order z up to O(ε2)

PR214(1,1,1,1,1,1,1,1,0,0,0,0,0,0) = I ∗ π ∗ (

z ∗ (3.750000000000000 + 0.5/ε + 16.4800659331517735 ∗ ε

+(−1. − 7.5000000000000000 ∗ ε) ∗ Log[z] + (1. ∗ ε) ∗ Log[z]2 )
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DEQs: deep expansions

PR214(1,1,1,1,1,1,1,1,0,0,0,0,0,0) = I ∗ π ∗ (

z ∗ (3.750000000000000 + 0.5/ε + 16.4800659331517735 ∗ ε

+(−1. − 7.5000000000000000 ∗ ε) ∗ Log[z] + (1. ∗ ε) ∗ Log[z]2) +

z
2
∗ (0.2361111111111111 + 0.0138888888888888/ε + 1.7077796092542159 ∗ ε

+(−0.0277777777777777 − 0.4722222222222222 ∗ ε) ∗ Log[z]

+(0.0277777777777777 ∗ ε) ∗ Log[z]2) +

z
3
∗ (0.03418209876543209 + 0.000925925925925926/ε + 0.347796161193079416 ∗ ε

+(−0.001851851851851852 − 0.068364197530864197 ∗ ε) ∗ Log[z]

+(0.001851851851851852 ∗ ε) ∗ Log[z]2) +

z
4
∗ (0.008763888888888888 + 0.00008928571428571428/ε + 0.11083575086108689 ∗ ε

+(−0.00017857142857142857 − 0.017527777777777777 ∗ ε) ∗ Log[z]

+(0.00017857142857142857 ∗ ε) ∗ Log[z]2) +

z
5
∗ (0.0032595238095238095 + 0.0000105820105820582/ε + 0.04672701785631597 ∗ ε

+(−0.0000211640211640211 − 0.0065190476190476190 ∗ ε) ∗ Log[z]

+(0.0000211640211640211 ∗ ε) ∗ Log[z]2) + · · · + O(z19))
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Some Results for 2- and 3-particle cuts

Preliminary results: sample masters with 2- and 3-particle cuts

Im Re
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0

5

10

15

20

25

30

0.25 0.5 0.75 1 1.25 1.5 1.75

-0.4

-0.2

0

0.2

0.4

0 0.25 0.5 0.75 1 1.25 1.5 1.75
100

200

300

400

500

600

0.25 0.5 0.75 1 1.25 1.5 1.75 2
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-80
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-40
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-10

0

x=p2
b/m2

b x=p2
b/m2

bExpansions:

x → 0: up to x18

x → 1: up to (1 − x)12

Numerical integration: starts at x0 = 0.02

Matching: done at x1 = 0.9
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Some Results for 2- and 3-particle cuts

Preliminary results at x = 1: sample masters with 2- and 3-particle cuts

=
1.4514 i

ε
+ 11.6173 i + O (ε)

=
3.14159 i

ε3
+

20.0142 i

ε2
+

77.1378 i

ε
+ 209.713 i + O (ε)

=
−2.0944 i

ε3
−

12.5778 i

ε2
−

35.6402 i

ε
− 125.153 i + O (ε)

=
−2.0944 i

ε3
−

4.91208 i

ε2
−

30.5699 i

ε
− 40.7068 i + O (ε)
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Some Results for 2- and 3-particle cuts

Preliminary results at x = 1: sample masters with 2- and 3-particle cuts

=
1.4514 i

ε
+ 11.6173 i + O (ε)

=
3.14159 i

ε3
+

20.0142 i

ε2
+

77.1378 i

ε
+ 209.713 i + O (ε)

=
−2.0944 i

ε3
−

12.5778 i

ε2
−

35.6402 i

ε
− 125.153 i + O (ε)

=
−2.0944 i

ε3
−

4.91208 i

ε2
−

30.5699 i

ε
− 40.7068 i + O (ε)

masters with 2-particle cuts are obtained with two independent calculations
→ cross checks will be done soon
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Some Results for 2- and 3-particle cuts

Preliminary results at x = 1: sample masters with 2- and 3-particle cuts

=
1.4514 i

ε
+ 11.6173 i + O (ε)

=
3.14159 i

ε3
+

20.0142 i

ε2
+

77.1378 i

ε
+ 209.713 i + O (ε)

=
−2.0944 i

ε3
−

12.5778 i

ε2
−

35.6402 i

ε
− 125.153 i + O (ε)

=
−2.0944 i

ε3
−

4.91208 i

ε2
−

30.5699 i

ε
− 40.7068 i + O (ε)

masters with 2-particle cuts are obtained with two independent calculations
→ cross checks will be done soon

what we have:
masters with massless internal lines:
all 2- and 3-particle cuts
all 4-particle cuts but one

masters with b-quark internal lines:
2- and 3-particle cuts are almost there

still to be calculated: masters with 4-particle cuts and internal b-lines
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Summary

Matching current and future experimental precision for B̄ → Xsγ decay necessitates
NNLO corrections on the theory side
crucial missing piece: O(α2

s) correction to 〈sγ|O1,2|b〉

Reducing the interpolation uncertainty: needs O(α2
s) correction to 〈sγ|O1,2|b〉 at mc = 0

→ 70% of the project is completed

Removing the interpolation uncertainty: needs O(α2
s) correction to 〈sγ|O1,2|b〉 at physical mc

−→ completed the fermionic contribution

→ massless case: calculated in two ways and confirmed the findings of [Bieri, Greub, Steinhauser 03]

→ massive case: impact on the branching ratio +1.1% for µb = 2.5GeV

−→ bosonic contribution: work in progress
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Summary

From Misiak’s talk at the Flavour Dynamics workshop in Albufeira Portugal, 6th November 2007

Currently known contributions B(B̄ → Xsγ) that have not been included
in the estimate (3.15 ± 0.23) × 10−4 in hep-ph/0609232:

(±7.3%)

• New/old large-β0 bremsstrahlung effects

[Ligeti, Luke, Manohar, Wise, 1999] ⇒ +2.0% in the BR
[Ferroglia, Haish, 2007, to be published]

• Four-loop mixing into the b → sg operator Q8

[Czakon, Haisch, MM, hep-ph/0612329] ⇒ −0.3% in the BR

• Charm mass effects in loops on gluon lines in K77

[Asatrian, Ewerth, Gabrielyan, Greub, hep-ph/0611123] ⇒ +0.3% in the BR
[Czarnecki, Pak, to be published]

• Charm and bottom mass effects in loops on gluon lines
in the three-loop b → sγ matrix elements of Q1 and Q2

[Boughezal, Czakon, Schutzmeier, arXiv:0707.3090] ⇒ +1.1% in the BR

• Non-perturbative O

(

αs

Λ

mb

)

effects in the term ∼ C7C8

[Lee, Neubert, Paz, hep-ph/0609224] ⇒ −1.5% in the BR

Total: +1.6% in the BR

cancellation between the shifts from the different contributions
next update of the prediction of B(B̄ → Xsγ) will be provided
once the complete O

`

α2

s

´

correction to 〈sγ|O1,2|b〉 is finished
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