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Following H. Nikolic’s talk in the Colloquium of April 12, 2007 on the Bohmian interpretation

of QM we had a lot of (informal) discussions in the group – usually at coffee time ...

Here is a small contribution to a better understanding of the measuring process ...

It is an amateur’s understanding ... based on the paper

“The quantum measurement process: an exactly solvable model”

by

A. Allahverdyan, R. Balian & Th. Nieuwenhuizen

[arXiv: cond-mat/0309188]
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Additional reading:

“On the interpretation of quantum theory
– from Copenhagen to the present day”

by

C. Kiefer

[arXiv: quant-ph/0210152]

Wikipedia articles on:

“Wave function collapse”

“Copenhagen interpretation”

“Quantum decoherence”

[has the warning: “This article or section may be confusing or unclear for some readers”]

...
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3. Coupling to the environment
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5. Summary
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1. The Copenhagen interpretation

”There is no definitive statement of the Copenhagen interpretation ...

Principles

1. A system is completely described by a wave function ψ , which represents an observer’s
knowledge of the system (Heisenberg)

2. The description of nature is essentially probabilistic. The probability of an event is related
to the square of the amplitude of the wave function (Born)

(
3.

)
Heisenberg’s uncertainty principle ensures that it is not possible to know the values

of all of the properties of the system at the same time ...
(
4.

)
Complementary Principle: matter exhibits a wave-particle duality ... (Bohr)

5. Measuring devices are essentially classical devices, and measure classical properties such
as position and momentum

(
6.

)
Correspondence Principle: the quantum mechanical description of systems with large

quantum numbers should approach [my version] the classical description. (Bohr &
Heisenberg)

Niels Bohr emphasized that Science is concerned with the predictions of experiments, addi-
tional questions are not scientific but rather meta-physical ... ”
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Measurement process and wave function collapse

According to Copenhagen principle 5 the world is divided into a quantum
world (system) and a classical world (apparatus)

In the quantum world the time evolution is deterministic, unitary and conti-
nous:

|ψ(t) >= e−iĤ(t−t0)/h̄ |ψ(t0) >

von Neumann (“Mathematische Grundlagen der Quantenmechanik”, 1932)
introduced as further postulate that an (ideal) measurement at time t1 asso-
ciated with the hermitean operator Â reduces the wavefunction to just one
component

|ψ(t1) > =
∑

n

|n > < n|ψ(t1) >
︸ ︷︷ ︸

≡ cn

; Â|n >= An|n >

measurement−→ cn|n >
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and the particular value An of the observable Â is measured with probablity

|cn|2 = |< n|ψ(t1) >|2

In other words:

There is a non-unitary , non-local, discontinous change of the system brought
about by observation !

This is very unnatural and unsatisfactory ...

Quantum physics should also describe the measurement process, i.e. the
apparatus

Interpretations of QM without wave function collapse:

• Pilot waves (de Broglie, Bohm)

• Many worlds (Everett)

• Consistent histories (Griffiths, Hartle, Gell-Mann)
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2. The model

System = spin sz of one particle

Apparatus = magnet (M) coupled to a bath (B)

Magnet contains N spins σ
(n)
z = ±1 with (mean-field) interaction

HM = − J

4N3

N∑

ijkl=1

σ(i)
z σ(j)

z σ(k)
z σ(l)

z ≡ −1

4
NJm4

where

m =
1

N

N∑

n=1

σ(n)
z

is the magnetization
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Interaction between test system (S) and apparatus (A)

HSA = −gsz
N∑

n=1

σ(n)
z = −gszN m

is turned on at time t1 = 0 (begin of measurement) and turned off at time
t2 (end of measurement)

First classical treatment: spins are Ising spins taking vakues ±1

Free energy per spin at given temperature T can be calculated exactly (?)

F = −1

4
J m4 − gszm− T

(
1 +m

2
ln

2

1 +m
+

1 −m

2
ln

2

1 −m

)
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Discussion:

• At large temperature the magnet is in the paramagnetic state: spins are
randomly up or down =⇒ average magnetization m = 0

• At critical temperature Tc = 0.36295 J the magnet undergoes a (first-
order) transition to a state with magnetization ±mc

• At g = 0 and T < Tc the paramagnetic state m = 0 is still metastable

In this metastable state the apparatus is prepared for the measurement of the
spin of the particle:

magnetic analog of the oversaturated gas in a cloud or bubble chamber

Measurement

At time t1 = 0 the coupling between test-spin and the magnet is turned on:

this is equivalent to putting the magnet in an external field gsz = ±g
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If g is large enough and sz = +1 , the interaction suppresses the barrier

near m ≈ 0.7 and for sz = −1 it will suppress the one near m ≈ −0.7

=⇒ the magnetization will move from m = 0 to the minimum of the

free energy F

... and will stay there provided the available energy is dissipated,

i.e. given to the environment

How does one describe dissipation (friction) in QM ?
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3. Coupling to the environment

Simple damping as for a classical harmonic oscillator

ẍ+ ω2x = 0 −→ ẍ− γẋ+ ω2x = 0

cannot be used since it requires a non-unitary Hamiltonian !

Main idea (Feynman & Vernon, Caldeira & Leggett): consider

system + environment (modelled as a “bath” of M harmonic oscillators)

+ bi-linear coupling between the two parts

H =
p2

2m
+

1

2
mω2 q2 +

M∑

n=1

(
p2n

2mn
+

1

2
mn ω

2
nx

2
n

)

− q

M∑

n=1

bn xn

and integrate out (exactly !) the bath’s degree’s of freedom
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Obtain effective two-time action (memory effect !) for the particle with
damping kernel

γ(t) =
1

m

M∑

n=1

b2n
mnω2

n

cos(ωnt)
M→∞−→ 2

mπ

∫ ∞

0

dω
J(ω)

ω
cos(ωt)

where in the limit M → ∞ J(ω) is the continous spectral density of the
environment oscillators.

A simple parametrization

JOhm(ω) = mγ ω =⇒ γ(t) = 2δ(t) γ

gives classical damping without memory

Applications:

1. A model for inclusive scattering from harmonically confined quarks
(RR, Phys. Rev. C 68 (2003)): consistent hermitean description =⇒ no violation of
sum rules despite loss of flux into unobserved channels

2. In the present model: all 3 spin components of all N apparatus spins are weakly coupled
to an Ohmic bath
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4. Results

If the coupling g between the test-spin and the magnet is large enough

g > gc = 0.09035 J

then the free energy barrier can be overcome and

• for sz = +1 the magnet will end up in the right (true) minimum;

• for sz = −1 the magnet ends up in the left (true) minimum

After m has approached the minimum, the apparatus is decoupled (g → 0).
i.e. the measurement is finished

The magnetization will then move to the g = 0-minimum which is about 0.004 deeper

It will stay there up to a hopping (Poincaré ) time ∝ eM; for large M this
means “forever”.

Whether or when the apparatus is read off (“observation”) is irrelevant !
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The collapse (quantum mechanical treatment)

The test spin may start in an unknown quantum state:

< sx > , < sy > , < sz > are arbitrary

=⇒ initial density matrix
(

reminder: for a pure state r = |ψ >< ψ| −→ r2 = r
)

r(0) =
1

2





1+ < sz > < sx > −i < sy >

< sx > +i < sy > 1− < sz >





Full initial density matrix of system

D(0) = r(0) ⊗ RM(0) ⊗ RB(0)

where

RM(0) =

N∏

n=1

(

1/2 0
0 1/2

)

is the density matrix of the random spins of the magnet in the paramagnetic

(metastable) state (m = 0)
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Time evolution

ih̄
d

dt
D(t) = [H,D]

where H is the full Hamiltonian of system + apparatus + environment.

The state of the system (= test spin) is given by the reduced density matrix

r(t) = trM,BD(t)

and its time evolution comes from the interaction Hamiltonian HSA

d

dt
rij(t) = −gN (si − sj) trM,B [m,Dij(t)]

where i, j =↑, ↓ , s↑ = +1 , s↓ = −1

Note: diagonal elements are conserved in time:

r↑↑(t) = p↑ =
1

2
(1+ < sz >) = const.

r↓↓(t) = p↓ =
1

2
(1− < sz >) = const.

only off-diagonal elements are endangered and actually will collapse !
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Solution :

For short times the spin-spin interactions in the magnet and the spin-bath interactions

are still neglible (?) −→ problem reduces to the evolution of N independent apparatus spins

coupled to the test spin

Thus for each individual density matrix in the magnet one obtains

1

2

(
exp(2igt/h̄) 0

0 exp(−2igt/h̄)

)

Then

r↑↓(t) = r↑↓(0)

[

cos
2gt

h̄

]N

≈ r↑↓(0)

[

1 − 2

(
gt

h̄

)2

+ . . .

]N

≈ r↑↓(0) exp

(

−2
g2N

h̄2
t2

)
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Therefore the off-diagonal parts of the density matrix of the test spin will
collapse within a time

τcollapse =
h̄

g
√

2N
=

const√
N

If we estimate g ∼ J ∼ T and assume N � 1 then

τcollapse � h̄

T
≡ τ thermal fluctuation

Note: the recurrent peaks of the cosine at tk = kπh̄/(2g) , k = 1,2 . . . are

suppressed by the coupling to the bath which brings a factor (?)

e−γ h̄N
N�1−→ 0
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Registration of the quantum measurement

After the off-diagonal sectors of the density matrix have decayed the diagonal

ones evolve under the influence of HSA and the coupling between the

apparatus and the environment.

One finds (?) that the net magnetization of the magnet obeys the following
equation of motion

d

dt
〈m〉 = γ h

(

1 − < m >

tanh(h/T)

)

, h := g < m > sz + J < m >3

exactly (?) as in a classical treatment of the transition from the metastable
paramagnetic state to the true (ferromagnetic) groundstate

characteristic time scale for this transition( γ � 1/h̄ )

τregistration =
1

γg
∼ 1

γJ
� h̄

T
≡ τ thermal fluctuation
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Result of measurement

After the measurement, at t2 � τregistration , the common state of test spin

and apparatus is

D(t2) = p↑ |↑ 〉 〈 ↑| ⊗ ρ(1)↑↑ (t2) ⊗ . . .⊗ ρ(N)
↑↑ (t2)

+ p↓ |↓ 〉 〈 ↓| ⊗ ρ(1)↓↓ (t2) ⊗ . . .⊗ ρ(N)
↓↓ (t2)

where

p↑ =
1

2
(1+ < sz >) , p↓ =

1

2
(1− < sz >)

ρ(n)↑↑ (t2) =
1

2

(

1 +m↑ 0
0 1 −m↑

)

In words: with probability p↑ one finds the spin in the up-state and the

magnet with magnetization up and like-wise in the down-sector

The off-diagonal sectors (“Schrödinger cats”) have been eliminated

by the collapse: decoherence
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Statistical interpretation: (still needed ?)

Assume:

Any quantum state (density matrix) describes an ensemble of states not

an individual particle. Quantum measurement = a series of measurements

on an ensemble of identically prepared sytems

Quote:

“In doing a series of experiments, there are two possible outcomes, connected with the

magnetization of the apparatus being up or down, which occur with probabilities p↑ and p↓,

respectively. In each such event, the z-component of the test spin is equal to +1 or −1,

correspondingly. The ensemble of spins having +1 is described by the pure density matrix

| ↑>< ↑ | or simply by the wavefunction | ↑>. A similar statement holds for the down spins.”
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5. Summary

• Allaverdhyan et al. have given a simplified, semi-realistic model of the quantum

measurement process (for a test sytem) in which the apparatus is treated quantum
mechanically as well and coupled to an environment (bath). The number N of spins in
the apparatus is arbitrary which allows to study the macroscopic limit

• Von Neumann was right (this time): the collapse occurs quite fast after the start of
the measurement if N is large

• It goes in 2 steps: the collapse occurs due to the interaction of the test system with
the macroscopic apparatus and later is made definite by bath induced decoherence

• The registration of the measurement occurs in a “classical” state, i.e. a state that
has collapsed already

• Whether the outcome is observed or not is immaterial. Gravitation plays no role.
Extensions of QM (like non-linear Schrödinger eqs. for a spontaneous collapse) are not
needed

• Approach can (in principle) be tested by observing N-dependence of collapse time in
mesoscopic devices (?)


