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Hadronic SM Higgs production

Main production channel for the Standard Model Higgs in hadron collisions
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Hahn,Heinemeyer,Maltoni,Weiglein,Willenbrock [hep-ph /0607308]

Gluon-fusion production channel does not lead to the cleanest signal, but it

has by far the largest cross section both at the TEVATRON and the LHC
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LO production cross section through gluon fusion

• LO cross section for gg → H by interfering quark 1-loop diagrams

σLO =
GF αS
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LO production cross section through gluon fusion

• LO cross section for gg → H by interfering quark 1-loop diagrams
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• Partonic σLO ⇒ σLO ⊗ PDFs ⇒ LO total cross section for h1h2 → H
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LO production cross section through gluon fusion

• LO cross section for gg → H by interfering quark 1-loop diagrams
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• both setting µR = µF = MH

• LO → strong dependence on µR,F

• QCD corrections for reliability
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QCD corrections (I)

QCD corrections to the total cross section very well under control

• NLO at the LHC +80% LO, uncertainty µR,F variation ±20%

Dawson’91,Djouadi,Spira,Zerwas’91

↖ large Mt limit

Spira,Djouadi,Graudenz,Zerwas’95,Harlander,Kant’05, Anastasiou,

Beerli,Bucherer,Daleo,Kunszt’06,Aglietti,Bonciani,D egrassi,Vicini’06

↖ full MH , Mq dependence
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QCD corrections (I)

QCD corrections to the total cross section very well under control

• NLO at the LHC +80% LO, uncertainty µR,F variation ±20%

Dawson’91,Djouadi,Spira,Zerwas’91

↖ large Mt limit

Spira,Djouadi,Graudenz,Zerwas’95,Harlander,Kant’05, Anastasiou,

Beerli,Bucherer,Daleo,Kunszt’06,Aglietti,Bonciani,D egrassi,Vicini’06

↖ full MH , Mq dependence

• NNLO at the LHC +20% NLO, uncertainty µR,F variation ±10%

Harlander’00,Catani,de Florian,Grazzini’01,Harlander ,Kilgore’01,

Anastasiou,Melnikov’02,Ravindran,Smith,van Neerven’0 3

↖ large Mt limit: integrate out top quark ⇒ point-like Hgg interaction

• Total cross section dominated by long-wavelength gluon effects,
insensitive to the reduction to an effective vertex
⇒ σNNLO ' σLO × KEFT NLO 90% result up to MH ' 1 TeV

Krämer,Laenen,Spira’96
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QCD corrections (II)

QCD corrections improved beyond FO and for exclusive quantities

Catani,de Florian,Grazzini,Nason

[hep-ph/0306211] NNLL = +6% NNLO

0

20

40

60

80

1
µr /

 MH

0.2 0.5 2 3

σ(pp → H+X) [pb]

MH = 120 GeV

LO

NLO

N2LO

N3LOapprox

√

µr /
 MH

0.2 0.5 2 3

σ(pp → H+X) [pb]

MH = 240 GeV

N2LO

N3LOapprox LO

NLO

0

5

10

15

20

1

Moch,Vogt [hep-ph/0508265]

N3LO soft limit ⇒ stabilized µR

• effect of a jet veto on total CS Catani,de Florian,Grazzini’01

• differential cross section evaluated at NNLO in QCD
Anastasiou,Melnikov,Petriello’04,Catani,Grazzini’07

• . . .
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EW corrections (I)

NLO EW corrections for matching the precision of QCD predictions

• ”Dominant” contributions enhanced by M2
t Djouadi,Gambino’94

σLO × [1 + GF

√
2/(16π2) M2

t ] 0.4 % accidental

1) < 0 corrections to ∂Πgg/∂M2
t ⇔ VHgg through a low-energy theorem

2) > 0 ” renormalization constants for the top and the Higgs
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EW corrections (I)

NLO EW corrections for matching the precision of QCD predictions

• ”Dominant” contributions enhanced by M2
t Djouadi,Gambino’94

σLO × [1 + GF

√
2/(16π2) M2

t ] 0.4 % accidental

1) < 0 corrections to ∂Πgg/∂M2
t ⇔ VHgg through a low-energy theorem

2) > 0 ” renormalization constants for the top and the Higgs

• Light-quark analytically Aglietti,Bonciani,Degrassi,Vicini’04
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EW corrections (II)

Top diagrams by a Taylor expansion in qH Degrassi,Maltoni’04

• for MH < 2 MW ⇒ check the cuts of each Feynman diagram

• Im: MH = 2MW ⇒ Taylor expansion in q2
H/(4M2

W ) allowed
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EW corrections (II)

Top diagrams by a Taylor expansion in qH Degrassi,Maltoni’04

• for MH < 2 MW ⇒ check the cuts of each Feynman diagram

• Im: MH = 2MW ⇒ Taylor expansion in q2
H/(4M2

W ) allowed
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∗ Cut vanishes because helicites on two sides cannot match

⇒ ”naive” Taylor expansion allowed for top-quark diagrams
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EW corrections (III)

Summary of EW corrections to gg → H at NLO below WW threshold

MH 1 LQ 3rd gen δew (%)

115 -5.28 -0.78 - 0.22 4.7

120 -5.62 -0.82 - 0.06 4.9

125 -5.98 -0.87 + 0.12 5.1

130 -6.36 -0.93 + 0.33 5.4

135 -6.76 -0.98 + 0.58 5.6

140 -7.20 -1.04 + 0.88 5.8

145 -7.69 -1.10 + 1.26 6.1

150 -8.26 -1.16 + 1.78 6.4

155 -9.01 -1.23 + 2.68 6.6

160 -10.4 -1.30 + 3.43 7.5

Amplitude in units α/(4π sin2 θ)

Aglietti,Bonciani,Degrassi,Vicini’04

Degrassi,Maltoni’04 (Taylor expansion)

σew = σ0(1 + δew ) ⇒ +5%/ + 8%

⇐ Degrassi,Maltoni [hep-ph/0407249]

NLO EW corrections match the uncertainty related to HO QCD
corrections, estimated to be 5% at the LHC Moch,Vogt’05
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Missing NLO EW corrections

EW corrections less known respect to QCD ones (each subset of
them evaluated by one group only) and not completely under control

• Light-fermion terms known for all values of MH , top-quark part
computed only for MH < 2 MW ⇒ extend the result above 2MW
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Missing NLO EW corrections

EW corrections less known respect to QCD ones (each subset of
them evaluated by one group only) and not completely under control

• Light-fermion terms known for all values of MH , top-quark part
computed only for MH < 2 MW ⇒ extend the result above 2MW

• Top-quark terms evaluated only through Taylor expansion (BFM)
⇒ control reliability of the result close to the WW threshold

• Threshold singularities show up at the amplitude level

Atop
NLO(gg → H) = A1PR

| {z }

exactly

+ A1PI
|{z}

expansion

A1PR = . . . +
f (4M2

W /M2
H)

q

4M2
W − M2

H
| {z }

MH =2MW →∞

+ . . .

∗ Minimal solution by Degrassi,Maltoni’04 : M2
W ⇒ M2

W − iΓW MW only
in the singular terms only to cure the divergent behaviour

What does it happen if complex poles instead of real masses

are used everywhere?
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Outline of the computation

Computation of the complete NLO EW corrections through six steps

implemented in in-house FORM and FORTRAN codes

1 Generate all Feynman diagrams contributing to gg → H

2 Projection of A on form factors Fi (Ward identity ⇒ 1 form factor)

3 Reduce Fi to basis integrals Mj by standard algebraic methods

4 ANLO shows UV poles ⇒ renormalized, bare ⇔ input data
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1 Generate all Feynman diagrams contributing to gg → H

2 Projection of A on form factors Fi (Ward identity ⇒ 1 form factor)

3 Reduce Fi to basis integrals Mj by standard algebraic methods

4 ANLO shows UV poles ⇒ renormalized, bare ⇔ input data

5 Mj divergent for mf → 0; ANLO finite for mf → 0 (or spurious poles)

⇒ Mj = cj ln(m2
f /s)

︸ ︷︷ ︸

analytically

+M reg
j ⇒

∑

cj ln(m2
f /s) = 0

︸ ︷︷ ︸

amplitude

⇒ mf = 0

6 Renormalized ANLO =
∑

ajM
reg
j evaluated numerically
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Outline of the computation

Computation of the complete NLO EW corrections through six steps

implemented in in-house FORM and FORTRAN codes

1 Generate all Feynman diagrams contributing to gg → H

2 Projection of A on form factors Fi (Ward identity ⇒ 1 form factor)

3 Reduce Fi to basis integrals Mj by standard algebraic methods

4 ANLO shows UV poles ⇒ renormalized, bare ⇔ input data

5 Mj divergent for mf → 0; ANLO finite for mf → 0 (or spurious poles)

⇒ Mj = cj ln(m2
f /s)

︸ ︷︷ ︸

analytically

+M reg
j ⇒

∑

cj ln(m2
f /s) = 0

︸ ︷︷ ︸

amplitude

⇒ mf = 0

6 Renormalized ANLO =
∑

ajM
reg
j evaluated numerically

∗ No details about numerical part; focus on the threshold behaviour

∗ Treat simultaneously gg → H and H → γγ (couplings, YM fields)
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NLO EW diagrams

Representative diagrams for the processes H → γγ and gg → H

NLO EW

NLO QCD

LO
H

γ

γ

f (m=0) Z

Wt

g

• Light fermions (topologies not present at LO); also for gg → H

• Top-quark QCD-like configurations, present also for gg → H

• Pure Yang-Mills diagrams; specific only of the H → γγ decay
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Projection of the amplitude

Project the amplitude for simplifying the calculation (ex. H → γγ)

• A = Z−1
A Z−1/2

H eµ
1 eν

2 Aµν Aµν → Green’s function ZK → WFR factors

• Aµν = FD δµν +
P

F i j
P piµ pjν + Fε εµναβ pα

1 pβ
2 tensor decomposition
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Projection of the amplitude

Project the amplitude for simplifying the calculation (ex. H → γγ)

• A = Z−1
A Z−1/2

H eµ
1 eν

2 Aµν Aµν → Green’s function ZK → WFR factors

• Aµν = FD δµν +
P

F i j
P piµ pjν + Fε εµναβ pα

1 pβ
2 tensor decomposition

Preliminary simplifications observing that:

1) eµ
i piµ = 0 ⇒ F 11

P , F 12
P , F 22

P do not contribute to A

2) SM H CP even ⇒ Fε vanishes in the full A (not each diag.)

3) WI pµ
1 Aµνpν

2 = 0 ⇒ FD + p1 · p2F 21
P = 0 (not linearly indep.)

Projection operators for extracting the two form factors from Aµν

⇒ FD = 1
n−2

 

δµν −
pµ

1 pν

2 +pµ

2 pν

1
p1·p2

!

Aµν , F21
P = 1

(2−n)p1·p2

"

δµν −
(n−1)pµ

1 pν

2 +pµ

2 pν

1
p1·p2

#
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• prescription for γ5 in DR

• Fε = 0 in A

• use completely AC γ5
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Reduction to basis integrals

After projection, no free Lorentz indices ⇒ standard algebr. reduction

• Trivial reduction of scalar products in numerators with propagators

2q·p
(q2+m2)[(q+p)2+M2]

= 1
q2+m2 − 1

(q+p)2+M2 − p2−m2+M2

(q2+m2)[(q+p)2+M2]
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Reduction to basis integrals

After projection, no free Lorentz indices ⇒ standard algebr. reduction

• Trivial reduction of scalar products in numerators with propagators

2q·p
(q2+m2)[(q+p)2+M2]

= 1
q2+m2 − 1

(q+p)2+M2 − p2−m2+M2

(q2+m2)[(q+p)2+M2]

• Use symmetries of diagrams for minimizing different mass patterns

• IBPIs [Chetyrkin,Tkachov’81] for tadpole integrals (no ext. scales)
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One-loop renormalization

Renormalization at one loop, no tree-level Hγγ and Hgg couplings

• pB =
(

1 +
g2

R
16π2 δZp

)

pR δZp ⇒ MS
1L

1/ε, γE , no fin. parts
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Renormalization at one loop, no tree-level Hγγ and Hgg couplings
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1/ε, γE , no fin. parts

• WFRs 6= 1 ⇒ ZH = 1 − g2
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16π2 ReΣ
(1)′

H (M2
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• pR 6= pEXP ⇒ m2
W = M2

W
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1+
GF M2
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2 π2
ReΣ

(1)
W (M2
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One-loop renormalization

Renormalization at one loop, no tree-level Hγγ and Hgg couplings

• pB =
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1 +
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)
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1/ε, γE , no fin. parts

• WFRs 6= 1 ⇒ ZH = 1 − g2
R

16π2 ReΣ
(1)′

H (M2
H)

| {z }

derivative

• pR 6= pEXP ⇒ m2
W = M2

W

"

1+
GF M2

W

2
√

2 π2
ReΣ

(1)
W (M2

W )

| {z }

finite shift

#

H

γ

γ

f

W

W

W

W
H

f

×
H

γ

γ
W

W

W W
f

×
H

γ

γ
W

W

W

⇒ trivial but important for the analysis of the threshold behaviour
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Extraction of collinear logarithms

Before evaluating the A numerically, control cancellation of mass divs.
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• Configurations with 2 massless quanta with same LF current cancel
algebraically after reduction ⊗ symmetrization
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Extraction of collinear logarithms

Before evaluating the A numerically, control cancellation of mass divs.
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• Configurations with 2 massless quanta with same LF current cancel
algebraically after reduction ⊗ symmetrization

• All two-loop collinear-divergent configurations can be represented as
integrals over Feynman parameters of one-loop functions

m
m

M3

M4

M5

−P

p1

p2

= ln
m2

s

Z 1

0
dz

M3

M4

M5

−P

(1−z)p1
zp1

p2

+ finite part

Check algebraically that ln m2/s → 0 in A → evaluate num. rest for m = 0



Corrections to gg → H Method for NLO EW Threshold behaviour Results Conclusions

EW corrections to gg → H below 150 GeV

Anatomy of EW corrections to gg → H for 115 GeV < MH < 150 GeV

1 light-quark gen.

3rd gen. quarks

∝ GF m2

t

−4

−2

0

2

4

6

8

10

A
2
L

[α
/(

4π
s2 θ

)]
A

2
L

[α
/(

4π
s2 θ

)]

115 120 125 130 135 140 145 150

MH [GeV]MH [GeV]

MH [Gev] δEW [%]

115 +4.73
120 +4.92
125 +5.12
130 +5.31
135 +5.49
140 +5.66
145 +5.80
150 +5.90

σ=
GF α2

S

512
√

2π
|A1L + A2L + . . . |2 = σLO `

1 + δEW´
A2L = A2L

lq + A2L
3gen

• Agreement with light quarks Aglietti,Bonciani,Degrassi,Vicini’04
and corrected (1PR) 3rd gen. quarks Degrassi,Maltoni’04

• Light quarks dominate respect to ∝ GF m2
t Djouadi,Gambino’94
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EW corrections to H → γγ below 150 GeV

Anatomy of EW corrections to H → γγ for 110 GeV < MH < 150 GeV

YM

leptons

light quarks

3rd gen. quarks

∝ GF m2

t

−50

−40

−30

−20

−10

0

10

20

30

40

A
2
L

[α
/(

4π
s2 θ

)]
A

2
L

[α
/(

4π
s2 θ

)]

110 115 120 125 130 135 140 145 150

MH [GeV]MH [GeV]

MH [Gev] δEW [%]

120 −1.89
130 −1.21
140 −0.38
145 +0.12
150 +0.69

Γ=
GF α2M3

H

128
√

2π3
|A1L +A2L + . . . |2 = σLO `

1 + δEW´
A2L = A2L

YM +A2L
lq +A2L

lep+A2L
3gen

• Agreement with lep / LQ Aglietti,Bonciani,Degrassi,Vicini’04 and
corrected (1PR) 3rd gen. quarks / YM Degrassi,Maltoni’05

• Contributions ∝ GF m2
t Liao,Li’96,Djouadi,Gambino,Kniehl’97

Fugel,Kniehl,Steinhauser’04 large but not dominant
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1st problem with the crossing of WW : violation of a Ward identity for H → γγ

• WI → pµ
1 Aµνpν

2 = 0, but explicitly → pµ
1 Aµνpν

2 6= 0 for MH > 2 MW
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Around the WW threshold: Ward identity

1st problem with the crossing of WW : violation of a Ward identity for H → γγ

• WI → pµ
1 Aµνpν

2 = 0, but explicitly → pµ
1 Aµνpν

2 6= 0 for MH > 2 MW

• Due to the relation between m2
H

|{z}

MS ren.

and M2
H

|{z}

on shell

in scalar VHϕ+ϕ− ∝ m2
H

|{z}

MS ren.

• At NLO there are two kinds of diagrams contributing to the Ward identity

H

γ

γ

t

b

ϕ

ϕ

ϕ

ϕ
H

γ

γ
ϕ

ϕ

ϕ

× Re
H

t

m2
H

|{z}

MS ren.

= M2
H

|{z}

on shell

m2
H

|{z}

MS ren.

= M2
H

|{z}

on shell

h

1+
GF M2

W
2
√

2 π2 ReΣ
(1)
H (M2

H)
| {z }

finite

i
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Around the WW threshold: Ward identity

1st problem with the crossing of WW : violation of a Ward identity for H → γγ

• WI → pµ
1 Aµνpν

2 = 0, but explicitly → pµ
1 Aµνpν

2 6= 0 for MH > 2 MW

• Due to the relation between m2
H

|{z}

MS ren.

and M2
H

|{z}

on shell

in scalar VHϕ+ϕ− ∝ m2
H

|{z}

MS ren.

• At NLO there are two kinds of diagrams contributing to the Ward identity

H

γ

γ

t

b

ϕ

ϕ

ϕ

ϕ
H

γ

γ
ϕ

ϕ

ϕ

× Re
H

t

m2
H

|{z}

MS ren.

= M2
H

|{z}

on shell

m2
H

|{z}

MS ren.

= M2
H

|{z}

on shell

h

1+
GF M2

W
2
√

2 π2 ReΣ
(1)
H (M2

H)
| {z }

finite

i

• Below WW both classes of diagrams are real → the Ward identity holds

• Above WW mismatch imaginary parts (Re) → the Ward identity 6= 0
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Around the VV thresholds: square-root divergencies

2nd problem with the crossing of both WW and ZZ : square-root divergencies

H → γγ and gg → H ampls. ⇒ terms proportional to 1/βV , βV =
q

1 − 4 M2
V /M2

H
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Around the VV thresholds: square-root divergencies

2nd problem with the crossing of both WW and ZZ : square-root divergencies

H → γγ and gg → H ampls. ⇒ terms proportional to 1/βV , βV =
q

1 − 4 M2
V /M2

H

1) (H WFR factor) ⊗ (1-loop diags., γγ, gg) (see Kniehl,Palisoc,Sirlin’00 )

Re
H

W , Z

×
H

γ, g

γ, g
t

t

t

H WF divergent
for MH = 2MW ,Z
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Around the VV thresholds: square-root divergencies

2nd problem with the crossing of both WW and ZZ : square-root divergencies

H → γγ and gg → H ampls. ⇒ terms proportional to 1/βV , βV =
q

1 − 4 M2
V /M2

H

1) (H WFR factor) ⊗ (1-loop diags., γγ, gg) (see Kniehl,Palisoc,Sirlin’00 )

Re
H

W , Z

×
H

γ, g

γ, g
t

t

t

H WF divergent
for MH = 2MW ,Z

2) (W mass renormalization) ⊗ (derivatives 1-loop diagrams, γγ)

Re
W

t

b

×
H

γ

γ

W

W

W

der. divergent
for MH = 2MW
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Around the VV thresholds: square-root divergencies

2nd problem with the crossing of both WW and ZZ : square-root divergencies

H → γγ and gg → H ampls. ⇒ terms proportional to 1/βV , βV =
q

1 − 4 M2
V /M2

H

1) (H WFR factor) ⊗ (1-loop diags., γγ, gg) (see Kniehl,Palisoc,Sirlin’00 )

Re
H

W , Z

×
H

γ, g

γ, g
t

t

t

H WF divergent
for MH = 2MW ,Z

2) (W mass renormalization) ⊗ (derivatives 1-loop diagrams, γγ)

Re
W

t

b

×
H

γ

γ

W

W

W

der. divergent
for MH = 2MW

3) (irreducible 2-loop diagrams with a bubble insertion in an internal W line, γγ)

H

γ

γ

t

b

W

W

W

W = −
W

t

b

×
H

γ

γ

W

W

W

+
fin. part
for MH = 2MW

⇒ divergent part for MH = 2MW can be represented as 1-loop ⊗ 1-loop
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Around the t t threshold: square-root divergencies?

No problem with the crossing of t t: square-root divergencies ’protected’

H → γγ and gg → H ampls. ⇒ terms potentially ∝ 1/βt , but multiplied by βt (spin)

1) (H WFR factor) ⊗ (1-loop diags., γγ, gg)

Re
H

t

×
H

γ, g

γ, g
t

t

t

H WF finite
for MH = 2Mt

2) (t mass renormalization) ⊗ (derivatives 1-loop diagrams, γγ, gg)

Re
t

t

Z

×
H

γ, g

γ, g

t

t

t

der. finite
for MH = 2Mt

3) (irreducible 2-loop diagrams with a bubble insertion in an internal t line, γγ, gg)

H

γ, g

γ, g

t

Z

t

t

t

t = −
t

t

Z

×
H

γ, g

γ, g

t

t

t

+
fin. part
for MH = 2Mt

⇒ would-be divergency for MH = 2Mt as 1-loop ⊗ 1-loop, finite as in class 2)
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Logarithmic singularity at the WW threshold

3rd problem with the crossing of WW / t t: logarithmic divergencies

H → γγ and gg → H ampls. ⇒ terms proportional to ln(−β2
i − i0), i=W,t
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Logarithmic singularity at the WW threshold

3rd problem with the crossing of WW / t t: logarithmic divergencies

H → γγ and gg → H ampls. ⇒ terms proportional to ln(−β2
i − i0), i=W,t

H

γ

γ

γ

W

W

W

W

W

H

γ

γ

γ

t

t

t

t

t

H

g

g

γ

t

t
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t
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• no problem for t t, since the ln is multiplied by β2
t (spin structure protects

threshold behaviour); no √ , no ln divergencies ⇒ Mt = 170.9 GeV
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Logarithmic singularity at the WW threshold

3rd problem with the crossing of WW / t t: logarithmic divergencies

H → γγ and gg → H ampls. ⇒ terms proportional to ln(−β2
i − i0), i=W,t

H

γ

γ

γ

W

W

W

W

W

H

γ

γ

γ

t

t

t

t

t

H

g

g

γ

t

t

t

t

t

• no problem for t t, since the ln is multiplied by β2
t (spin structure protects

threshold behaviour); no √ , no ln divergencies ⇒ Mt = 170.9 GeV

• open problems: violation of Ward identity for H → γγ, ln divergency

at the WW threshold for H → γγ, √ divergencies at the WW and

ZZ thresholds for both H → γγ and gg → H
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Complex poles

Cure problems with crossing of thresholds implementing the
complex-mass scheme at 1 loop Denner,Dittmaier,Roth,Wieders’05

1) Avoid the selection of the Re part for H self-energy (mass
renormalization) in order to restore the Ward identity for H → γγ
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1) Avoid the selection of the Re part for H self-energy (mass
renormalization) in order to restore the Ward identity for H → γγ

2) ”Minimal” introduction of the complex-mass scheme

Decompose A = A1,W
div /βW + A1,Z

div /βZ + A2
div ln(−β2

W − i0)+ Afin

Introduce the CMS in both threshold factors βV and coefficients A1,2
div
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Complex poles

Cure problems with crossing of thresholds implementing the
complex-mass scheme at 1 loop Denner,Dittmaier,Roth,Wieders’05

1) Avoid the selection of the Re part for H self-energy (mass
renormalization) in order to restore the Ward identity for H → γγ

2) ”Minimal” introduction of the complex-mass scheme

Decompose A = A1,W
div /βW + A1,Z

div /βZ + A2
div ln(−β2

W − i0)+ Afin

Introduce the CMS in both threshold factors βV and coefficients A1,2
div

3) Complete introduction of the complex-mass scheme

Introduce the CMS in all divergent and finite terms of the amplitude
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Practical implementation of the CMS

Practical implementation of the complex-mass scheme through two steps:

1. Replace on-shell masses M2
V with complex poles sV = µV (µV − iγV )
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2. Trade the real parts of the W and Z self-energies (mass renormalization
at 1 loop) for the complete self-energies, including imaginary parts
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Practical implementation of the CMS

Practical implementation of the complex-mass scheme through two steps:

1. Replace on-shell masses M2
V with complex poles sV = µV (µV − iγV )

2. Trade the real parts of the W and Z self-energies (mass renormalization
at 1 loop) for the complete self-energies, including imaginary parts

⇒ Replace the conventional on-shell mass renormalization equations with the
associated expressions for the complex poles of the W and Z bosons

m2
i = M2

i

"

1 +
GF M2

W

2
√

2 π2
ReΣ

(1)
i (M2

i )

#

⇒ m2
i = si

»

1 +
GF sW

2
√

2 π2
Σ

(1)
i (si )

–

⇒ Insert the full self-energy for the W boson in the renormalization equation for the
Fermi-coupling constant, expressed through the complex mass of the W , sW

g = 2
“√

2GF sW

”1/2
»

1− GF sW

4
√

2 π2
∆

–

, ∆ = Σ
(1)
W (0)−Σ

(1)
W (sW )+6+

7 − 4s2
θ

2s2
θ

ln c2
θ
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Practical implementation of the CMS

Practical implementation of the complex-mass scheme through two steps:

1. Replace on-shell masses M2
V with complex poles sV = µV (µV − iγV )

2. Trade the real parts of the W and Z self-energies (mass renormalization
at 1 loop) for the complete self-energies, including imaginary parts

⇒ Replace the conventional on-shell mass renormalization equations with the
associated expressions for the complex poles of the W and Z bosons

m2
i = M2

i

"

1 +
GF M2

W

2
√

2 π2
ReΣ

(1)
i (M2

i )

#

⇒ m2
i = si

»

1 +
GF sW

2
√

2 π2
Σ

(1)
i (si )

–

⇒ Insert the full self-energy for the W boson in the renormalization equation for the
Fermi-coupling constant, expressed through the complex mass of the W , sW

g = 2
“√

2GF sW

”1/2
»

1− GF sW

4
√

2 π2
∆

–

, ∆ = Σ
(1)
W (0)−Σ

(1)
W (sW )+6+

7 − 4s2
θ

2s2
θ

ln c2
θ

CMS → replacements done also at the level of the couplings ⇒ s2
θ = 1 − sW /sZ
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Square-root divergencies in the CMS

In the CMS square-root divergencies are confined to the H WFR factor

• Using on-shell masses as input data ⇒ three sources of √ divergencies
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W , Z

×
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H

γ
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W

W

W

W = −
W

t

b

×
H

γ

γ

W

W

W

+
fin. part
for MH = 2MW

⇒ divergent part for MH = 2MW represented as 1-loop ⊗ 1-loop + finite
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Square-root divergencies in the CMS

In the CMS square-root divergencies are confined to the H WFR factor

• Using on-shell masses as input data ⇒ three sources of √ divergencies

Re
H

W , Z

×
H

γ, g

γ, g
t

t

t

Re
W

t

b

×
H

γ

γ

W

W

W

H

γ

γ

t

b

W

W

W

W = −
W

t

b

×
H

γ

γ

W

W

W

+
fin. part
for MH = 2MW

⇒ divergent part for MH = 2MW represented as 1-loop ⊗ 1-loop + finite

• Using complex masses as input data (Re tag removed from W -mass ren.)

⇒ divergent parts of bubble insertions + W -mass renormalization terms cancel

⇒ all square-root divergencies arise only from the Higgs WFR factor at one-loop
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Minimal implementation of the CMS

Minimal implementation of the CMS involves only two classes of diagrams

• Decompose A = A1,W
div /βW + A1,Z

div /βZ + A2
div ln(−β2

W − i0)+ Afin

Re
H

W , Z

× H

γ, g

γ, g
t

t

t

H

γ

γ

γ

W

W

W

W
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Minimal implementation of the CMS

Minimal implementation of the CMS involves only two classes of diagrams

• Decompose A = A1,W
div /βW + A1,Z

div /βZ + A2
div ln(−β2

W − i0)+ Afin

Re
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W , Z

× H
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γ, g
t
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γ

γ
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W

W

W

W

• Replace on-shell masses M2
V with complex poles sV = µV (µV − iγV ) in

terms involving the derivative of the Higgs self-energy at one loop and
in the two-loop diagram with a Coulomb exchange
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Minimal implementation of the CMS

Minimal implementation of the CMS involves only two classes of diagrams

• Decompose A = A1,W
div /βW + A1,Z

div /βZ + A2
div ln(−β2

W − i0)+ Afin

Re
H

W , Z

× H

γ, g

γ, g
t

t

t

H

γ

γ

γ

W

W

W

W

W

• Replace on-shell masses M2
V with complex poles sV = µV (µV − iγV ) in

terms involving the derivative of the Higgs self-energy at one loop and
in the two-loop diagram with a Coulomb exchange

• Problem of resumming Coulomb singularities not addressed; ln terms
are not β2

W -protected at threshold, large enhancement expected as for
pseudo-scalar H decay for MH = 2Mt (Melnikov,Spira,Yakovlev’94 )
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Complete implementation of the CMS

Complete implementation of the CMS in principle much more complicated

1. Replace on-shell masses M2
V with complex poles sV in all diagrams

2. Trade the Re parts of the W and Z self-energies for the full self-energies

A = A1,W
div /βW

| {z }

cancell. irrelevant

+ A1,Z
div /βZ + A2

div ln(−β2
W − i0) + Afin

|{z}

complex masses
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Complete implementation of the CMS

Complete implementation of the CMS in principle much more complicated

1. Replace on-shell masses M2
V with complex poles sV in all diagrams

2. Trade the Re parts of the W and Z self-energies for the full self-energies

A = A1,W
div /βW

| {z }

cancell. irrelevant

+ A1,Z
div /βZ + A2

div ln(−β2
W − i0) + Afin

|{z}

complex masses

Practically the second step can be in most cases avoided

• Z -mass renormalization only for H → γγ, because of the coupling g2s2
θ

at LO, with s2
θ through sZ and sW , but simpler g2s2

θ = 4πα (on-shell γ’s)

• W -mass renormalization also for gg → H, because of the coupling
g/mW at LO, but the W self-energy at sW drops out when combining
mass renormalization with the equation for the Fermi-coupling constant

2. needed only concerning W -mass renormalization for H → γγ
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Introduction of complex masses in loop integrals

Loop integrals have to be evaluated with complex masses

• Internal masses complexified → no problems; the replacement
M2 − i0 ⇒ s = µ2 − iµγ does not clash with the −i0 prescription
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• External squared momenta are real quantities by construction
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Introduction of complex masses in loop integrals

Loop integrals have to be evaluated with complex masses

• Internal masses complexified → no problems; the replacement
M2 − i0 ⇒ s = µ2 − iµγ does not clash with the −i0 prescription

• External squared momenta are real quantities by construction

• W -mass renormalization at one-loop leads to a complication

B0(p
2; 0, 0) ⇒

Z 1

0
dx ln χ(x), χ(x) = p2x(1 − x) − i0

real M2
W ⇒ Reχ(x) = −M2

W x(1 − x) < 0, Imχ(x) = −0 < 0

complex sW ⇒ Reχ(x) = −µ2
W x(1− x) < 0, Imχ(x) = +µW γW x(1− x) > 0

→ 0-width limit of the complex-mass case doesn’t reproduce the real-mass one
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Introduction of complex masses in loop integrals

Loop integrals have to be evaluated with complex masses

• Internal masses complexified → no problems; the replacement
M2 − i0 ⇒ s = µ2 − iµγ does not clash with the −i0 prescription

• External squared momenta are real quantities by construction

• W -mass renormalization at one-loop leads to a complication

B0(p
2; 0, 0) ⇒

Z 1

0
dx ln χ(x), χ(x) = p2x(1 − x) − i0

real M2
W ⇒ Reχ(x) = −M2

W x(1 − x) < 0, Imχ(x) = −0 < 0

complex sW ⇒ Reχ(x) = −µ2
W x(1− x) < 0, Imχ(x) = +µW γW x(1− x) > 0

→ 0-width limit of the complex-mass case doesn’t reproduce the real-mass one

→ define an analytic continuation of ln such that the value for a stable gauge
boson is smoothly approached when the coupling tends to zero

ln(zR + izI) ⇒ ln(zR + izI)−2iπθ(−zR), lim
zI→0

= ln(zR − i0)
| {z }

real mass
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Threshold behaviour for gg → H

Comparison of EW corrections to gg → H around the WW threshold,
obtained using different schemes for treating unstable particles

 [GeV]HM
150 152 154 156 158 160 162 164 166 168 170

 [%
]

δ

2

3

4

5

6

7

8

9

10
WW

real masses

MCM (div.)

CM (all)

• Result obtained with real masses divergent at WW ; good approx. below/above

• MCM setup gives finite result at WW ; large effect 9.6 % associated with cusp

• CM setup smoothens singular behaviour; effects at threshold reduced to 4.6 %
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Threshold behaviour for H → γγ

Comparison of EW corrections to H → γγ around the WW threshold,
obtained using different schemes for treating unstable particles

 [GeV]HM
150 152 154 156 158 160 162 164 166 168 170

 [%
]

δ

-8

-6

-4

-2

0

2

4

real masses

MCM (div.)

CM (all)

WW

• Result obtained with real masses divergent at WW ; good approx. below;
completely off above threshold, since no cancellation mechanism occurs

• Result in MCM setup finite, shows cusp; result in CM setup is smooth

• At threshold, result in MCM setup → 3.5%; result in CM setup → 2.7%

⇒ prediction at the % level requires complete CMS implementation
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EW corrections to gg → H (I)

Summary of EW corrections to gg → H for 100 GeV < MH < 400 GeV

 [GeV]HM
150 200 250 300 350 400

 [%
]

E
W

δ

-4

-2

0

2

4

6

8

10 WW ZZ tt

light fermions, real masses

light fermions, real masses, Aglietti et al.

total, CM

• Full agreement with Aglietti,Bonciani,Degrassi,Vicini’04 using
RMs as input data; light fermions dominate up to 300 GeV ( max +9%)

• CMs change the result around WW and ZZ thresholds, where cusps disappear

• Top-quark diagrams relevant at tt threshold, with relative correction δew ∼ −4%
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EW corrections to gg → H (II)

Summary of EW corrections to gg → H for 100 GeV < MH < 250 GeV

 [GeV]HM
100 120 140 160 180 200 220 240

 [%
]

E
W

δ

-4

-2

0

2

4

6

8

10 WW ZZ

CM

MCM

Taylor exp, Degrassi+Maltoni

• Full agreement below WW with Taylor expansion Degrassi,Maltoni’04
using CMs as input data in divergent terms only

• Implementation of CMs everywhere smoothens the result around WW and ZZ
thresholds and leads to a −4% shift respect to MCM at 140 GeV
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EW/QCD corrections to H → γγ

Summary of EW/QCD corrections to H→γγ for100 GeV <MH < 170 GeV

 [GeV]HM
100 110 120 130 140 150 160 170

 [%
]

δ

-3

-2

-1

0

1

2

3

4

5

EW, CM
QCD
total, CM
EW, MCM

• QCD corrections > 0, ranging from +1.8% (120 GeV) to +0.9% (170 GeV)

• CMs in non-divergent terms smoothen threshold behaviour of EW effects;
numerically they range from −1.9% (120 GeV) to +3.5% (170 GeV)

• EW effects compensate QCD ones for light Higgs masses, −0.1% (120 GeV);
strong enhancement above threshold, +4.4% (170 GeV)
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Total cross section in hadron collisions

• Insert the partonic result for EW corrections to gg → H in the total
cross section σ(h1h2 → H)

• Fold PDFs with partonic cross section

σ(h1h2 → H) =
∑

i,j

∫ 1

0
dx1dx2fi,h1(x1, µ

2
F )fj,h2(x2, µ

2
F )×

×
∫ 1

0
dzδ

(

z − M2
H

sx1x2

)

z σ0
︸︷︷︸

Born

Gij(z, µ2
R , µ2

F )
︸ ︷︷ ︸

pQCD

• Estimate theoretical uncertainty controlling the dependence of
σ(h1h2 → H) on µR,F for fixed values of MH ; define uncertainty
band around central values for µR = µF = MH
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Inclusion of NLO EW effects

Two factorization options for QCD/ EW:

σ(h1h2 → H) =
∑

i,j

∫ 1

0
dx1dx2fi,h1(x1, µ

2
F )fj,h2(x2, µ

2
F )×

×
∫ 1

0
dzδ

(

z − M2
H

sx1x2

)

zσ0Gij(z, µ2
R , µ2

F )

I) Complete factorization Gij → (1 + δEW )Gij

analogous to Aglietti,Bonciani,Degrassi,Vicini’06 light Higgs
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SδEW G(0)

ij
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Inclusion of NLO EW effects

Two factorization options for QCD/ EW:

σ(h1h2 → H) =
∑

i,j

∫ 1

0
dx1dx2fi,h1(x1, µ

2
F )fj,h2(x2, µ

2
F )×

×
∫ 1

0
dzδ

(

z − M2
H

sx1x2

)

zσ0Gij(z, µ2
R , µ2

F )

I) Complete factorization Gij → (1 + δEW )Gij

analogous to Aglietti,Bonciani,Degrassi,Vicini’06 light Higgs

II) Partial factorization Gij → Gij + α2
SδEW G(0)

ij

• Vary µR,F sim./indep. in MH/2 < µR,F < 2MH with µR/2 < µF < 2µR

⇒ For each MH → σref , σmax , σmin, uncertertainty band σmax − σmin

• Very conservative estimate, since in PF option the scale dependence is
controlled by the LO QCD result (multiplied by δEW )
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NLO EW corrections at the Tevatron

Impact of NLO EW effects at Tevatron II,
√

s = 1.96 TeV,
100 GeV < MH < 200 GeV (using HIGGSNNLO, by M.Grazzini)

MRST 2002

pp ⇒ H + X
√

s= 1.96 TeV

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

K
fa

ct
o
r

K
fa

ct
o
r

100 110 120 130 140 150 160 170 180 190 200

MH [GeV]MH [GeV]

NNLO QCD

NNLO QCD + NLO EW

MH [GeV] δCF [%] δPF [%]

120 +4.9 +1.6

140 +5.7 +1.8
160 +4.8 +1.5

180 +0.5 +0.1
200 −2.1 −0.6

• Uncertainty band shows stronger sensitivity on the Higgs mass, once
NLO EW effects are included

• Impact of NLO EW corrections smaller respect to NNLL resummation
Catani,de Florian,Grazzini,Nason’03 (+12% for MH = 120 GeV)

• 95 % CL exclusion of a SM Higgs for MH = 170 GeV, % effects relevant;
CM result employed by Anastasiou,Boughezal,Petriello’08 ,
prediction σ is 7 − 10% larger than σ used by TEVNPH WG
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NLO EW corrections at the LHC

Impact of NLO EW effects at LHC,
√

s = 14 TeV,
100 GeV < MH < 500 GeV (using HIGGSNNLO, by M.Grazzini)

MRST 2002

pp ⇒ H + X
√

s= 14 TeV

1.8

2

2.2

2.4

2.6

K
fa

ct
o
r

K
fa

ct
o
r

100 150 200 250 300 350 400 450 500

MH [GeV]MH [GeV]

NNLO QCD

NNLO QCD + NLO EW

MH [GeV] δCF [%] δPF [%]

120 +4.9 +2.4

150 +5.9 +2.8
200 −2.1 −1.0

310 −1.7 −0.9
410 −0.8 −0.8

• Uncertainty band shows stronger sensitivity on the Higgs mass, once
NLO EW effects are included

• WW and t t thresholds visible, but smooth having introduced
everywhere CMs

• Impact of NLO EW corrections comparable to that of NNLL
resummation Catani,de Florian,Grazzini,Nason’03 (+6 % for
MH = 120 GeV); for large MH NLO EW corrections turn negative,
screening effect with NNLL resummation
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Conclusions

• Completed the evaluation of NLO EW corrections to gg → H
and H → γγ below, around and above VV thresholds
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• Completed the evaluation of NLO EW corrections to gg → H
and H → γγ below, around and above VV thresholds

• For H → γγ, QCD+EW NLO effects well below the % level for
MH = 120 GeV (one order of magnitude less than the expected
accuracy at the ILC), enhancement above the WW threshold
(δ = +4% for MH = 170 GeV)
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Conclusions

• Completed the evaluation of NLO EW corrections to gg → H
and H → γγ below, around and above VV thresholds

• For H → γγ, QCD+EW NLO effects well below the % level for
MH = 120 GeV (one order of magnitude less than the expected
accuracy at the ILC), enhancement above the WW threshold
(δ = +4% for MH = 170 GeV)

• NLO EW corrections to gg → H range between +6% (WW ) and
−4% (tt); for MH = 120 GeV → δ = +5%
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