Corrections to $gg \rightarrow H$	Method for NLO EW	Threshold behaviour	Results	Conclusions

NLO electroweak corrections to SM Higgs production $gg \rightarrow H$ and decay $H \rightarrow \gamma \gamma$

Stefano Actis

Institut für Theoretische Physik E, RWTH Aachen University

in collaboration with G. Passarino, C. Sturm and S. Uccirati

4 Dec 2008, PSI Villigen

Corrections to $gg \to H$	Method for NLO EW	Threshold behaviour	Results	Conclusions
Outline				

- **1** Corrections to $gg \rightarrow H$
- 2 Method for NLO EW
- 3 Threshold behaviour

Hadronic SM Higgs production

Main production channel for the Standard Model Higgs in hadron collisions

Hahn, Heinemeyer, Maltoni, Weiglein, Willenbrock [hep-ph/0607308]

Gluon-fusion production channel does not lead to the cleanest signal, but it has by far the largest cross section both at the TEVATRON and the LHC

LO production cross section through gluon fusion

• LO cross section for $gg \rightarrow H$ by interfering quark 1-loop diagrams

$$\sigma_{\rm LO} = \frac{\mathbf{G}_{F} \alpha_{\rm S}^2(\mu_R^2)}{288\sqrt{2}\pi} \left| \frac{3}{2} \sum_q \frac{1}{\tau_q} \left[1 + \left(1 - \frac{1}{\tau_q} \right) f(\tau_q) \right] \right|^2 \qquad \tau_q = M_H^2 / (4M_q^2)$$

 $f = \arcsin, \ln$ Georgi, Glashow, Machacek, Nanopoulos'78

LO production cross section through gluon fusion

• LO cross section for $gg \rightarrow H$ by interfering quark 1-loop diagrams

$$\sigma_{\rm LO} = \frac{G_{F} \alpha_{\rm S}^{2}(\mu_{R}^{2})}{288\sqrt{2}\pi} \left| \frac{3}{2} \sum_{q} \frac{1}{\tau_{q}} \left[1 + \left(1 - \frac{1}{\tau_{q}} \right) f(\tau_{q}) \right] \right|^{2} \qquad \tau_{q} = M_{H}^{2}/(4M_{q}^{2})$$

$$f = \arcsin, \ln \qquad \text{Georgi, Glashow, Machacek, Nanopoulos '78}$$

• Partonic $\sigma_{LO} \Rightarrow \sigma_{LO} \otimes PDFs \Rightarrow LO$ total cross section for $h_1h_2 \rightarrow H$

← Djouadi [hep-ph/0503172]

LO production cross section through gluon fusion

• LO cross section for $gg \rightarrow H$ by interfering quark 1-loop diagrams

$$\sigma_{\rm LO} = \frac{\mathbf{G}_{\mathsf{F}} \alpha_{\rm S}^2(\mu_R^2)}{288\sqrt{2}\pi} \left| \frac{3}{2} \sum_q \frac{1}{\tau_q} \left[1 + \left(1 - \frac{1}{\tau_q} \right) f(\tau_q) \right] \right|^2 \qquad \tau_q = M_H^2 / (4M_q^2)$$
$$f = \arcsin, \ln \qquad \text{Georgi, Glashow, Machacek, Nanopoulos' 78}$$

• Partonic $\sigma_{LO} \Rightarrow \sigma_{LO} \otimes PDFs \Rightarrow LO$ total cross section for $h_1h_2 \rightarrow H$

Djouadi [hep-ph/0503172]

- both setting $\mu_R = \mu_F = M_H$
- LO \rightarrow strong dependence on $\mu_{R,F}$
- QCD corrections for reliability

QCD corrections (I)

QCD corrections to the total cross section very well under control

• NLO at the LHC +80% LO, uncertainty $\mu_{R,F}$ variation $\pm 20\%$

Dawson'91,Djouadi,Spira,Zerwas'91

 $\leq large M_t limit$

Spira,Djouadi,Graudenz,Zerwas'95,Harlander,Kant'05,Anastasiou,

Beerli, Bucherer, Daleo, Kunszt'06, Aglietti, Bonciani, Degrassi, Vicini'06

 $full M_H, M_q$ dependence

QCD corrections (I)

QCD corrections to the total cross section very well under control

• NLO at the LHC +80% LO, uncertainty $\mu_{R,F}$ variation \pm 20%

Dawson'91,Djouadi,Spira,Zerwas'91

 \leq large M_t limit

Spira, Djouadi, Graudenz, Zerwas'95, Harlander, Kant'05, Anastasiou,

Beerli, Bucherer, Daleo, Kunszt'06, Aglietti, Bonciani, Degrassi, Vicini'06

 $full M_H, M_q$ dependence

• NNLO at the LHC +20% NLO, uncertainty $\mu_{R,F}$ variation ±10%

Harlander'00,Catani,de Florian,Grazzini'01,Harlander,Kilgore'01, Anastasiou,Melnikov'02,Ravindran,Smith,van Neerven'03

 $^{\sim}$ large M_t limit: integrate out top quark \Rightarrow point-like Hgg interaction

QCD corrections (I)

QCD corrections to the total cross section very well under control

• NLO at the LHC +80% LO, uncertainty $\mu_{R,F}$ variation \pm 20%

Dawson'91,Djouadi,Spira,Zerwas'91

 \leq large M_t limit

Spira, Djouadi, Graudenz, Zerwas'95, Harlander, Kant'05, Anastasiou,

Beerli, Bucherer, Daleo, Kunszt'06, Aglietti, Bonciani, Degrassi, Vicini'06

 $full M_H, M_q$ dependence

• NNLO at the LHC +20% NLO, uncertainty $\mu_{R,F}$ variation ±10%

Harlander'00,Catani,de Florian,Grazzini'01,Harlander,Kilgore'01, Anastasiou,Melnikov'02,Ravindran,Smith,van Neerven'03

 \land large M_t limit: integrate out top quark \Rightarrow point-like Hgg interaction

• Total cross section dominated by long-wavelength gluon effects, insensitive to the reduction to an effective vertex

 $\Rightarrow \sigma_{\rm NNLO} \simeq \sigma_{\rm LO} \times K_{\rm EFT}$ NLO 90% result up to $M_H \simeq 1$ TeV

Krämer,Laenen,Spira'96

QCD corrections (II)

QCD corrections improved beyond FO and for exclusive quantities

- effect of a jet veto on total CS Catani, de Florian, Grazzini'01
- differential cross section evaluated at NNLO in QCD Anastasiou, Melnikov, Petriello'04, Catani, Grazzini'07

• . . .

EW corrections (I)

NLO EW corrections for matching the precision of QCD predictions

• "Dominant" contributions enhanced by M_t^2 Djouadi, Gambino'94

 $\sigma_{LO} imes [\mathbf{1} + \mathbf{G}_F \sqrt{2}/(\mathbf{16}\pi^2) M_t^2] = 0.4\%$ accidental

1) < 0 corrections to $\partial \Pi_{gg} / \partial M_t^2 \Leftrightarrow V_{Hgg}$ through a low-energy theorem

2) > 0 " renormalization constants for the top and the Higgs

EW corrections (I)

NLO EW corrections for matching the precision of QCD predictions

• "Dominant" contributions enhanced by M_t^2 Djouadi, Gambino'94

 $\sigma_{LO} \times [1 + G_F \sqrt{2} / (16\pi^2) M_t^2]$ 0.4% accidental

1) < 0 corrections to $\partial \Pi_{gg} / \partial M_t^2 \Leftrightarrow V_{Hgg}$ through a low-energy theorem

- 2) > 0 " renormalization constants for the top and the Higgs
- Light-quark analytically Aglietti, Bonciani, Degrassi, Vicini'04

Top diagrams by a Taylor expansion in q_H Degrassi, Maltoni'04

- for $M_H < 2 M_W \Rightarrow$ check the cuts of each Feynman diagram
- Im: $M_H = 2M_W \Rightarrow$ Taylor expansion in $q_H^2/(4M_W^2)$ allowed

Im: $q_H^2 = M_Z$ Im: $q_H^2 = 2 M_t$ Im: $q_H^2 = 0 \Rightarrow$ no Taylor exp?

Top diagrams by a Taylor expansion in q_H Degrassi, Maltoni'04

- for $M_H < 2 M_W \Rightarrow$ check the cuts of each Feynman diagram
- Im: $M_H = 2M_W \Rightarrow$ Taylor expansion in $q_H^2/(4M_W^2)$ allowed

Im: $q_H^2 = M_Z$ Im: $q_H^2 = 2 M_t$ Im: $q_H^2 = 0 \Rightarrow$ no Taylor exp?

* Cut vanishes because helicites on two sides cannot match

 \Rightarrow "naive" Taylor expansion allowed for top-quark diagrams

EW corrections (III)

Summary of EW corrections to $gg \rightarrow H$ at NLO below WW threshold

M _H	1 LQ	3 rd gen	$\delta_{ew}(\%)$	
115	-5.28	-0.78 - 0.22	4.7	Amplitude in units $lpha/(4\pi\sin^2 heta)$
120	-5.62	-0.82 - 0.06	4.9	Aglietti, Bonciani, Degrassi, Vicini'04
125	-5.98	-0.87 + 0.12	5.1	· · · · · · · · · · · · · · · · · · ·
130	-6.36	-0.93 + 0.33	5.4	Degrassi, Maltoni'04 (laylor expansion)
135	-6.76	-0.98 + 0.58	5.6	$\sigma_{ew} = \sigma_0 (1 + \delta_{ew}) \Rightarrow +5\% / +8\%$
140	-7.20	-1.04 + 0.88	5.8	
145	-7.69	-1.10 + 1.26	6.1	
150	-8.26	-1.16 + 1.78	6.4 ←	Degrassi,Maltoni [hep-ph/0407249]
155	-9.01	-1.23 + 2.68	6.6	
160	-10.4	-1.30 + 3.43	7.5	

NLO EW corrections match the uncertainty related to HO QCD corrections, estimated to be 5% at the LHC Moch, Vogt '05

Missing NLO EW corrections

EW corrections less known respect to QCD ones (each subset of them evaluated by one group only) and not completely under control

 Light-fermion terms known for all values of *M_H*, top-quark part computed only for *M_H* < 2 *M_W* ⇒ extend the result above 2*M_W*

Missing NLO EW corrections

EW corrections less known respect to QCD ones (each subset of them evaluated by one group only) and not completely under control

- Light-fermion terms known for all values of *M_H*, top-quark part computed only for *M_H* < 2 *M_W* ⇒ extend the result above 2*M_W*
- Top-quark terms evaluated only through Taylor expansion (BFM)
 ⇒ control reliability of the result close to the WW threshold

Conclusions

Missing NLO EW corrections

EW corrections less known respect to QCD ones (each subset of them evaluated by one group only) and not completely under control

- Light-fermion terms known for all values of *M_H*, top-quark part computed only for *M_H* < 2 *M_W* ⇒ extend the result above 2*M_W*
- Top-quark terms evaluated only through Taylor expansion (BFM)
 ⇒ control reliability of the result close to the WW threshold
- Threshold singularities show up at the amplitude level

$$\mathcal{A}_{\text{NLO}}^{\text{top}}(gg \to H) = \underbrace{\mathcal{A}_{1\text{PR}}}_{\text{exactly}} + \underbrace{\mathcal{A}_{1\text{PI}}}_{\text{expansion}} \quad \mathcal{A}_{1\text{PR}} = \dots + \underbrace{\frac{f(4M_W^2/M_H^2)}{\sqrt{4M_W^2 - M_H^2}}}_{M_H = 2M_W \to \infty} + \dots$$

* Minimal solution by Degrassi, Maltoni'04: $M_W^2 \Rightarrow M_W^2 - i\Gamma_W M_W$ only in the singular terms only to cure the divergent behaviour

What does it happen if complex poles instead of real masses are used everywhere?

Outline of the computation

Computation of the complete NLO EW corrections through six steps implemented in in-house FORM and FORTRAN codes

- **1** Generate all Feynman diagrams contributing to $gg \rightarrow H$
- **2** Projection of A on <u>form factors</u> F_i (Ward identity \Rightarrow 1 form factor)
- **3** Reduce F_i to basis integrals M_i by standard algebraic methods
- 4 \mathcal{A}^{NLO} shows UV poles \Rightarrow <u>renormalized</u>, bare \Leftrightarrow input data

Outline of the computation

Computation of the complete NLO EW corrections through six steps implemented in in-house FORM and FORTRAN codes

- **1** Generate all Feynman diagrams contributing to $gg \rightarrow H$
- **2** Projection of A on <u>form factors</u> F_i (Ward identity \Rightarrow 1 form factor)
- **3** Reduce F_i to basis integrals M_j by standard algebraic methods
- 4 \mathcal{A}^{NLO} shows UV poles \Rightarrow <u>renormalized</u>, bare \Leftrightarrow input data
- **5** M_j divergent for $m_f \rightarrow 0$; \mathcal{A}^{NLO} finite for $m_f \rightarrow 0$ (or spurious poles)

$$\Rightarrow M_j = \underbrace{c_j \ln(m_f^2/s)}_{\text{analytically}} + M_j^{\text{reg}} \Rightarrow \underbrace{\sum c_j \ln(m_f^2/s) = 0}_{\text{amplitude}} \Rightarrow m_f = 0$$

6 Renormalized $\mathcal{A}^{\text{NLO}} = \sum a_j M_j^{\text{reg}}$ evaluated numerically

Outline of the computation

Computation of the complete NLO EW corrections through six steps implemented in in-house FORM and FORTRAN codes

- **1** Generate all Feynman diagrams contributing to $gg \rightarrow H$
- **2** Projection of A on <u>form factors</u> F_i (Ward identity \Rightarrow 1 form factor)
- **3** Reduce F_i to basis integrals M_j by standard algebraic methods
- 4 \mathcal{A}^{NLO} shows UV poles \Rightarrow <u>renormalized</u>, bare \Leftrightarrow input data
- **5** M_j divergent for $m_f \rightarrow 0$; \mathcal{A}^{NLO} finite for $m_f \rightarrow 0$ (or spurious poles)

$$\Rightarrow M_j = \underbrace{c_j \ln(m_f^2/s)}_{\text{analytically}} + M_j^{\text{reg}} \Rightarrow \underbrace{\sum c_j \ln(m_f^2/s) = 0}_{\text{amplitude}} \Rightarrow m_f = 0$$

6 Renormalized $A^{\text{NLO}} = \sum a_j M_j^{\text{reg}}$ evaluated numerically

- * No details about numerical part; focus on the threshold behaviour
- * Treat simultaneously $gg \rightarrow H$ and $H \rightarrow \gamma \gamma$ (couplings, YM fields)

NLO EW diagrams

Representative diagrams for the processes $H \rightarrow \gamma \gamma$ and $gg \rightarrow H$

- Light fermions (topologies not present at LO); also for $gg \rightarrow H$
- Top-quark QCD-like configurations, present also for $gg \rightarrow H$
- Pure Yang-Mills diagrams; specific only of the $H \rightarrow \gamma \gamma$ decay

Projection of the amplitude

Project the amplitude for simplifying the calculation (ex. $H \rightarrow \gamma \gamma$)

- $\mathcal{A} = \mathcal{Z}_{\mathcal{A}}^{-1} \mathcal{Z}_{\mathcal{H}}^{-1/2} e_{1}^{\mu} e_{2}^{\nu} \mathcal{A}_{\mu\nu} \quad \mathcal{A}_{\mu\nu} \to \text{Green's function} \quad \mathcal{Z}_{\mathcal{K}} \to \text{WFR factors}$
- $\mathcal{A}_{\mu\nu} = \mathcal{F}_{D} \, \delta_{\mu\nu} \, + \, \sum \mathcal{F}_{P}^{ij} \, \mathcal{p}_{i\mu} \, \mathcal{p}_{j\nu} \, + \, \mathcal{F}_{\epsilon} \, \epsilon_{\mu\nu\alpha\beta} \, \mathcal{p}_{1}^{\alpha} \, \mathcal{p}_{2}^{\beta}$ tensor decomposition

Projection of the amplitude

Project the amplitude for simplifying the calculation (ex. $H \rightarrow \gamma \gamma$)

- $\mathcal{A} = \mathcal{Z}_{\mathcal{A}}^{-1} \mathcal{Z}_{\mathcal{H}}^{-1/2} e_{1}^{\mu} e_{2}^{\nu} \mathcal{A}_{\mu\nu} \quad \mathcal{A}_{\mu\nu} \to \text{Green's function} \quad \mathcal{Z}_{\mathcal{K}} \to \text{WFR factors}$
- $\mathcal{A}_{\mu\nu} = \mathcal{F}_{\mathcal{D}} \delta_{\mu\nu} + \sum \mathcal{F}_{\mathcal{P}}^{ij} \mathcal{p}_{i\mu} \mathcal{p}_{j\nu} + \mathcal{F}_{\epsilon} \epsilon_{\mu\nu\alpha\beta} \mathcal{p}_{1}^{\alpha} \mathcal{p}_{2}^{\beta}$ tensor decomposition

Preliminary simplifications observing that:

- 1) $e_i^{\mu} p_{i\mu} = 0$ \Rightarrow $F_P^{11}, F_P^{12}, F_P^{22}$ do not contribute to \mathcal{A}
- 2) SM *H* CP even \Rightarrow *F*_e vanishes in the full *A* (not each diag.)
- 3) WI $p_1^{\mu} \mathcal{A}_{\mu\nu} p_2^{\nu} = 0 \qquad \Rightarrow \qquad F_D + p_1 \cdot p_2 F_P^{21} = 0$ (not linearly indep.)

Projection operators for extracting the two form factors from $\mathcal{A}_{\mu\nu}$

$$\Rightarrow F_{D} = \frac{1}{n-2} \left(\delta^{\mu\nu} - \frac{p_{1}^{\mu} p_{2}^{\nu} + p_{2}^{\mu} p_{1}^{\nu}}{p_{1} \cdot p_{2}} \right) \mathcal{A}_{\mu\nu} , \quad F_{P}^{21} = \frac{1}{(2-n)p_{1} \cdot p_{2}} \left[\delta^{\mu\nu} - \frac{(n-1)p_{1}^{\mu} p_{2}^{\nu} + p_{2}^{\mu} p_{1}^{\nu}}{p_{1} \cdot p_{2}} \right] \mathcal{A}_{\mu\nu}$$

Projection of the amplitude

Project the amplitude for simplifying the calculation (ex. $H \rightarrow \gamma \gamma$)

- $\mathcal{A} = \mathcal{Z}_{\mathcal{A}}^{-1} \mathcal{Z}_{\mathcal{H}}^{-1/2} e_{1}^{\mu} e_{2}^{\nu} \mathcal{A}_{\mu\nu} \quad \mathcal{A}_{\mu\nu} \to \text{Green's function} \quad \mathcal{Z}_{\mathcal{K}} \to \text{WFR factors}$
- $\mathcal{A}_{\mu\nu} = \mathcal{F}_{\mathcal{D}} \delta_{\mu\nu} + \sum \mathcal{F}_{\mathcal{P}}^{ij} \mathcal{p}_{i\mu} \mathcal{p}_{j\nu} + \mathcal{F}_{\epsilon} \epsilon_{\mu\nu\alpha\beta} \mathcal{p}_{1}^{\alpha} \mathcal{p}_{2}^{\beta}$ tensor decomposition

Preliminary simplifications observing that:

- 1) $e_i^{\mu} p_{i\mu} = 0$ \Rightarrow $F_P^{11}, F_P^{12}, F_P^{22}$ do not contribute to \mathcal{A}
- 2) SM *H* CP even \Rightarrow F_{ϵ} vanishes in the full \mathcal{A} (not each diag.)
- 3) WI $p_1^{\mu} \mathcal{A}_{\mu\nu} p_2^{\nu} = 0 \qquad \Rightarrow \qquad F_D + p_1 \cdot p_2 F_P^{21} = 0$ (not linearly indep.)

Projection operators for extracting the two form factors from $\mathcal{A}_{\mu\nu}$

Reduction to basis integrals

After projection, no free Lorentz indices \Rightarrow standard algebr. reduction

• Trivial reduction of scalar products in numerators with propagators

 $\frac{2q \cdot p}{(q^2 + m^2)[(q+p)^2 + M^2]} = \frac{1}{q^2 + m^2} - \frac{1}{(q+p)^2 + M^2} - \frac{p^2 - m^2 + M^2}{(q^2 + m^2)[(q+p)^2 + M^2]}$

Reduction to basis integrals

After projection, no free Lorentz indices \Rightarrow standard algebr. reduction

Trivial reduction of scalar products in numerators with propagators

$$\frac{2q \cdot p}{(q^2 + m^2)[(q + p)^2 + M^2]} = \frac{1}{q^2 + m^2} - \frac{1}{(q + p)^2 + M^2} - \frac{p^2 - m^2 + M^2}{(q^2 + m^2)[(q + p)^2 + M^2]}$$

Use symmetries of diagrams for minimizing different mass patterns

Reduction to basis integrals

After projection, no free Lorentz indices \Rightarrow standard algebr. reduction

Trivial reduction of scalar products in numerators with propagators

 $\frac{2q \cdot p}{(q^2 + m^2)[(q + p)^2 + M^2]} = \frac{1}{q^2 + m^2} - \frac{1}{(q + p)^2 + M^2} - \frac{p^2 - m^2 + M^2}{(q^2 + m^2)[(q + p)^2 + M^2]}$

Use symmetries of diagrams for minimizing different mass patterns

• IBPIs [Chetyrkin, Tkachov'81] for tadpole integrals (no ext. scales)

One-loop renormalization

Renormalization at one loop, no tree-level $H\gamma\gamma$ and Hgg couplings

•
$$p_B = \left(1 + \frac{g_R^2}{16\pi^2} \delta Z_p\right) p_R$$
 $\delta Z_p \Rightarrow \overline{\mathrm{MS}}^{1\mathrm{L}}$ $1/\epsilon, \gamma_E$, no fin. parts

One-loop renormalization

Renormalization at one loop, no tree-level $H\gamma\gamma$ and Hgg couplings

• $p_B = \left(1 + \frac{g_R^2}{16\pi^2} \delta Z_p\right) p_R$ $\delta Z_p \Rightarrow \overline{\mathrm{MS}}^{1\mathrm{L}}$ $1/\epsilon, \gamma_E$, no fin. parts • WFRs $\neq 1 \Rightarrow Z_H = 1 - \frac{g_R^2}{16\pi^2} \underbrace{\mathrm{Re}\Sigma_H^{(1)'}(M_H^2)}_{\text{derivative}}$

One-loop renormalization

Renormalization at one loop, no tree-level $H\gamma\gamma$ and Hgg couplings

• $p_B = \left(1 + \frac{g_R^2}{16\pi^2} \delta Z_p\right) p_R$ $\delta Z_p \Rightarrow \overline{\mathrm{MS}}^{\mathrm{IL}} \quad 1/\epsilon, \gamma_E$, no fin. parts • WFRs $\neq 1 \Rightarrow Z_H = 1 - \frac{g_R^2}{16\pi^2} \underbrace{\operatorname{Re}\Sigma_H^{(1)'}(M_H^2)}_{\text{derivative}}$ • $p_R \neq p_{EXP} \Rightarrow m_W^2 = M_W^2 \left[1 + \underbrace{\frac{G_F M_W^2}{2\sqrt{2}\pi^2} \operatorname{Re}\Sigma_W^{(1)}(M_W^2)}_{\text{finite shift}}\right]$ Renormalization at one loop, no tree-level $H\gamma\gamma$ and Hgg couplings

• $p_B = \left(1 + \frac{g_R^2}{16\pi^2} \delta Z_p\right) p_R$ $\delta Z_p \Rightarrow \overline{\text{MS}}^{1L}$ $1/\epsilon, \gamma_E$, no fin. parts • WFRs $\neq 1 \Rightarrow Z_H = 1 - \frac{g_R^2}{16\pi^2} \underbrace{\text{Re}\Sigma_H^{(1)'}(M_H^2)}_{H}$ derivative • $p_R \neq p_{EXP} \Rightarrow m_W^2 = M_W^2 \left[1 + \frac{G_F M_W^2}{2\sqrt{2}\pi^2} \operatorname{Re}\Sigma_W^{(1)}(M_W^2) \right]$ finite shift W H f X H man w W f X H man w

 \Rightarrow trivial but important for the analysis of the threshold behaviour

Extraction of collinear logarithms

Before evaluating the ${\mathcal A}$ numerically, control cancellation of mass divs.

 Configurations with 2 massless quanta with same LF current cancel algebraically after reduction ⊗ symmetrization

Extraction of collinear logarithms

Before evaluating the ${\mathcal A}$ numerically, control cancellation of mass divs.

- Configurations with 2 massless quanta with same LF current cancel algebraically after reduction ⊗ symmetrization
- All two-loop collinear-divergent configurations can be represented as integrals over Feynman parameters of one-loop functions

Check algebraically that $\ln m^2/s \rightarrow 0$ in $\mathcal{A} \rightarrow \text{evaluate num. rest for } m = 0$

EW corrections to $gg \rightarrow H$ below 150 GeV

Anatomy of EW corrections to $gg \rightarrow H$ for 115 GeV $< M_H < 150$ GeV

- Agreement with light quarks Aglietti, Bonciani, Degrassi, Vicini'04 and corrected (1PR) 3rd gen. quarks Degrassi, Maltoni'04
- Light quarks dominate respect to $\propto G_F m_t^2$ Djouadi, Gambino'94

EW corrections to $H \rightarrow \gamma \gamma$ below 150 GeV

Anatomy of EW corrections to $H \rightarrow \gamma \gamma$ for 110 GeV < M_H < 150 GeV

- Agreement with lep / LQ Aglietti, Bonciani, Degrassi, Vicini'04 and corrected (1PR) 3rd gen. quarks / YM Degrassi, Maltoni'05
- Contributions ∝ G_Fm²_t Liao, Li'96, Djouadi, Gambino, Kniehl'97 Fugel, Kniehl, Steinhauser'04 large but not dominant
Around the WW threshold: Ward identity

1st problem with the crossing of WW: violation of a Ward identity for $\underline{H} \rightarrow \gamma \gamma$

• WI $\rightarrow p_1^{\mu} \mathcal{A}_{\mu\nu} p_2^{\nu} = 0$, but explicitly $\rightarrow p_1^{\mu} \mathcal{A}_{\mu\nu} p_2^{\nu} \neq 0$ for $M_H > 2 M_W$

Around the WW threshold: Ward identity

1st problem with the crossing of WW: violation of a Ward identity for $H \rightarrow \gamma \gamma$

- WI $\rightarrow p_1^{\mu} \mathcal{A}_{\mu\nu} p_2^{\nu} = 0$, but explicitly $\rightarrow p_1^{\mu} \mathcal{A}_{\mu\nu} p_2^{\nu} \neq 0$ for $M_H > 2 M_W$
- Due to the relation between $\underbrace{m_{H}^2}_{\overline{MS} \text{ ren.}}$ and $\underbrace{M_{H}^2}_{\text{on shell}}$ in scalar $V_{H\varphi^+\varphi^-} \propto \underbrace{m_{H}^2}_{\overline{MS} \text{ ren.}}$
- At NLO there are two kinds of diagrams contributing to the Ward identity

Around the WW threshold: Ward identity

1st problem with the crossing of WW: violation of a Ward identity for $H \rightarrow \gamma \gamma$

- WI $\rightarrow p_1^{\mu} \mathcal{A}_{\mu\nu} p_2^{\nu} = 0$, but explicitly $\rightarrow p_1^{\mu} \mathcal{A}_{\mu\nu} p_2^{\nu} \neq 0$ for $M_H > 2 M_W$
- Due to the relation between $\underbrace{\mathcal{M}_{H}^{2}}_{\overline{MS} \text{ ren.}}$ and $\underbrace{\mathcal{M}_{H}^{2}}_{\text{on shell}}$ in scalar $V_{H\varphi^{+}\varphi^{-}} \propto \underbrace{\mathcal{M}_{H}^{2}}_{\overline{MS} \text{ ren.}}$
- At NLO there are two kinds of diagrams contributing to the Ward identity

- Below WW both classes of diagrams are real \rightarrow the Ward identity holds
- Above WW mismatch imaginary parts (Re) \rightarrow the Ward identity $\neq 0$

2nd problem with the crossing of both WW and ZZ: square-root divergencies

 $H \rightarrow \gamma \gamma$ and $gg \rightarrow H$ ampls. \Rightarrow terms proportional to $1/\beta_V$, $\beta_V = \sqrt{1 - 4 M_V^2/M_H^2}$

2nd problem with the crossing of both WW and ZZ: square-root divergencies

 $H \rightarrow \gamma \gamma$ and $gg \rightarrow H$ ampls. \Rightarrow terms proportional to $1/\beta_V$, $\beta_V = \sqrt{1 - 4 M_V^2/M_H^2}$

1) (H WFR factor) \otimes (1-loop diags., $\gamma\gamma$, gg) (see Kniehl, Palisoc, Sirlin'00)

H WF divergent for $M_H = 2M_{W,Z}$

2nd problem with the crossing of both WW and ZZ: square-root divergencies

 $H \rightarrow \gamma \gamma$ and $gg \rightarrow H$ ampls. \Rightarrow terms proportional to $1/\beta_V$, $\beta_V = \sqrt{1 - 4 M_V^2/M_H^2}$

1) (H WFR factor) \otimes (1-loop diags., $\gamma\gamma$, gg) (see Kniehl, Palisoc, Sirlin'00)

H WF divergent for $M_H = 2M_{W,Z}$

2) (W mass renormalization) \otimes (derivatives 1-loop diagrams, $\gamma\gamma$)

der. divergent for $M_H = 2M_W$

2nd problem with the crossing of both WW and ZZ: square-root divergencies

 $H \rightarrow \gamma \gamma$ and $gg \rightarrow H$ ampls. \Rightarrow terms proportional to $1/\beta_V$, $\beta_V = \sqrt{1 - 4 M_V^2/M_H^2}$

1) (H WFR factor) \otimes (1-loop diags., $\gamma\gamma$, gg) (see Kniehl, Palisoc, Sirlin'00)

H WF divergent for $M_H = 2M_{W,Z}$

2) (W mass renormalization) \otimes (derivatives 1-loop diagrams, $\gamma\gamma$)

3) (irreducible 2-loop diagrams with a bubble insertion in an internal W line, $\gamma\gamma$)

 \Rightarrow divergent part for $M_H = 2M_W$ can be represented as 1-loop \otimes 1-loop

Around the $t\bar{t}$ threshold: square-root divergencies?

 \Rightarrow would-be divergency for $M_H = 2M_t$ as 1-loop \otimes 1-loop, finite as in class 2)

Logarithmic singularity at the WW threshold

3rd problem with the crossing of $WW / t\bar{t}$: logarithmic divergencies

 $H \rightarrow \gamma \gamma$ and $gg \rightarrow H$ ampls. \Rightarrow terms proportional to $\ln(-\beta_i^2 - i0)$, i=W,t

Logarithmic singularity at the WW threshold

3rd problem with the crossing of $WW / t\bar{t}$: logarithmic divergencies

 $H \rightarrow \gamma \gamma$ and $gg \rightarrow H$ ampls. \Rightarrow terms proportional to $\ln(-\beta_i^2 - i0)$, i=W,t

• no problem for $t\bar{t}$, since the ln is multiplied by β_t^2 (spin structure protects threshold behaviour); no $\sqrt{-}$, no ln divergencies $\Rightarrow M_t = 170.9 \text{ GeV}$

Logarithmic singularity at the WW threshold

3rd problem with the crossing of $WW / t\bar{t}$: logarithmic divergencies

 $H \rightarrow \gamma \gamma$ and $gg \rightarrow H$ ampls. \Rightarrow terms proportional to $\ln(-\beta_i^2 - i0)$, i=W,t

- no problem for $t\bar{t}$, since the ln is multiplied by β_t^2 (spin structure protects threshold behaviour); no $\sqrt{-}$, no ln divergencies $\Rightarrow M_t = 170.9 \text{ GeV}$
- open problems: violation of Ward identity for $H \rightarrow \gamma \gamma$, In divergency at the *WW* threshold for $H \rightarrow \gamma \gamma$, $\sqrt{-}$ divergencies at the *WW* and *ZZ* thresholds for both $H \rightarrow \gamma \gamma$ and $gg \rightarrow H$

Cure problems with crossing of thresholds implementing the complex-mass scheme at 1 loop Denner, Dittmaier, Roth, Wieders' 05

1) Avoid the selection of the Re part for *H* self-energy (mass renormalization) in order to restore the Ward identity for $H \rightarrow \gamma \gamma$

Cure problems with crossing of thresholds implementing the complex-mass scheme at 1 loop Denner, Dittmaier, Roth, Wieders' 05

1) Avoid the selection of the Re part for *H* self-energy (mass renormalization) in order to restore the Ward identity for $H \rightarrow \gamma \gamma$

2) "Minimal" introduction of the complex-mass scheme

Decompose $A = A_{\text{div}}^{1,W} / \beta_W + A_{\text{div}}^{1,Z} / \beta_Z + A_{\text{div}}^2 \ln(-\beta_W^2 - i0) + A_{\text{fin}}$

Introduce the CMS in both threshold factors β_V and coefficients $A_{div}^{1,2}$

Cure problems with crossing of thresholds implementing the complex-mass scheme at 1 loop Denner, Dittmaier, Roth, Wieders' 05

1) Avoid the selection of the Re part for *H* self-energy (mass renormalization) in order to restore the Ward identity for $H \rightarrow \gamma \gamma$

2) "Minimal" introduction of the complex-mass scheme

Decompose $A = A_{\text{div}}^{1,W}/\beta_W + A_{\text{div}}^{1,Z}/\beta_Z + A_{\text{div}}^2 \ln(-\beta_W^2 - i0) + A_{\text{fin}}$

Introduce the CMS in both threshold factors β_V and coefficients $A_{div}^{1,2}$

3) Complete introduction of the complex-mass scheme

Introduce the CMS in all divergent and finite terms of the amplitude

Practical implementation of the complex-mass scheme through two steps:

1. Replace on-shell masses M_V^2 with complex poles $s_V = \mu_V (\mu_V - i\gamma_V)$

Practical implementation of the complex-mass scheme through two steps:

- 1. Replace on-shell masses M_V^2 with complex poles $s_V = \mu_V (\mu_V i\gamma_V)$
- 2. Trade the real parts of the *W* and *Z* self-energies (mass renormalization at 1 loop) for the complete self-energies, including imaginary parts

Practical implementation of the complex-mass scheme through two steps:

- 1. Replace on-shell masses M_V^2 with complex poles $s_V = \mu_V (\mu_V i\gamma_V)$
- 2. Trade the real parts of the *W* and *Z* self-energies (mass renormalization at 1 loop) for the complete self-energies, including imaginary parts
- \Rightarrow Replace the conventional on-shell mass renormalization equations with the associated expressions for the complex poles of the *W* and *Z* bosons

$$m_i^2 = M_i^2 \left[1 + \frac{G_F M_W^2}{2\sqrt{2}\pi^2} \operatorname{Re}\Sigma_i^{(1)}(M_i^2) \right] \quad \Rightarrow \quad m_i^2 = s_i \left[1 + \frac{G_F s_W}{2\sqrt{2}\pi^2} \Sigma_i^{(1)}(s_i) \right]$$

 \Rightarrow Insert the full self-energy for the *W* boson in the renormalization equation for the Fermi-coupling constant, expressed through the complex mass of the *W*, s_W

$$g = 2\left(\sqrt{2}G_F s_W\right)^{1/2} \left[1 - \frac{G_F s_W}{4\sqrt{2}\pi^2}\Delta\right], \Delta = \Sigma_W^{(1)}(0) - \Sigma_W^{(1)}(s_W) + 6 + \frac{7 - 4s_\theta^2}{2s_\theta^2}\ln c_\theta^2$$

Practical implementation of the complex-mass scheme through two steps:

- 1. Replace on-shell masses M_V^2 with complex poles $s_V = \mu_V (\mu_V i\gamma_V)$
- 2. Trade the real parts of the *W* and *Z* self-energies (mass renormalization at 1 loop) for the complete self-energies, including imaginary parts
- \Rightarrow Replace the conventional on-shell mass renormalization equations with the associated expressions for the complex poles of the *W* and *Z* bosons

$$m_i^2 = M_i^2 \left[1 + \frac{G_F M_W^2}{2\sqrt{2}\pi^2} \operatorname{Re}\Sigma_i^{(1)}(M_i^2) \right] \quad \Rightarrow \quad m_i^2 = s_i \left[1 + \frac{G_F s_W}{2\sqrt{2}\pi^2} \Sigma_i^{(1)}(s_i) \right]$$

 \Rightarrow Insert the full self-energy for the *W* boson in the renormalization equation for the Fermi-coupling constant, expressed through the complex mass of the *W*, s_W

$$g = 2\left(\sqrt{2}G_F s_W\right)^{1/2} \left[1 - \frac{G_F s_W}{4\sqrt{2}\pi^2}\Delta\right], \Delta = \Sigma_W^{(1)}(0) - \Sigma_W^{(1)}(s_W) + 6 + \frac{7 - 4s_\theta^2}{2s_\theta^2}\ln c_\theta^2$$

 $CMS \rightarrow replacements$ done also at the level of the couplings $\Rightarrow s_{\theta}^2 = 1 - s_W/s_Z$

Square-root divergencies in the CMS

In the CMS square-root divergencies are confined to the H WFR factor

• Using on-shell masses as input data \Rightarrow three sources of $\sqrt{-}$ divergencies

 \Rightarrow divergent part for $M_H = 2M_W$ represented as 1-loop \otimes 1-loop + finite

Square-root divergencies in the CMS

In the CMS square-root divergencies are confined to the H WFR factor

• Using on-shell masses as input data \Rightarrow three sources of $\sqrt{-}$ divergencies

 \Rightarrow divergent part for $M_H = 2M_W$ represented as 1-loop \otimes 1-loop + finite

• Using complex masses as input data (Re tag removed from *W*-mass ren.)

 \Rightarrow divergent parts of bubble insertions + W-mass renormalization terms cancel

 \Rightarrow all square-root divergencies arise only from the Higgs WFR factor at one-loop

Minimal implementation of the CMS

Minimal implementation of the CMS involves only two classes of diagrams

• Decompose $A = A_{\text{div}}^{1,W}/\beta_W + A_{\text{div}}^{1,Z}/\beta_Z + A_{\text{div}}^2 \ln(-\beta_W^2 - i0) + A_{\text{fin}}$

Minimal implementation of the CMS

Minimal implementation of the CMS involves only two classes of diagrams

• Decompose $A = A_{\text{div}}^{1,W}/\beta_W + A_{\text{div}}^{1,Z}/\beta_Z + A_{\text{div}}^2 \ln(-\beta_W^2 - i0) + A_{\text{fin}}$

• Replace on-shell masses M_V^2 with complex poles $s_V = \mu_V(\mu_V - i\gamma_V)$ in terms involving the derivative of the Higgs self-energy at one loop and in the two-loop diagram with a Coulomb exchange

Minimal implementation of the CMS

Minimal implementation of the CMS involves only two classes of diagrams

• Decompose $A = A_{\text{div}}^{1,W}/\beta_W + A_{\text{div}}^{1,Z}/\beta_Z + A_{\text{div}}^2 \ln(-\beta_W^2 - i0) + A_{\text{fin}}$

- Replace on-shell masses M_V^2 with complex poles $s_V = \mu_V(\mu_V i\gamma_V)$ in terms involving the derivative of the Higgs self-energy at one loop and in the two-loop diagram with a Coulomb exchange
- Problem of resumming Coulomb singularities not addressed; In terms are not \(\beta_W^2\)-protected at threshold, large enhancement expected as for pseudo-scalar H decay for \(M_H = 2M_t\) (Melnikov, Spira, Yakovlev'94)

Complete implementation of the CMS

Complete implementation of the CMS in principle much more complicated

- 1. Replace on-shell masses M_V^2 with complex poles s_V in all diagrams
- 2. Trade the Re parts of the W and Z self-energies for the full self-energies
 - $A = \underbrace{A_{\text{div}}^{1,W}/\beta_W}_{\text{cancell, irrelevant}} + A_{\text{div}}^{1,Z}/\beta_Z + A_{\text{div}}^2 \ln(-\beta_W^2 i0) + \underbrace{A_{\text{fin}}}_{\text{complex masses}}$

Complete implementation of the CMS

Complete implementation of the CMS in principle much more complicated

- 1. Replace on-shell masses M_V^2 with complex poles s_V in all diagrams
- 2. Trade the Re parts of the W and Z self-energies for the full self-energies

$$A = \underbrace{A_{\text{div}}^{1,W} / \beta_W}_{\text{cancell, irrelevant}} + A_{\text{div}}^{1,Z} / \beta_Z + A_{\text{div}}^2 \ln(-\beta_W^2 - i0) + \underbrace{A_{\text{fin}}}_{\text{complex masses}}$$

Practically the second step can be in most cases avoided

- Z-mass renormalization only for H → γγ, because of the coupling g²s²_θ at LO, with s²_θ through s_Z and s_W, but simpler g²s²_θ = 4πα (on-shell γ's)
- W-mass renormalization also for gg → H, because of the coupling g/m_W at LO, but the W self-energy at s_W drops out when combining mass renormalization with the equation for the Fermi-coupling constant
- 2. needed only concerning W-mass renormalization for $H\to\gamma\gamma$

Loop integrals have to be evaluated with complex masses

• Internal masses complexified \rightarrow no problems; the replacement $M^2 - i0 \Rightarrow s = \mu^2 - i\mu\gamma$ does not clash with the -i0 prescription

Loop integrals have to be evaluated with complex masses

- Internal masses complexified \rightarrow no problems; the replacement $M^2 i0 \Rightarrow \mathbf{s} = \mu^2 i\mu\gamma$ does not clash with the -i0 prescription
- External squared momenta are real quantities by construction

Loop integrals have to be evaluated with complex masses

- Internal masses complexified \rightarrow no problems; the replacement $M^2 i0 \Rightarrow s = \mu^2 i\mu\gamma$ does not clash with the -i0 prescription
- External squared momenta are real quantities by construction
- W-mass renormalization at one-loop leads to a complication

$$B_0(p^2;0,0) \Rightarrow \int_0^1 dx \ln \chi(x), \qquad \chi(x) = p^2 x(1-x) - i0$$

real $M_W^2 \Rightarrow \operatorname{Re}_{\chi}(x) = -M_W^2 x(1-x) < 0$, $\operatorname{Im}_{\chi}(x) = -0 < 0$

 $\text{complex } s_W \Rightarrow \ \mathsf{Re}\chi(x) = -\mu_W^2 x(1-x) < 0, \quad \mathsf{Im}\chi(x) = +\mu_W \gamma_W x(1-x) > 0$

 $\rightarrow \underline{\text{0-width}}$ limit of the complex-mass case doesn't reproduce the real-mass one

Loop integrals have to be evaluated with complex masses

- Internal masses complexified \rightarrow no problems; the replacement $M^2 i0 \Rightarrow \mathbf{s} = \mu^2 i\mu\gamma$ does not clash with the -i0 prescription
- External squared momenta are real quantities by construction
- W-mass renormalization at one-loop leads to a complication

$$B_0(p^2;0,0) \Rightarrow \int_0^1 dx \ln \chi(x), \qquad \chi(x) = p^2 x(1-x) - i0$$

real $M_W^2 \Rightarrow \operatorname{Re}_{\chi}(x) = -M_W^2 x(1-x) < 0$, $\operatorname{Im}_{\chi}(x) = -0 < 0$

 $\text{complex } s_W \Rightarrow \ \text{Re}\chi(x) = -\mu_W^2 x(1-x) < 0, \quad \text{Im}\chi(x) = +\mu_W \gamma_W x(1-x) > 0$

- \rightarrow <u>0-width</u> limit of the complex-mass case doesn't reproduce the real-mass one
- \rightarrow define an analytic continuation of In such that the value for a stable gauge boson is smoothly approached when the coupling tends to zero

$$\ln(z_R + iz_I) \Rightarrow \ln(z_R + iz_I) - 2i\pi\theta(-z_R), \qquad \lim_{z_I \to 0} = \underbrace{\ln(z_R - i0)}_{\text{real mass}}$$

Threshold behaviour for $gg \rightarrow H$

Comparison of EW corrections to $\underline{gg} \rightarrow H$ around the WW threshold, obtained using different schemes for treating unstable particles

- Result obtained with <u>real masses</u> divergent at WW; good approx. below/above
- MCM setup gives finite result at WW; large effect 9.6 % associated with cusp
- CM setup smoothens singular behaviour; effects at threshold reduced to $4.6\,\%$

Threshold behaviour for $H \rightarrow \gamma \gamma$

Comparison of EW corrections to $\underline{H} \rightarrow \gamma\gamma$ around the *WW* threshold, obtained using different schemes for treating unstable particles

- Result obtained with <u>real masses</u> divergent at WW; good approx. below; completely off above threshold, since no cancellation mechanism occurs
- Result in MCM setup finite, shows cusp; result in CM setup is smooth
- At threshold, result in <u>MCM setup</u> \rightarrow 3.5%; result in <u>CM setup</u> \rightarrow 2.7% \Rightarrow prediction at the % level requires complete CMS implementation

EW corrections to $gg \rightarrow H$ (I)

Summary of EW corrections to $gg \rightarrow H$ for 100 GeV < M_H < 400 GeV

- Full agreement with Aglietti, Bonciani, Degrassi, Vicini'04 using RMs as input data; light fermions dominate up to 300 GeV (max +9%)
- CMs change the result around WW and ZZ thresholds, where cusps disappear
- Top-quark diagrams relevant at $t\bar{t}$ threshold, with relative correction $\delta_{ew} \sim -4\%$

EW corrections to $gg \rightarrow H$ (II)

Summary of EW corrections to $gg \rightarrow H$ for 100 GeV $< M_H < 250$ GeV

- Full agreement below WW with Taylor expansion Degrassi, Maltoni'04 using CMs as input data in divergent terms only
- Implementation of CMs everywhere smoothens the result around WW and ZZ thresholds and leads to a -4% shift respect to MCM at 140 GeV

EW/QCD corrections to $H \rightarrow \gamma \gamma$

Summary of EW/QCD corrections to $H \rightarrow \gamma \gamma$ for 100 GeV $< M_H <$ 170 GeV

- QCD corrections > 0, ranging from +1.8% (120 GeV) to +0.9% (170 GeV)
- CMs in non-divergent terms smoothen threshold behaviour of EW effects; numerically they range from -1.9% (120 GeV) to +3.5% (170 GeV)
- EW effects compensate QCD ones for light Higgs masses, -0.1% (120 GeV); strong enhancement above threshold, +4.4% (170 GeV)

Total cross section in hadron collisions

- Insert the partonic result for EW corrections to $gg \rightarrow H$ in the total cross section $\sigma(h_1h_2 \rightarrow H)$
- Fold PDFs with partonic cross section

$$\sigma(h_1 h_2 \to H) = \sum_{i,j} \int_0^1 d\mathbf{x}_1 d\mathbf{x}_2 f_{i,h_1}(\mathbf{x}_1, \mu_F^2) f_{j,h_2}(\mathbf{x}_2, \mu_F^2) \times \\ \times \int_0^1 d\mathbf{z} \delta\left(\mathbf{z} - \frac{M_H^2}{s \mathbf{x}_1 \mathbf{x}_2}\right) \mathbf{z} \underbrace{\sigma^0}_{\text{Born}} \underbrace{\mathbf{G}_{ij}(\mathbf{z}, \mu_R^2, \mu_F^2)}_{\text{pOCD}}$$

 Estimate theoretical uncertainty controlling the dependence of σ(h₁h₂ → H) on μ_{R,F} for fixed values of M_H; define uncertainty band around central values for μ_R = μ_F = M_H

Inclusion of NLO EW effects

Two factorization options for QCD/ EW:

$$egin{aligned} \sigma(h_1h_2 &
ightarrow H) = \sum_{i,j} \int_0^1 dx_1 dx_2 f_{i,h_1}(x_1,\mu_F^2) f_{j,h_2}(x_2,\mu_F^2) imes \ & imes \int_0^1 dz \delta\left(z - rac{M_H^2}{sx_1x_2}
ight) z \sigma^0 G_{ij}(z,\mu_R^2,\mu_F^2) \end{aligned}$$

I) Complete factorization $G_{ij} \rightarrow (1 + \delta_{EW})G_{ij}$

analogous to Aglietti, Bonciani, Degrassi, Vicini'06 light Higgs
Inclusion of NLO EW effects

Two factorization options for QCD/ EW:

$$egin{aligned} \sigma(h_1h_2 &
ightarrow H) = \sum_{i,j} \int_0^1 dx_1 dx_2 f_{i,h_1}(x_1,\mu_F^2) f_{j,h_2}(x_2,\mu_F^2) imes \ & imes \int_0^1 dz \delta\left(z - rac{M_H^2}{sx_1x_2}
ight) z \sigma^0 G_{ij}(z,\mu_R^2,\mu_F^2) \end{aligned}$$

I) Complete factorization $G_{ij} \rightarrow (1 + \delta_{EW})G_{ij}$

analogous to Aglietti, Bonciani, Degrassi, Vicini'06 light Higgs

II) Partial factorization $G_{ij} \rightarrow G_{ij} + \alpha_S^2 \delta_{EW} G_{ij}^{(0)}$

Inclusion of NLO EW effects

Two factorization options for QCD/ EW:

$$egin{aligned} \sigma(h_1h_2 &
ightarrow H) = \sum_{i,j} \int_0^1 d\mathbf{x}_1 d\mathbf{x}_2 f_{i,h_1}(\mathbf{x}_1,\mu_F^2) f_{j,h_2}(\mathbf{x}_2,\mu_F^2) imes \ & imes \int_0^1 d\mathbf{z} \delta\left(\mathbf{z} - rac{M_H^2}{s \mathbf{x}_1 \mathbf{x}_2}
ight) \mathbf{z} \sigma^0 G_{ij}(\mathbf{z},\mu_R^2,\mu_F^2) \end{aligned}$$

I) Complete factorization $G_{ij} \rightarrow (1 + \delta_{EW})G_{ij}$

analogous to Aglietti, Bonciani, Degrassi, Vicini'06 light Higgs

- II) Partial factorization $G_{ij} \rightarrow G_{ij} + \alpha_S^2 \delta_{EW} G_{ij}^{(0)}$
- Vary $\mu_{R,F}$ sim./indep. in $M_H/2 < \mu_{R,F} < 2M_H$ with $\mu_R/2 < \mu_F < 2\mu_R$
- \Rightarrow For each $M_H \rightarrow \sigma_{ref}$, σ_{max} , σ_{min} , uncertertainty band $\sigma_{max} \sigma_{min}$
 - Very conservative estimate, since in PF option the scale dependence is controlled by the LO QCD result (multiplied by δ_{EW})

NLO EW corrections at the Tevatron

Impact of NLO EW effects at Tevatron II, $\sqrt{s} = 1.96$ TeV, 100 GeV $< M_H < 200$ GeV (using HIGGSNNLO, by M.Grazzini)

M _H	[GeV]	δ_{CF} [%]	$\delta_{ m PF}$ [%]
	120	+4.9	+1.6
	140	+5.7	+1.8
	160	+4.8	+1.5
	180	+0.5	+0.1
	200	-2.1	-0.6

- Uncertainty band shows stronger sensitivity on the Higgs mass, once NLO EW effects are included
- Impact of NLO EW corrections smaller respect to NNLL resummation Catani, de Florian, Grazzini, Nason'03 (+12% for M_H = 120 GeV)
- 95 % CL exclusion of a SM Higgs for $M_H = 170$ GeV, % effects relevant; CM result employed by Anastasiou, Boughezal, Petriello'08, prediction σ is 7 – 10% larger than σ used by TEVNPH WG

NLO EW corrections at the LHC

Impact of NLO EW effects at LHC, $\sqrt{s} = 14$ TeV, 100 GeV $< M_H < 500$ GeV (using HIGGSNNLO, by M.Grazzini)

<i>M_H</i> [GeV]	δ_{CF} [%]	δ_{PF} [%]
120	+4.9	+2.4
150	+5.9	+2.8
200	-2.1	-1.0
310	-1.7	-0.9
410	-0.8	-0.8

- Uncertainty band shows stronger sensitivity on the Higgs mass, once NLO EW effects are included
- *WW* and *tt* thresholds visible, but smooth having introduced everywhere CMs
- Impact of NLO EW corrections comparable to that of NNLL resummation Catani, de Florian, Grazzini, Nason'03 (+6% for $M_H = 120$ GeV); for large M_H NLO EW corrections turn negative, screening effect with NNLL resummation

Corrections to $gg \rightarrow H$	Method for NLO EW	Threshold behaviour	Results	Conclusions
Conclusions				

 Completed the evaluation of NLO EW corrections to gg → H and H → γγ below, around and above VV thresholds

- Completed the evaluation of NLO EW corrections to $gg \rightarrow H$ and $H \rightarrow \gamma \gamma$ below, around and above VV thresholds
- For $H \rightarrow \gamma \gamma$, QCD+EW NLO effects well below the % level for $M_H = 120$ GeV (one order of magnitude less than the expected accuracy at the ILC), enhancement above the *WW* threshold ($\delta = +4\%$ for $M_H = 170$ GeV)

Corrections to $gg \rightarrow H$	Method for NLO EW	Threshold behaviour	Results	Conclusions
Conclusions				

- Completed the evaluation of NLO EW corrections to gg → H and H → γγ below, around and above VV thresholds
- For $H \rightarrow \gamma \gamma$, QCD+EW NLO effects well below the % level for $M_H = 120$ GeV (one order of magnitude less than the expected accuracy at the ILC), enhancement above the *WW* threshold ($\delta = +4\%$ for $M_H = 170$ GeV)
- NLO EW corrections to $gg \rightarrow H$ range between +6% (*WW*) and -4% ($t\bar{t}$); for $M_H = 120 \text{ GeV} \rightarrow \delta = +5\%$