Towards a complete NNLO Prediction of the $\bar{B} \rightarrow X_{s} \gamma$ decay rate

Radja Boughezal

ITP University of Zürich, Switzerland

Particle Theory Seminar PSI 30 October 2008

Collaborators:
M. Czakon and T. Schutzmeier

Outline

- Motivations \& theoretical framework
- Current state-of-the-art for NNLO corrections
- $\mathcal{O}\left(\alpha_{s}^{2}\right)$ corrections to $\langle s \gamma| O_{1,2}|b\rangle$
- first step: $\mathcal{O}\left(\alpha_{s}^{2} n_{f}\right)$ contribution
- second step: bosonic contribution
\rightarrow applied techniques for the calculation of masters
- Summary and conclusions

Motivations

- $\bar{B} \rightarrow X_{s} \gamma$ most precise short-distance information currently available for $\Delta B=1$ FCNC

first found by CLEO collaboration in 1994

$$
\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}^{\exp }=(3.55 \pm 0.26) \times 10^{-4}
$$

[HFAG2006]

- less sensitive to non-perturbative effects
dominant ones: $\mathcal{O}\left(\Lambda^{2} / m_{b}^{2}\right), \mathcal{O}\left(\Lambda^{2} / m_{c}^{2}\right), \mathcal{O}\left(\alpha_{s} \Lambda / m_{b}\right)$

$$
\begin{aligned}
\Longrightarrow \Gamma\left(\bar{B} \rightarrow X_{s} \gamma\right) & \approx \Gamma\left(b \rightarrow X_{s}^{\text {parton }} \gamma\right) \\
& =\Gamma(b \rightarrow s \gamma)+\Gamma(b \rightarrow s \gamma g)+\ldots
\end{aligned}
$$

Motivations

First Measurement of the Rate for the Inclusive Radiative Penguin Decay $\boldsymbol{b} \boldsymbol{\rightarrow} \boldsymbol{s} \boldsymbol{\gamma}$
 C. M. Daubenmier, ${ }^{2}$ R. Fulton, ${ }^{2}$ D. Fujino, ${ }^{2}$ K. K. Gan, ${ }^{2}$ K. Honscheid, ${ }^{2}$ H. Kagan, ${ }^{2}$ R. Kass, ${ }^{2}$ J. Lee, ${ }^{2}$ M. Sung, ${ }^{2}$
C. White, ${ }^{2}$ A. Wolf, ${ }^{2}$ M. M. Zoeller, ${ }^{2}$ F. Butler, ${ }^{3}$ X. Fu, ${ }^{3}$ B. Nemati, ${ }^{3}$ W. R. Ross, ${ }^{3}$ P. Skubic, ${ }^{3}$ M. Wood, ${ }^{3}$ M. Bishai ${ }^{4}$, C. White, ${ }^{2}$ A. Wolf, ${ }^{2}$ M. M. Zoeller, ${ }^{2}$ F. Butler, ${ }^{,}$X. Fu, ${ }^{3}$ B. Nemati, ${ }^{3}$ W.R. Ross, ${ }^{3}$ P. Skubi, ${ }^{,}{ }^{,}$M. Wood, ${ }^{3}$ M. Bishai, ${ }^{4}$
J. Fast, ${ }^{4}$ E. Gerndt, ${ }^{4}$ J. W. Hinson, ${ }^{4}$ R. L. Mcllwain, ${ }^{4}$ T. Miao, ${ }^{4}$ D. H. Miller, ${ }^{4}$ M. Modesit, ${ }^{4}$ D. Payne, ${ }^{4}$ E. I. Shibata, ${ }^{4}$
 Wang, ${ }^{5}$ T. Coan, ${ }^{6}$ J. Dominick, ${ }^{6}$ V. Fadeyevv, ${ }^{6}$ I. Korolkov, ${ }^{6}$ M. Lambrecht, ${ }^{6}$ S. Sanghera, ${ }^{6}$ V. Shelkov, ${ }^{6}$ T. Skwarnicki, ${ }^{6}$ R. Stroynowski, ${ }^{6}$ I. Volobouev, ${ }^{6}$ G. Wei, ${ }^{6}$ M. Artuso, ${ }^{7}$ M. Gao, ${ }^{7}$ M. Goldberg, ${ }^{7}$ D. He, ${ }^{7}$ N. Horwitz, ${ }^{7}$ G. C. Moneti, ${ }^{\prime}$ R. Mountain, ${ }^{7}$ F. Muheim, ${ }^{7}$ Y. Mukhin, ${ }^{7}$ S. Playfer, ${ }^{7}$ Y. Rozen, ${ }^{7}$ S. Stone, ${ }^{7}$ X. Xing, ${ }^{7}$ G. Zhu, ${ }^{7}$ J. Bartelt, ${ }^{8}$ S. E. Csorna, ${ }^{8}$ Z. Egyed, ${ }^{8}$ V. Jain ${ }^{8}$ D. Gibaut ${ }^{9}$ K. Kinoshita, ${ }^{9}$ P. Pomianowski, ${ }^{9}$ B. Barish, ${ }^{10}$ M. Chadha, ${ }^{10}$ S. Chan, ${ }^{10}$ D. F. Cowen, ${ }^{10}$
G. Eigen, ${ }^{10}$ J. S. Miller ${ }^{10}$ C. 0 'Grady ${ }^{10}$ J. Urheim, ${ }^{10}$ A. J. Weinstein, ${ }^{10}$ M. Athanas, ${ }^{11}$ W. Brower, ${ }^{11}$ G. Masek. ${ }^{11}$ H. P. G. Etgen,
Paar, 11 J. Gronberg, 12 C. M. Korte, ${ }^{12}$ R. Kutschke, ${ }^{12}$ S. Menary, ${ }^{12}$ R. J. Morrison, ${ }^{12}$ S. Nakanishi, ${ }^{12}$ H. N. Nelson. ${ }^{12}$ T. K. Nelson, ${ }^{12}$ C. Qiao, ${ }^{12}$ J.D. Richman, ${ }^{12}$ A. Ryd, ${ }^{12}$ D. Sperka, ${ }^{12}$ H. Tajima, ${ }^{12}$ M. S. Witherell, ${ }^{12}$ R. Balest, ${ }^{13}$ K. Cho, ${ }^{13}$ W. T. Ford, ${ }^{13}$ D. R. Johnson, ${ }^{13}$ K. Lingel, ${ }^{13}$ M. Lohner, ${ }^{13}$ P. Rankin, ${ }^{13}$ J. G. Smith ${ }^{13}$ J. P. Alexander, ${ }^{14}$
 Crowcroft, ${ }^{14}$ P.S. Drell,,14 D. J. Dumas, ${ }^{14}$ R. Ehrlich, ${ }^{14}$ P. Gaidarev, 14 M. Garcia-SCiveres, ${ }^{14}$ B. Geiser, ${ }^{14}$ B. Gittelman, ${ }^{14}$
 N. Katayama, ${ }^{14}$ P. C. Kim, ${ }^{14}$ D. L. Kreinick, ${ }^{14}$ G. S. Ludwig, ${ }^{14}$ J. Masui, ${ }^{14}$ J. Mevissen, ${ }^{14}$ N. B. Mistry ${ }^{14}$ C. R. Ng, ${ }^{14}$
E. Nordberg ${ }^{14}$ J. R. Patterson, ${ }^{14}$ D. Peterson, ${ }^{14}$ D. Riley, ${ }^{14}$ S. Salman ${ }^{14}$ M. Sapper, ${ }^{14}$ F. Würthwein, ${ }^{14}$ P. Avery ${ }^{15}$ A. Freyberger, ${ }^{15}$ J. Rodriguez, ${ }^{15}$ S. Yang, ${ }^{15}$ J. Yelton, ${ }^{15}$ D. Cinabro, ${ }^{16}$ T. Liu, ${ }^{16}$ M. Saulnier, ${ }^{16}$ R. Wilson, ${ }^{16}$
 Edwards, ${ }^{18}$ M. Ogg, ${ }^{18}$ A. Bellerive, ${ }^{19}$ D.I. Briton, ${ }^{18}$ E. R.F. Hyatt, ${ }^{19}$ D. B. MacFarlane, ${ }^{19}$ P. M. Patel ${ }^{19}$ B. Spaan, ${ }^{19}$
A. J. Sadofff, ${ }^{20}$ R. Ammarar ${ }^{21}$ P. Baringer, ${ }^{21}$ A. Bean, ${ }^{21}$ D. Besson, ${ }^{21}$ D. Coppage, ${ }^{21}$ N. Copty ${ }^{21}$ R. Davis, ${ }^{21}$
N. Hancock, ${ }^{21}$ M. Kelly, ${ }^{21}$ S. Kotov, ${ }^{21}$ I. Kravchenko, ${ }^{21}$ N. Kwak, ${ }^{21}$ H. Lam, ${ }^{21}$ Y. Kubota, ${ }^{22}$ M. Lattery, ${ }^{22}$
(CLEO Collaboration)

> 'State University of New York at Albany, Albany, New York 12222 $\begin{aligned} & { }^{2} \text { 2Ohio State University, Columbus, Ohio, } 43210 \\ & { }^{3} \text { University of Oklahoma, Norman, Oklahoma } 73019\end{aligned}$ ${ }^{4}{ }^{4}$ Purdur University, West Lafayeette, Indiana 47907 $\begin{aligned} & \text { SUniversity of Rochester, Rochester, New York } 14627 \\ & { }^{\text {GSouthern Methodist Universit, Dallas, Texas } 75275}\end{aligned}$ $\begin{aligned} & { }^{7} \text { Syracuse University, Syracuse, New Yorr } 13344 \\ & { }^{8} \text { Vanderbilt University. } \text { Nashille Ternossee } 37235\end{aligned}$
> ${ }^{9}$ Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
> $\begin{aligned} & 10 \text { California Institute of Technology, Pasadena, California } 91125 \\ & { }^{1} \text { Uliversity of California. San Diego La Iolla Califori } 9203\end{aligned}$

$$
\begin{aligned}
& \begin{array}{l}
{ }^{12} \text { University of California, Santa Barbara, California } 93106 \\
{ }^{13} \text { University of Colorado, Boulder, Colorado 80309-0390 }
\end{array}
\end{aligned}
$$

$\begin{aligned} & { }^{15} \text { University of Florida, Gainesville, Florida } 32611 \\ & { }^{16} \text { Harvard University, Cambridge, Massachusetts } 02138\end{aligned}$

$$
\begin{aligned}
& \begin{array}{l}
\text { 18 Carleton Universiti, Ottawa, Ontaria, Canada KIS SB6 } \\
\text { and the Institute of Particle Physics, Montreal, Canada H3A } 278
\end{array} \\
& \begin{array}{l}
\text { and the Institute of Particle Physics, Montreal, Canada H3A } 278 \\
{ }^{1} \text { McGill University, Montreal, Quebec, Canada H3A } 278
\end{array} \\
& \text { and the Institute of Particle Physics, Montreal, Canada H3A } 278 \\
& \begin{array}{l}
\text { 21 IIthaca College, Ithaca, New York } 14850 \\
{ }^{22} \text { University of Kansas, Lawrence, Kansas } 60045 \\
{ }^{2} \text { University of Minnesota, Minneapolis, Minnesota 55455 }
\end{array} \\
& \begin{array}{l}
{ }^{22} \text { University of Minnesota, Minneapolis, Min } \\
\text { (Received } 13 \text { December 1994) }
\end{array}
\end{aligned}
$$

We have measured the inclusive $b \rightarrow s \gamma$ branching ratio to be $(2.32 \pm 0.57 \pm 0.35) \times 10^{-4}$, where
the first error is statistical and the second is systematic. Upper and lower limits on the branching ratio,

Motivations

- $\bar{B} \rightarrow X_{s} \gamma$ most precise short-distance information currently available for $\Delta B=1$ FCNC

first found by CLEO collaboration in 1994

$$
\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}^{\exp }=(3.55 \pm 0.26) \times 10^{-4}
$$

[HFAG2006]

- less sensitive to non-perturbative effects
dominant ones: $\mathcal{O}\left(\Lambda^{2} / m_{b}^{2}\right), \mathcal{O}\left(\Lambda^{2} / m_{c}^{2}\right), \mathcal{O}\left(\alpha_{s} \Lambda / m_{b}\right)$

$$
\begin{aligned}
\Longrightarrow \Gamma\left(\bar{B} \rightarrow X_{s} \gamma\right) & \approx \Gamma\left(b \rightarrow X_{s}^{\text {parton }} \gamma\right) \\
& =\Gamma(b \rightarrow s \gamma)+\Gamma(b \rightarrow s \gamma g)+\ldots
\end{aligned}
$$

Motivations

- loop induced in SM and highly sensitive to new physics which is not suppressed by factors of α as compared to SM contributions

Motivations

- loop induced in SM and highly sensitive to new physics which is not suppressed by factors of α as compared to SM contributions

- Experimental precision already better than theoretical NLO prediction
- $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}^{\mathrm{th}, \mathrm{NLO}}=(3.57 \pm 0.30) \times 10^{-4}$ [Misiak et al 2001,Buras et al 2002]
- $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)^{\exp }=(3.55 \pm 0.26) \times 10^{-4}$ [HFAG 2006]

Super-B factory: 5% uncertainty possible

- $m_{c} / m_{b}=0.22 \pm 0.04$ ($\left.\overline{\mathrm{MS}}\right)$ (more statistics, lower E_{γ})
$\mathrm{m}_{\mathrm{c}} / \mathrm{mb}_{b}=0.29 \pm 0.04$ (pole)

Motivations

- loop induced in SM and highly sensitive to new physics which is not suppressed by factors of α as compared to SM contributions

- Experimental precision already better than theoretical NLO prediction
- $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}^{\mathrm{th}, \mathrm{NLO}}=(3.57 \pm 0.30) \times 10^{-4}$ [Misiak et al 2001, Buras et al 2002]
- $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)^{\exp }=(3.55 \pm 0.26) \times 10^{-4}$ [HFAG 2006]

Super-B factory: 5% uncertainty possible

$-m_{c} / m_{b}=0.22 \pm 0.04(\overline{M S})$ (more statistics, lower E_{γ})
$m_{c} / m_{b}=0.29 \pm 0.04$ (pole)
\Rightarrow strong constraints on new physics require better theoretical precision

Motivations

$$
\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}^{\exp }=(3.55 \pm 0.26) \times 10^{-4}
$$

- Contributions to the theory prediction

$$
\begin{aligned}
& \mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}=\mathcal{B}\left(\bar{B} \rightarrow X_{c} e \bar{\nu}\right)_{\exp }\left[\frac{\Gamma(b \rightarrow s \gamma)}{\Gamma(b \rightarrow c e \bar{\nu})}\right]_{\mathrm{LO} \mathrm{EW}} f\left(\frac{\alpha_{s}\left(M_{W}\right)}{\alpha_{s}\left(m_{b}\right)}\right) \times \\
& \times\left\{1+\underset{\text { NLO }}{\mathcal{O}\left(\alpha_{S}\right)}+\underset{\text { NNLO }}{\mathcal{O}\left(\alpha_{S}^{2}\right)}+\mathcal{O}\left(\alpha_{\mathrm{em}}\right)+\mathcal{O}\left(\frac{\Lambda^{2}}{m_{b}^{2}}\right)+\mathcal{O}\left(\frac{\Lambda^{2}}{m_{c}^{2}}\right)+\mathcal{O}\left(\frac{\Lambda}{m_{b}} \alpha_{S}\right)\right\} \\
& \sim 25 \% \quad \sim 7 \% \quad \sim 4 \% \quad \sim 1 \% \quad \sim 3 \% \quad<\sim 5 \% \\
& \text { perturbative corrections } \\
& \text { non-perturbative corrections }
\end{aligned}
$$

Motivations

$$
\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}^{\exp }=(3.55 \pm 0.26) \times 10^{-4}
$$

- Contributions to the theory prediction

$$
\begin{aligned}
& \mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}=\mathcal{B}\left(\bar{B} \rightarrow X_{c} e \bar{\nu}\right)_{\exp }\left[\frac{\Gamma(b \rightarrow s \gamma)}{\Gamma(b \rightarrow c e \bar{\nu})}\right]_{\mathrm{LO} \mathrm{EW}} f\left(\frac{\alpha_{s}\left(M_{W}\right)}{\alpha_{s}\left(m_{b}\right)}\right) \times \\
& \times\left\{1+\underset{\mathrm{NLO}}{\mathcal{O}\left(\alpha_{s}\right)}+\underset{\mathrm{NNLO}}{\mathcal{O}\left(\alpha_{s}^{2}\right)}+\mathcal{O}\left(\alpha_{\mathrm{em}}\right)+\mathcal{O}\left(\frac{\Lambda^{2}}{m_{b}^{2}}\right)+\mathcal{O}\left(\frac{\Lambda^{2}}{m_{c}^{2}}\right)+\mathcal{O}\left(\frac{\Lambda}{m_{b}} \alpha_{s}\right)\right\} \\
& \sim 25 \% \sim 7 \% \quad \sim 4 \% \quad \sim 1 \% \quad \sim 3 \% \quad<\sim 5 \% \\
& \text { perturbative corrections } \\
& \text { non-perturbative corrections }
\end{aligned}
$$

expected NNLO corrections to $\mathcal{B}(\sim 7 \%)$ are of the same size as the experimental error

Motivations

- Charm quark mass definition ambiguity
- dependence of $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)^{\text {theo }}$
on m_{c} enters through the $\langle s \gamma| O_{1,2}|b\rangle$
which start contributing at $\mathcal{O}\left(\boldsymbol{\alpha}_{s}\right)$
- $m_{c}^{\text {pole }} / m_{b}^{\text {pole }}=0.29 \pm 0.02$
$\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)^{\text {theo }}=(3.32 \pm 0.30) \times 10^{-4}$
- $\bar{m}_{c}\left(m_{b} / 2\right) / m_{b}^{\text {pole }}=0.22 \pm 0.04$
$\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)^{\text {theo }}=(3.70 \pm 0.30) \times 10^{-4}$

[Aubertetal 02]

Motivations

- Charm quark mass definition ambiguity
- dependence of $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)^{\text {theo }}$
on m_{c} enters through the $\langle s \gamma| O_{1,2}|b\rangle$
which start contributing at $\mathcal{O}\left(\alpha_{s}\right)$
- $m_{c}^{\text {pole }} / m_{b}^{\text {pole }}=0.29 \pm 0.02$
$\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)^{\text {theo }}=(3.32 \pm 0.30) \times 10^{-4}$
- $\bar{m}_{c}\left(m_{b} / 2\right) / m_{b}^{\text {pole }}=0.22 \pm 0.04$
$\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)^{\text {theo }}=(3.70 \pm 0.30) \times 10^{-4}$

[Aubertetal 02]

- difference between using $\bar{m}_{c}(\mu)$ and $m_{c}^{\text {pole }}$ is a NNLO effect in the branching ratio
\Longrightarrow resolving the ambiguity requires going to the NNLO level

Theoretical framework

- diagrams involve scales with large hierarchy
$M_{W}, M_{t} \gg m_{b} \gg m_{s} \Longrightarrow$ arge $\log \left(\frac{M_{W}^{2}}{m_{b}^{2}}\right)$
\longrightarrow resummation of $\alpha_{s} \log \left(\frac{M_{W}^{2}}{m_{b}^{2}}\right)$ is necessary
using $R G$ techniques

- start by introducing an effective theory without the heavy fields

$$
\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{QCD} \times \mathrm{QED}}(u, d, s, c, b)+\frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b} \sum_{i} C_{i}(\mu) O_{i}(\mu)
$$

Theoretical framework

- diagrams involve scales with large hierarchy
$M_{W}, M_{t} \gg m_{b} \gg m_{s} \Longrightarrow$ large $\log \left(\frac{M_{W}^{2}}{m_{b}^{2}}\right)$
\longrightarrow resummation of $\alpha_{s} \log \left(\frac{M_{W}^{2}}{m_{b}^{2}}\right)$ is necessary
using $R G$ techniques

- start by introducing an effective theory without the heavy fields

$$
\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{QCD} \times \mathrm{QED}}(u, d, s, c, b)+\frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b} \sum_{i} C_{i}(\mu) O_{i}(\mu)
$$

$$
\begin{aligned}
& O_{3,4,5,6}=\stackrel{\substack{\mathrm{q} \\
\mathrm{~b}}}{\mathrm{q}} \mathrm{~s}_{\mathrm{q}} \quad=\left(\bar{s} \Gamma_{i} b\right) \Sigma_{q}\left(\bar{q} \Gamma_{i}^{\prime} q\right), \quad\left|C_{i}\left(m_{b}\right)\right|<0.07
\end{aligned}
$$

$$
\begin{aligned}
& O_{8}=\mathrm{b}^{\xi^{\mathrm{g}} \mathrm{~s}}=\frac{g m_{b}}{16 \pi^{2}} \bar{s}_{L} \sigma^{\mu \nu} T^{a} b_{R} G_{\mu \nu}^{a}, \quad \quad C_{8}\left(m_{b}\right) \simeq-0.15
\end{aligned}
$$

Theoretical framework

Calculation done in three steps:

- Matching find the Wilson coefficients $C_{i}(\mu)$ by comparing the full and the effective theory at the mass scale $\mu \approx M_{W}$ \Rightarrow no large logarithms and only vacuum diagrams
- Mixing compute the anomalous dimensions of the operators and solve the renormalization group equations to go down with the Wilson coefficients to $\mu \approx m_{b}$

$$
\frac{d}{d \mu} C_{j}(\mu)=C_{i}(\mu) \gamma_{i j}(\mu)
$$

- Matrix elements calculate the matrix elements of all the operators at $\mu \approx m_{b} \Rightarrow$ no large logarithms as no heavy masses are present

Current state-of-the-art for NNLO corrections

1. Matching

- 2-loop matching for $\left(O_{1}, \ldots, O_{6}\right)$
- 3-loop matching for O_{7} and O_{8}

2. Mixing

- 3-loop: $\left(O_{1}, \ldots, O_{6}\right)$ and $\left(O_{7}, O_{8}\right)$ sectors
- 4-loop $\left(O_{1}, \ldots, O_{6}\right) \longrightarrow\left(O_{7}, O_{8}\right)$
[Bobeth,Misiak, Urban 00]
[Misiak,Steinhauser 04]
[Gorbahn,Haisch 05]
[Gorbahn,Haisch,Misiak 05]
[Czakon,Haisch,Misiak 06]

Current state-of-the-art for NNLO corrections

1. Matching

- 2-loop matching for $\left(O_{1}, \ldots, O_{6}\right)$
- 3-loop matching for O_{7} and O_{8}
[Bobeth,Misiak,Urban 00]
[Misiak,Steinhauser 04]

2. Mixing

- 3-loop: $\left(O_{1}, \ldots, O_{6}\right)$ and $\left(O_{7}, O_{8}\right)$ sectors
- 4-loop $\left(O_{1}, \ldots, O_{6}\right) \longrightarrow\left(O_{7}, O_{8}\right)$
[Gorbahn,Haisch 05]
[Gorbahn,Haisch,Misiak 05]
[Czakon,Haisch,Misiak 06]

3. Matrix elements

- $O_{1}, O_{2}, O_{7}, O_{8}$ large β_{0}
- O_{7}
- O_{7}, photon spectrum
- O_{1}, O_{2} leading term for $m_{c} \gg m_{b}$

[Bieri,Greub,Steinhauser 03]

[Blokland,Czarnecki,Misiak,Slusarczyk,Tkachov 05]
[Asatrian,Hovhannisyan, Poghosyan, Ewerth, Greub, Hurth 06] [Melnikov,Mitov 05] [Asatrian,Ewerth,Ferroglia, Gambino,Greub 06]
[Misiak,Steinhauser 06]

The NNLO estimated Branching Ratio

$$
\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}^{\mathrm{theo}}=(3.15 \pm 0.23) \times 10^{-4}
$$

[Misiak et al 06] [Misiak,Steinhauser 06]

- Decomposition of Uncertainty
- non-perturbative
5%
$\mathcal{O}\left(\alpha_{s} \Lambda / m_{b}\right)$
- parametric
3%
$\alpha_{s}\left(M_{Z}\right), \mathcal{B}_{S L}^{e x p}, m_{c} \ldots$
- m_{c} interpolation
3%
($O_{1,2}$ matrix elements)
- higher order
$3 \% \quad\left(\mu_{b}, \mu_{c}, \mu_{0}\right.$ dependence)

The NNLO estimated Branching Ratio

$$
\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}^{\mathrm{theo}}=(3.15 \pm 0.23) \times 10^{-4}
$$

[Misiak et al 06] [Misiak,Steinhauser 06]

- Decomposition of Uncertainty
- non-perturbative
5\%
$\mathcal{O}\left(\alpha_{s} \Lambda / m_{b}\right)$
- parametric
3%
$\alpha_{s}\left(M_{Z}\right), \mathcal{B}_{S L}^{e x p}, m_{c} \ldots$
- m_{c} interpolation
3%
($O_{1,2}$ matrix elements)
- higher order
$3 \% \quad\left(\mu_{b}, \mu_{c}, \mu_{0}\right.$ dependence $)$

- source of the interpolation uncertainty is the missing $\mathcal{O}\left(\alpha_{s}^{2}\right)$ correction to $\langle s \gamma| O_{1,2}|b\rangle$

More about the interpolation uncertainty

- $\mathcal{O}\left(\alpha_{s}^{2}\right)$ perturbative contribution to $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)$:

$$
P_{2}^{(2)}=\sum_{i, j=1}^{8} C_{i}^{(0)} C_{j}^{(0)}\left(n_{f} A_{i j}+B_{i j}\right)
$$

- using large β_{0} approx.

$$
P_{2}^{(2)}=\sum_{i, j=1}^{8} C_{i}^{(0)} C_{j}^{(0)}\left(\frac{-3}{2} \beta_{0} A_{i j}+B_{i j}^{\prime}\right)=P_{2}^{(2), \beta_{0}}+P_{2}^{(2), \text { rem }}
$$

- $P_{2}^{(2), \beta_{0}}$ known for $\langle s \gamma| O_{1,2,7,8}|b\rangle$
- expansions in limits $m_{c} / m_{b} \rightarrow 0$ and $m_{c} \gg m_{b}$ match nicely for $\operatorname{Re}\langle s \gamma| O_{2}|b\rangle^{\beta_{0}}$
- good approximation already for $n=0$
- no large $c \bar{c}$ threshold effects at $m_{c}=m_{b} / 2$
- calculate the leading term of large m_{c} expansion for $P_{2}^{(2), \text { rem }}$ and interpolate to physical m_{c}
- making assumptions for $P_{2}^{(2), \text { rem }}$ at $m_{c}=0$ is the source of the interpolation uncertainty

Reducing the overall uncertainty of $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}^{\mathrm{th}+, \mathrm{NNLO}}$

- removing the interpolation uncertainty
\Longrightarrow need a complete calculation of $\langle\boldsymbol{s} \gamma| \boldsymbol{O}_{1,2}|\boldsymbol{b}\rangle$ at $m_{c} \neq 0$

\longrightarrow working on the virtual part [R.B, Czakon, Schutzmeier]

Reducing the overall uncertainty of $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}^{\mathrm{th}+, \mathrm{NNLO}}$

- removing the interpolation uncertainty
\Longrightarrow need a complete calculation of $\langle s \gamma| O_{1,2}|b\rangle$ at $m_{c} \neq 0$

\longrightarrow working on the virtual part $\quad[\mathrm{R} . \mathrm{B}$, Czakon, Schutzmeier]

- reducing the interpolation uncertainty
\Longrightarrow need a complete calculation of $\langle\boldsymbol{s \gamma}| \boldsymbol{O}_{1,2}|\boldsymbol{b}\rangle$ at $m_{c}=0$

$$
\text { in progress } \quad[\mathrm{R} . \mathrm{B}, \text { Czakon, Schutzmeier }]
$$

Removing the interpolation uncertainty: virtual part

- approx. 400 3-loop on-shell vertex diagrams with two scales $m_{b} \& m_{c}$
- around 500 masters are involved in the bare amplitude
- symbolic reduction down to masters is not yet complete for the full 3-loop vertex
- $\mathcal{O}\left(\alpha_{s}^{2} n_{f}\right)$ correction to $\langle s \gamma| O_{1,2}|b\rangle$:

Removing the interpolation uncertainty: virtual part

- approx. 400 3-loop on-shell vertex diagrams with two scales m_{b} \& m_{c}
- around 500 masters are involved in the bare amplitude
- symbolic reduction down to masters is not yet complete for the full 3-loop vertex
- $\mathcal{O}\left(\alpha_{s}^{2} n_{f}\right)$ correction to $\langle s \gamma| O_{1,2}|b\rangle$:

- masters were calculated with Mellin Barnes
- first way: a numerical integration of the MB representations is performed for specific values of z using the MB package [MB:Czakon 05] ,
[MBrepresentation : Chachamis, Czakon 06]
- second way:
- perform an expansion in $z=m_{c}^{2} / m_{b}^{2}$ by closing contours
- coefficients of the expansion are given by at most a 1-dimensional MB integral expressed as a sum over residues
- sum these infinite series using XSummer

Removing the interpolation uncertainty: virtual part

- approx. 400 3-loop on-shell vertex diagrams with two scales m_{b} \& m_{c}
- around 500 masters are involved in the bare amplitude
- symbolic reduction down to masters is not yet complete for the full 3-loop vertex
- $\mathcal{O}\left(\alpha_{s}^{2} n_{f}\right)$ correction to $\langle s \gamma| O_{1,2}|b\rangle$:

- masters were calculated with Mellin Barnes
- first way: a numerical integration of the MB representations is performed for specific values of z using the MB package [MB:Czakon 05] , [MBrepresentation : Chachamis, Czakon 06]
- second way:
- perform an expansion in $z=m_{c}^{2} / m_{b}^{2}$ by closing contours
- coefficients of the expansion are given by at most a 1-dimensional MB integral expressed as a sum over residues
- sum these infinite series using XSummer [Moch \& Uwer 05]
- MB alone was not enough to calculate all the masters due to poor convergence
- use differential equations solved numerically
- boundaries were obtained using diagrammatic large mass expansion for $m_{c} \gg m_{b}$

$\langle s \gamma| O_{2}|b\rangle_{\mathcal{O}\left(\alpha_{s}^{2} n_{f}\right)}$

- Results for the massive fermionic contributions:

- massless approximation overestimates the massive b result and has the opposite sign !

- less pronounced differences for the c-quark \longrightarrow moderate negative corrections wrt. massless approximation

$\langle s \gamma| O_{2}|b\rangle_{\mathcal{O}\left(\alpha_{s}^{2} n_{f}\right)}$

- Results for the massive fermionic contributions:

- massless approximation overestimates the massive b result and has the opposite sign !

- less pronounced differences for the c-quark
\longrightarrow moderate negative corrections wrt. massless approximation
numerical impact of the mass corrections on $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)=+1.1 \%$ for $\mu_{b}=2.5 \mathrm{GeV}$

Reducing the interpolation uncertainty

- calculating $\mathcal{O}\left(\boldsymbol{\alpha}_{s}^{2}\right)$ correction to $\langle s \gamma| O_{1,2}|b\rangle$ at $m_{c}=0$ helps significantly in reducing the interpolation uncertainty

up to 4-particle cuts: $\gamma s, \gamma s g, \gamma s g g, \gamma s q \bar{q}$

Reducing the interpolation uncertainty

- calculating $\mathcal{O}\left(\boldsymbol{\alpha}_{s}^{2}\right)$ correction to $\langle s \gamma| O_{1,2}|b\rangle$ at $m_{c}=0$ helps significantly in reducing the interpolation uncertainty

up to 4-particle cuts: $\gamma s, \gamma s g, \gamma s g g, \gamma s q \bar{q}$
- 506 diagrams expressed through 42093 integrals
- if we do not distinguish between masters that differ only in their imaginary part:
~ 300 masters have to be calculated BUT HOW ?

Reducing the interpolation uncertainty

- calculating $\mathcal{O}\left(\boldsymbol{\alpha}_{s}^{2}\right)$ correction to $\langle s \gamma| O_{1,2}|b\rangle$ at $m_{c}=0$ helps significantly in reducing the interpolation uncertainty

up to 4-particle cuts: $\gamma s, \gamma s g, \gamma s g g, \gamma s q \bar{q}$
- 506 diagrams expressed through 42093 integrals
- if we do not distinguish between masters that differ only in their imaginary part:
~ 300 masters have to be calculated BUT HOW ?
- Mellin Barnes
- Differential equations
- Sector decomposition
- Nested Sums
- Difference equations
[Smirnov '99, Tausk '99]
[Gehrmann, Remiddi '00]
[Binoth, Heinrich '00]
[Moch, Uwer, Weinzierl '01]
[Laporta'01]

How to get the masters?

the 4-loop on-shell cut masters:

- Mellin Barnes
- do we know how to use it for integrals with on-shell unitarity cuts ?
- dimension of the representations for 4-loop cut self energy integrals with up to 4 internal massive lines is an issue
- convergence of the representation is an other issue

How to get the masters?

the 4-loop on-shell cut masters:

- Mellin Barnes
- do we know how to use it for integrals with on-shell unitarity cuts ?
- dimension of the representations for 4-loop cut self energy integrals with up to 4 internal massive lines is an issue
- convergence of the representation is an other issue
- Differential equations
- work off-shell $\left(p_{b}^{2} \neq m_{b}^{2}\right) \Rightarrow$ introduced a new parameter to the masters
- need boundaries
- Difference equations
- needed boundaries are 3-loop massive boxes with on-shell unitarity cuts

How to get the masters?

the 4-loop on-shell cut masters:

- Mellin Barnes
- do we know how to use it for integrals with on-shell unitarity cuts?
- dimension of the representations for 4-loop cut self energy integrals with up to 4 internal massive lines is an issue
- convergence of the representation is an other issue
- Differential equations
- work off-shell $\left(p_{b}^{2} \neq m_{b}^{2}\right) \Rightarrow$ introduced a new parameter to the masters
- need boundaries
- Difference equations
- needed boundaries are 3-loop massive boxes with on-shell unitarity cuts
- Nested Sums
- do all the masters have the form of a harmonic sum ?

How to get the masters?

the 4-loop on-shell cut masters:

- Mellin Barnes
- do we know how to use it for integrals with on-shell unitarity cuts?
- dimension of the representations for 4-loop cut self energy integrals with up to 4 internal massive lines is an issue
- convergence of the representation is an other issue
- Differential equations
- work off-shell $\left(p_{b}^{2} \neq m_{b}^{2}\right) \Rightarrow$ introduced a new parameter to the masters
- need boundaries
- Difference equations
- needed boundaries are 3-loop massive boxes with on-shell unitarity cuts
- Nested Sums
- do all the masters have the form of a harmonic sum ?
- Sector decomposition
- high precision results vs. running time ...

How to get the masters?

the 4-loop on-shell cut masters:

- Mellin Barnes
- do we know how to use it for integrals with on-shell unitarity cuts?
- dimension of the representations for 4-loop cut self energy integrals with up to 4 internal massive lines is an issue
- convergence of the representation is an other issue
- Differential equations
- work off-shell $\left(p_{b}^{2} \neq m_{b}^{2}\right) \Rightarrow$ introduced a new parameter to the masters
- need boundaries
- Difference equations
- needed boundaries are 3-loop massive boxes with on-shell unitarity cuts
- Nested Sums
- do all the masters have the form of a harmonic sum ?
- Sector decomposition
- high precision results vs. running time ...

Winning strategy: combining methods

Merging methods is the way to go, but a long chain of steps:

Mellin Barnes
main tool for massless case
boundaries for massive case: leading term in z

Winning strategy: combining methods

Merging methods is the way to go, but a long chain of steps:

Mellin Barnes

main tool for massless case
boundaries for massive case: leading term in z

- evaluation of off-shell master integrals $V_{i}(z, \epsilon)$ with help of numerical differential equations (deqns)
[Caffo, Czyz, Remiddi 98]

$$
\frac{d}{d z} V_{i}(z, \epsilon)=A_{i j}(z, \epsilon) V_{j}(z, \epsilon), \quad z=p_{b}^{2} / m_{b}^{2}
$$

- Idea:
- calculate integrals at some "simple" point (e.g. $p_{b}^{2} \ll m_{b}^{2}$)
- Integrate system of deqns starting at this limit up to the on-shell condition $z=1$

Winning strategy: combining methods

Merging methods is the way to go, but a long chain of steps:

Mellin Barnes

main tool for massless case
boundaries for massive case: leading term in z

- evaluation of off-shell master integrals $V_{i}(z, \epsilon)$ with help of numerical differential equations (deqns)
[Caffo, Czyz, Remiddi 98]

$$
\frac{d}{d z} V_{i}(z, \epsilon)=A_{i j}(z, \epsilon) V_{j}(z, \epsilon), \quad z=p_{b}^{2} / m_{b}^{2}
$$

- Idea:
- calculate integrals at some "simple" point (e.g. $p_{b}^{2} \ll m_{b}^{2}$)
- Integrate system of deqns starting at this limit up to the on-shell condition $z=1$

\rightarrow but:deqns singular in both endpoints! (and on naive contour $z \in \mathbb{R}$)
\Rightarrow solution:combine expansions with numerical integration in complex plane

Winning strategy: combining methods

Merging methods is the way to go, but a long chain of steps:

Mellin Barnes

main tool for massless case boundaries for massive case: leading term in z

Higher powers in z
expansions at z close to 0 using DEQs

Numerical DEQs: result at z close to 1

matching

Expansions at z close to 1
using DEQs

- expand in ϵ and z in the limit $z \rightarrow 0$ with ansatz:

$$
V_{i}(z, \epsilon)=\sum_{n m k} c_{i n m k}^{0} \epsilon^{n} z^{m} \log ^{k} z
$$

- solve recursively for $c_{i n m k}^{0}$ up to high powers in z
- boundary conditions:
- Mellin Barnes \& diagrammatic large-mass expansions for $p_{b}^{2} \ll m_{b}^{2}$ \Rightarrow high precision values for $z \approx 0$

Winning strategy: combining methods

Merging methods is the way to go, but a long chain of steps:

Mellin Barnes
main tool for massless case
boundaries for massive case: leading term in z

Numerical DEQs: result at z close to 1 ZVODE
matching

Expansions at z close to 1 using DEQs

Result at $z=1$

- expand in ϵ and z in the limit $z \rightarrow 0$ with ansatz:

$$
V_{i}(z, \epsilon)=\sum_{n m k} c_{i n m k}^{0} \epsilon^{n} z^{m} \log ^{k} z
$$

- solve recursively for $c_{i n m k}^{0}$ up to high powers in z
- boundary conditions:
- Mellin Barnes \& diagrammatic large-mass expansions for $p_{b}^{2} \ll m_{b}^{2}$ \Rightarrow high precision values for $z \approx 0$
- use these values as starting point for numerical integration (in complex plane) up to $z \approx 1$
(ZVODE, Hindmarsh et al)

- perform another power logarithmic expansion around $z \rightarrow 1$ and solve coefficients $c_{i n m k}^{1}$ recursively
- use numerical integration to fix the remaining $c_{i n m k}^{1}$

Winning strategy: combining methods

Merging methods is the way to go, but a long chain of steps:

Mellin Barnes
main tool for massless case
boundaries for massive case: leading term in z

Numerical DEQs: result at z close to 1

ZVODE
matching

Expansions at z close to 1 using DEQs

Result at $z=1$

- expand in ϵ and z in the limit $z \rightarrow 0$ with ansatz:

$$
V_{i}(z, \epsilon)=\sum_{n m k} c_{i n m k}^{0} \epsilon^{n} z^{m} \log ^{k} z
$$

- solve recursively for $c_{i n m k}^{0}$ up to high powers in z
- boundary conditions:
- Mellin Barnes \& diagrammatic large-mass expansions for $p_{b}^{2} \ll m_{b}^{2}$ \Rightarrow high precision values for $z \approx 0$
- use these values as starting point for numerical integration (in complex plane) up to $z \approx 1$
(ZVODE, Hindmarsh et al)

- perform another power logarithmic expansion around $z \rightarrow 1$ and solve coefficients $c_{i n m k}^{1}$ recursively
- use numerical integration to fix the remaining $c_{i n m k}^{1}$
result for $z=1$ is the leading term

Boundaries for DEQs: 2- and 3-particle cuts

- derive a MB representation for loops on the left and the right of the cut
- integrate over the phase space analytically

- perform an analytic continuation in ε for $\varepsilon \rightarrow 0$ [MB.m, M.Czakon]
- expand in $z=p_{b}^{2} / m_{b}^{2}$ where $p_{b}^{2} \ll m_{b}^{2}$ by closing contours in the multi-fold MB integrals

- use Barnes Lemmas to remove some integrations if possible
- for multi-fold MB integrals (up to 3) integrate numerically \rightarrow we use a C++ implementation of the double-exponential integration method [H. Takahasi \& M. Mori] in quad-double precision
(≈ 64 digits) based on the qd library [Bailey, Hida, Li]
\Rightarrow all boundaries obtained with at least 16 digits

a boundary example

$\operatorname{PR214}(1,1,1,1,1,1,1,1,0,0,0,0,0,0)=$

- a three-parameter MB representation:

$$
\frac{1}{(2 \pi i)^{3}} \int_{-i \infty}^{i \infty} d y_{1} d y_{2} d y_{3}(z)^{y_{3}} s_{12}^{y_{1}} s_{13}^{y_{2}} \Gamma(\ldots) \quad \text { with } \quad z=p_{b}^{2} / m_{b}^{2}
$$

- after integrating over the three-particle phase space:

$$
\frac{1}{(2 \pi i)^{3}} \int_{-i \infty}^{i \infty} d y_{1} d y_{2} d y_{3}(z)^{1-2 e p+y_{1}+y_{2}+y_{3}} \Gamma(\ldots)
$$

- After analytic continuation $\varepsilon \rightarrow 0$ and Laurent expansion in ε, the leading power of z for $z \rightarrow 0$ is extracted from the remaining MB integrals by taking residues \Rightarrow only one MB-parameter is left for terms of order z up to $\mathcal{O}\left(\varepsilon^{2}\right)$

$$
\begin{aligned}
\text { PR214 }(1,1,1,1 & , 1,1,1,1,0,0,0,0,0,0)=I * \pi *(\\
& \mathrm{z} *(3.750000000000000+0.5 / \varepsilon+16.4800659331517735 * \varepsilon \\
+ & \left.(-1 .-7.5000000000000000 * \varepsilon) * \log [z]+(1 . * \varepsilon) * \log [z]^{2}\right)
\end{aligned}
$$

DEQs: deep expansions

$$
\begin{aligned}
& \text { PR214 }(1,1,1,1,1,1,1,1,0,0,0,0,0,0)=I * \pi *(\\
& \mathrm{z} *(3.750000000000000+0.5 / \varepsilon+16.4800659331517735 * \varepsilon \\
& \left.+(-1 .-7.5000000000000000 * \varepsilon) * \log [z]+(1 . * \varepsilon) * \log [z]^{2}\right)+ \\
& \mathrm{z}^{2} *(0.2361111111111111+0.0138888888888888 / \varepsilon+1.7077796092542159 * \varepsilon \\
& +(-0.0277777777777777-0.4722222222222222 * \varepsilon) * \log [z] \\
& \left.+(0.0277777777777777 * \varepsilon) * \log [z]^{2}\right)+ \\
& \mathbf{z}^{3} *(0.03418209876543209+0.000925925925925926 / \varepsilon+0.347796161193079416 * \varepsilon \\
& +(-0.001851851851851852-0.068364197530864197 * \varepsilon) * \log [z] \\
& \left.+(0.001851851851851852 * \varepsilon) * \log [z]^{2}\right)+ \\
& \mathbf{z}^{4} *(0.008763888888888888+0.00008928571428571428 / \varepsilon+0.11083575086108689 * \varepsilon \\
& +(-0.00017857142857142857-0.017527777777777777 * \varepsilon) * \log [z] \\
& \left.+(0.00017857142857142857 * \varepsilon) * \log [z]^{2}\right)+ \\
& \mathbf{z}^{5} *(0.0032595238095238095+0.0000105820105820582 / \varepsilon+0.04672701785631597 * \varepsilon \\
& +(-0.0000211640211640211-0.0065190476190476190 * \varepsilon) * \log [z] \\
& \left.\left.+(0.0000211640211640211 * \varepsilon) * \log [z]^{2}\right)+\cdots+\mathcal{O}\left(z^{19}\right)\right)
\end{aligned}
$$

Some Results for 2- and 3-particle cuts

Preliminary results: sample masters with 2 - and 3-particle cuts

$$
x=p_{b}^{2} / m_{b}^{2}
$$

$$
x=p_{b}^{2} / m_{b}^{2}
$$

- Expansions:
- $x \rightarrow 0$: up to x^{18}
- $x \rightarrow$ 1: up to $(1-x)^{12}$
- Numerical integration: starts at $x_{0}=0.02$
- Matching: done at $x_{1}=0.9$

Some Results for 2- and 3-particle cuts

- Preliminary results at $x=1$: sample masters with 2 - and 3 -particle cuts

$$
\begin{aligned}
& =\frac{1.4514 i}{\varepsilon}+11.6173 i+\mathcal{O}(\varepsilon) \\
& =\frac{3.14159 i}{\varepsilon^{3}}+\frac{20.0142 i}{\varepsilon^{2}}+\frac{77.1378 i}{\varepsilon}+209.713 i+\mathcal{O}(\varepsilon) \\
& =\frac{-2.0944 i}{\varepsilon^{3}}-\frac{12.5778 i}{\varepsilon^{2}}-\frac{35.6402 i}{\varepsilon}-125.153 i+\mathcal{O}(\varepsilon) \\
& =\frac{-2.0944 i}{\varepsilon^{3}}-\frac{4.91208 i}{\varepsilon^{2}}-\frac{30.5699 i}{\varepsilon}-40.7068 i+\mathcal{O}(\varepsilon)
\end{aligned}
$$

Some Results for 2- and 3-particle cuts

- Preliminary results at $x=1$: sample masters with 2- and 3-particle cuts

$$
\begin{aligned}
& =\frac{1.4514 i}{\varepsilon}+11.6173 i+\mathcal{O}(\varepsilon) \\
& =\frac{3.14159 i}{\varepsilon^{3}}+\frac{20.0142 i}{\varepsilon^{2}}+\frac{77.1378 i}{\varepsilon}+209.713 i+\mathcal{O}(\varepsilon) \\
& =\frac{-2.0944 i}{\varepsilon^{3}}-\frac{12.5778 i}{\varepsilon^{2}}-\frac{35.6402 i}{\varepsilon}-125.153 i+\mathcal{O}(\varepsilon) \\
& =\frac{-2.0944 i}{\varepsilon^{3}}-\frac{4.91208 i}{\varepsilon^{2}}-\frac{30.5699 i}{\varepsilon}-40.7068 i+\mathcal{O}(\varepsilon)
\end{aligned}
$$

masters with 2-particle cuts are obtained with two independent calculations \rightarrow cross checks will be done soon

Some Results for 2- and 3-particle cuts

- Preliminary results at $x=1$: sample masters with 2- and 3-particle cuts

$$
\begin{aligned}
& =\frac{1.4514 i}{\varepsilon}+11.6173 i+\mathcal{O}(\varepsilon) \\
& =\frac{3.14159 i}{\varepsilon^{3}}+\frac{20.0142 i}{\varepsilon^{2}}+\frac{77.1378 i}{\varepsilon}+209.713 i+\mathcal{O}(\varepsilon) \\
& =\frac{-2.0944 i}{\varepsilon^{3}}-\frac{12.5778 i}{\varepsilon^{2}}-\frac{35.6402 i}{\varepsilon}-125.153 i+\mathcal{O}(\varepsilon) \\
& =\frac{-2.0944 i}{\varepsilon^{3}}-\frac{4.91208 i}{\varepsilon^{2}}-\frac{30.5699 i}{\varepsilon}-40.7068 i+\mathcal{O}(\varepsilon)
\end{aligned}
$$

masters with 2-particle cuts are obtained with two independent calculations \rightarrow cross checks will be done soon

- what we have:
- masters with massless internal lines:
all 2 - and 3 -particle cuts all 4-particle cuts but one
- masters with b-quark internal lines:

2 - and 3-particle cuts are almost there

- still to be calculated: masters with 4-particle cuts and internal b-lines

Summary

- Matching current and future experimental precision for $\overline{\boldsymbol{B}} \rightarrow \boldsymbol{X}_{s} \gamma$ decay necessitates NNLO corrections on the theory side crucial missing piece: $O\left(\alpha_{s}^{2}\right)$ correction to $\langle s \gamma| O_{1,2}|b\rangle$
- Reducing the interpolation uncertainty: needs $O\left(\alpha_{s}^{2}\right)$ correction to $\langle s \gamma| O_{1,2}|b\rangle$ at $m_{c}=0$ $\rightarrow 70 \%$ of the project is completed
- Removing the interpolation uncertainty: needs $O\left(\alpha_{s}^{2}\right)$ correction to $\langle s \gamma| O_{1,2}|b\rangle$ at physical m_{c}
\longrightarrow completed the fermionic contribution
\rightarrow massless case: calculated in two ways and confirmed the findings of [Bieri, Greub, Steinhauser 03]
\rightarrow massive case: impact on the branching ratio $+1.1 \%$ for $\mu_{b}=2.5 \mathrm{GeV}$
\longrightarrow bosonic contribution: work in progress

Summary

- From Misiak's talk at the Flavour Dynamics workshop in Albufeira Portugal, 6th November 2007

Currently known contributions $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)$ that have not been included in the estimate $(3.15 \pm 0.23) \times 10^{-4}$ in hep-ph/0609232:

$$
(\pm 7.3 \%)
$$

- New/old large- β_{0} bremsstrahlung effects [Ligeti, Luke, Manohar, Wise, 1999] $\Rightarrow \quad+2.0 \%$ in the BR
[Ferroglia, Haish, 2007, to be published]
- Four-loop mixing into the $b \rightarrow s g$ operator Q_{8} [Czakon, Haisch, MM, hep-ph/0612329]

$$
\Rightarrow \quad-0.3 \% \text { in the } \mathrm{BR}
$$

- Charm mass effects in loops on gluon lines in K_{77} [Asatrian, Ewerth, Gabrielyan, Greub, hep-ph/0611123] $\Rightarrow+0.3 \%$ in the BR [Czarnecki, Pak, to be published]
- Charm and bottom mass effects in loops on gluon lines in the three-loop $b \rightarrow s \gamma$ matrix elements of Q_{1} and Q_{2}
[Boughezal, Czakon, Schutzmeier, arXiv:0707.3090] $\quad \Rightarrow \quad+1.1 \%$ in the BR
- Non-perturbative $\mathcal{O}\left(\alpha_{s} \frac{\Lambda}{m_{b}}\right)$ effects in the term $\sim C_{7} C_{8}$
[Lee, Neubert, Paz, hep-ph/0609224]

$$
\begin{aligned}
\Rightarrow & \frac{-1.5 \% \text { in the } \mathrm{BR}}{\text { Total: }}+1.6 \% \text { in the BR }
\end{aligned}
$$

- cancellation between the shifts from the different contributions
- next update of the prediction of $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)$ will be provided once the complete $\mathcal{O}\left(\boldsymbol{\alpha}_{s}^{2}\right)$ correction to $\langle s \gamma| O_{1,2}|b\rangle$ is finished

