

Cristina Müller :: Research Group Leader :: Paul Scherrer Institute

Strategies to Improve Radiotheragnostic Concepts:

Ligand Design Optimization and Application of the "Next-Generation" Radionuclides Colloquium of the Particle Physics Group at PSI – 3 November 2022

Center for Radiopharmaceutical Sciences

Head of CRS: Prof. Roger Schibli

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Institute of Pharmaceutical Sciences, D-CHAB

PAUL SCHERRER INSTITUT

BIO Division

"Nuclide Chemistry Group"

S. Cohrs, A. K. Mapanao, C. Müller, C. Vaccarin, F. Sozzi-Guo

V. Tschan, L. Deberle, D. Beyer, R. Wallimann, S. Busslinger, F. Flühmann, R. Mayer

Optimization of the Targeting Agent

Design of Radiometal Conjugates

Small molecular weight radioligands

- Easy and cost-effective production
- Simple and fast radiometalation procedure
- Easy accessibility for chemical modifications
- GMP-production (Good Manufacturing Procedure)

Radioimmunoconjugates

- Relatively long blood circulation
- High tumor accumulation
- Negligible kidney clearance

Small molecular weight radioligands

- Easy and cost-effective production
- Simple and fast radiometalation procedure
- Easy accessibility for chemical modifications
- GMP-production (Good Manufacturing Procedure)

Radioimmunoconjugates

- Relatively long blood circulation
- High tumor accumulation
- Negligible kidney clearance

Can Fast Blood Clearance be Prevented?

"Albumin binder concept"

Is it feasible to enhance the blood circulation time of small molecules to increase the tumor uptake?

Modification with an Albumin-Binding Entity

"Albumin binder concept"

Is it feasible to enhance the blood circulation time of small molecules to increase the tumor uptake?

Müller et al. 2013 J Nucl Med 54:124.

Dumelin et al. 2008 Angew Chem Ed Int 47:3196.

"Albumin binder concept"

Is it feasible to enhance the blood circulation time of small molecules to increase the tumor uptake?

Müller et al. 2013 J Nucl Med 54:124.

Modification of the Linker

Benešová et al. 2022 Mol Pharm 19:963.

Benešová et al. 2022 Mol Pharm 19:963.

Conclusion: Albumin-Binding Folate Radioconjugates

Conclusion: Folate radioconjugates

- The *p*-iodophenyl-butanoate entity improved the tissue distribution of folate radioconjugates dramatically.
- Variation of the linker entity had an impact on the tissue distribution profile of the folate radioconjguate.
- Enhancing the albumin-binding properties resulted in increased blood retention which has to be kept in mind with regard to a therapeutic application of folate radioconjugates.
- The challenge is to identify a design that leads to a sufficiently long blood circulation time of the radioconjugate to achieve high tumor uptake and a balance between kidney and blood retention to avoid off site toxicity.
- The «perfect» folate radioconjugate has not yet been identified even after 20 years of intense research.

Development and Optimization of Radioligand Therapy (RLT) of Prostate Cancer

Prostate-Specific Membrane Antigen (PSMA)

Characteristics

- PSMA transcript was found in prostate, brain, kidney, small intestine, liver, spleen, trachea, spinal cord, and fetal liver and kidney.
- Expression is highest in the prostate.
- PSMA is expressed in over 80% of prostate cancer and its expression correlates with the stage of the disease (more advanced, more PSMA).

PSMA expression

tissue cancer metastasis metastasis

Queisser et al. 2015 Modern Pathol 28:138.

Prostate-Specific Membrane Antigen (PSMA)

Characteristics

- PSMA transcript was found in prostate, brain, kidney, small intestine, liver, spleen, trachea, spinal cord, and fetal liver and kidney.
- Expression is highest in the prostate.
- PSMA is expressed in over 80% of prostate cancer and its expression correlates with the stage of the disease (more advanced, more PSMA).

PSMA expression

Queisser et al. 2015 Modern Pathol 28:138.

Synonymes and functions

- Glutamate carboxypeptidase 2, N-acetylated-alpha-linked acidic dipeptidase I (NAALAdase)
- Enzyme that cleaves glutamate residues from folate-polyglutamates and from NAAL in the brain

https://www.sinobiological.com/resource/psma/proteins

PAUL SCHERRER INSTITUT PSMA-Targeting PET Imaging Agent

FDA-approved in Dec 2020

Synonymes and functions

- Glutamate carboxypeptidase 2, N-acetylated-alpha-linked acidic dipeptidase I (NAALAdase)
- Enzyme that cleaves glutamate residues from folate-polyglutamates and from NAAG in the brain

https://www.sinobiological.com/resource/psma/proteins

PAUL SCHERRER INSTITUT PSMA-Targeting Therapeutic Agent

FDA-approved in March 2023

Synonymes and functions

- Glutamate carboxypeptidase 2, N-acetylated-alpha-linked acidic dipeptidase I (NAALAdase)
- Enzyme that cleaves glutamate residues from folate-polyglutamates and from NAAG in the brain

https://www.sinobiological.com/resource/psma/proteins

¹⁷⁷Lu-Based Radioligand Therapy

Modification of the PSMA Ligand Design

Ratio of MSA in mouse plasma / ligand [log]

Biodistribution Data of PSMA Radioligands

Balb/c nude mice:

- PC-3 PIP tumor xenografts (PSMA-positive) on the right shoulder
- PC-3 flu tumor xenografts (PSMA-negative) on the left shoulder

Biodistribution of 177Lu-PSMA-ALB-56

Balb/c nude mice:

- PC-3 PIP tumor xenografts (PSMA-positive) on the right shoulder
- PC-3 flu tumor xenografts (PSMA-negative) on the left shoulder

Study Design: BALB/c nude mice (n = 6)

Control (PBS)	¹⁷⁷ Lu-PSMA-617	¹⁷⁷ Lu-PSMA-ALB-56
PC-3 PIP (PSMA+)	PIP (PSMA+) PC-3 PIP (PSMA+)	
-	5 MBq	5 MBq

Follow-up over 12 weeks:

Measuring the tumor volume and body mass every second day

Endpoints that required euthanasia:

- Tumor volume > 800 mm³ OR body mass loss > 15%
- Tumor volume > 700 mm³ AND body mass loss > 10%
- Signs of unease and/or pain

Therapy assessment

Tumor growth curves and survival curves (median survival of each group)

Therapy Study using ¹⁷⁷Lu-PSMA-ALB-56

Balb/c nude mice:

PC-3 PIP tumor xenografts (PSMA-positive) on the right shoulder

European Journal of Nuclear Medicine and Molecular Imaging (2021) 48:893–903 https://doi.org/10.1007/s00259-020-05022-3

ORIGINAL ARTICLE

Check for updates Further optimization of the PSMA ligand design will be necessary to increase the therapeutic window.

Biodistribution and dosimetry of a single dose of albumin-binding ligand [¹⁷⁷Lu]Lu-PSMA-ALB-56 in patients with mCRPC

Vasko Kramer^{1,2} • René Fernández¹ • Wencke Lehnert^{3,4} • Luis David Jiménez-Franco³ • Cristian Soza-Ried¹ • Elisabeth Eppard² • Matias Ceballos¹ • Marian Meckel⁵ • Martina Benešová^{6,7} • Christoph A. Umbricht⁶ • Andreas Kluge³ • Roger Schibli^{6,7} • Konstantin Zhernosekov⁵ • Horacio Amaral^{1,2} • Cristina Müller^{6,7}

Tissue	¹⁷⁷ Lu-PSMA-617*		¹⁷⁷ Lu-PSMA-ALB-56	Patients	 Mice
Tumor	2.80-4.60 Gy/GBq	<	6.64 Gy/GBq	1.8-fold increased	2.3-fold
Red Bone Marrow	0.01-0.11 Gy/GBq	<	0.29 Gy/GBq	4.8-fold increased	6.5-fold
Kidneys	0.39-0.61 Gy/GBq	<	2.54 Gy/GBq	5.1-fold increased	8.2-fold
Salivary Glands	0.51-1.41 Gy/GBq	=	0.86 Gy/GBq	0.9-fold increased	

*Delker et al. **2016**, Eur J Nucl Med Mol Imaging 43:42; Scarpa et al. **2017** Eur J Nucl Med Mol Imaging 44, 788; Violet et al. **2019**, J Nucl Med

Kramer et al. 2020, Eur J Nucl Med Mol Imaging 48:893.

Theranostics 2020, Vol. 10, Issue 4	1678
IVYSPRING INTERNATIONAL PUBLISHER	Theranostics
2020; 10(4): 1 Research Paper	678-1693. doi: 10.7150/ thno.40482
Development of a new class of PSMA ra	dioligands
comprising ibuprofen as an albumin-bind	ing entity
Luisa M. Deberle ^{1,2*} , Martina Benešová ^{1,2*} , Christoph A. Umbricht², Francesca Konstantin Zhernosekov³, Roger Schibli ^{1,2} , Cristina Müller ^{1,2⊠}	Borgna², Manuel Büchler²,
HO (HO (HO (HO (HO (HO (HO (HO (HO (HO (HO HO HO HN HN HN HN HN HN HN HN HN HN HN HN HN
p-tolyl entity	Isobutyl-phenyl-propionic acid entity (ibuprofen)

Umbricht et al. 2018 Mol Pharm 15:2297; Deberle & Benesova et al. 2020 THNO 10:1678.

Umbricht et al. 2018 Mol Pharm 15:2297; Deberle & Benesova et al. 2020 THNO 10:1678.

Study Design: BALB/c nude mice (n = 6)

Control (PBS)	¹⁷⁷ Lu-Ibu-DAB-PSMA	¹⁷⁷ Lu-PSMA-617	¹⁷⁷ Lu-PSMA-ALB-56
PC-3 PIP (PSMA+)	PC-3 PIP (PSMA+)	PC-3 PIP (PSMA+)	PC-3 PIP (PSMA+)
-	5 MBq or 10 MBq	5 MBq or 10 MBq	5 MBq or 10 MBq

Follow-up over 12 weeks:

Measuring the tumor volume and body mass every second day

Endpoints that required euthanasia:

- Tumor volume > 800 mm³ OR body mass loss > 15%
- Tumor volume > 700 mm³ AND body mass loss > 10%
- Signs of unease and/or pain

Therapy assessment

Tumor growth curves and survival curves (median survival of each group)

Therapy Study: Comparison of PSMA Radioligands

Study Design: Potential Effects to Normal Tissue

Study Design: FVB, immunocompetent mice (n = 4)

Control (PBS)	¹⁷⁷ Lu-Ibu-DAB-PSMA	¹⁷⁷ Lu-PSMA-617	¹⁷⁷ Lu-PSMA-ALB-56
no tumor	no tumor	no tumor	no tumor
none	30 MBq	30 MBq	30 MBq

Follow-up:

Determination of diverse parameters on Day 10 and Day 28 after therapy

Parameters

- Determination of blood plasma parameters (BUN/ALP/TBIL/ALB)
- Histological investigation of kidneys, spleen and bone marrow

Tschan et al. 2022 Eur J Nucl med Mol Imaging 49:3639.

Tolerability: Blood Cell Counts

Tschan et al. 2022 Eur J Nucl med Mol Imaging 49:3639.

(S)- and (R)-Isomers of ¹⁷⁷Lu-Ibu-DAB-PSMA

Borgna & Deberle et al. 2022 Mol Pharm 19:2105.

Clinical investigations

Clinical investigations of ¹⁷⁷Lu-SibuDAB are on-going in Santiago de Chile to estimate the absorbed dose to tumors and normal tissue and investigate the safety.

Preclinical studies

Further preclinical studies are on-going to investigate ¹⁶¹Tb-SibuDAB also with regard to potential undesired side effects.

Clinical study planned

A clinical study to investigate ¹⁶¹**Tb-SibuDAB** is foreseen for the near future.

Application of the «Next Generation» Theragnostic Radionuclides

«Matched Pairs» of Nuclides for RadioTheragnostics

Page 34

¹⁷⁷Lu-Based Radioligand Therapy

Actinium-225 for Alpha Therapy

²²⁵Ac-based Radioligand Therapy

²²⁵Ac-based Radioligand Therapy

²²⁵Ac-based RLT: Critical Aspects

²²⁵Ac is effective to eliminate micrometastases but may cause severe side effects.

Therefore, ²²⁵Ac is currently only employed for end-stage patients.

«Matched Pairs» of Nuclides for RadioTheragnostics

Page 40

Production of ¹⁶¹Tb in Analogy to ¹⁷⁷Lu (n.c.a.)

¹⁷⁷Lu production

ITM Medical Isotopes SE, Munich

 (n, γ) -Reaction

Gracheva et al. **2019** EJNMMI Radiopharm Chem. 4:12.; Lehenberger et al. **2011** Nucl Med Biol. 38:917; Duran et al. **2020** Appl Radiat Isot. 159:109085; Nedjadi et al. **2020** Appl Radiat Isot. 166:109411.

Treatment of Micro- & Macrometastases

Treatment of Micro- & Macrometastases

Champion et al. 2016, Theranostics

Our goal is to develop a next generation RLT that is potent to eliminate micrometastases but safe to be applied at an early disease stage.

In Vitro Evaluation of ¹⁶¹Tb- & ¹⁷⁷Lu-PSMA-617

Equal Pharmacokinetic Profiles

Müller et al. 2019 Eur J Nucl Med Mol Imaging 46:1919

Tumor Cell Viability: ¹⁶¹Tb vs. ¹⁷⁷Lu-PSMA-617

Müller et al. 2019 Eur J Nucl Med Mol Imaging 46:1919

¹⁶¹Tb-PSMA-617: Preclinical Therapy

Müller et al. 2019 Eur J Nucl Med Mol Imaging 46:1919 & unpublished data.

Annual Conference of the EANM 2018

European Association of Nuclear Medicine (EANM)

Nest Steps: Clinical Translation of ¹⁶¹Tb

Clinical investigations

Clinical investigations of ¹⁷⁷Lu-SibuDAB are on-going in Santiago de Chile to estimate the absorbed dose to tumors and normal tissue and investigate the safety.

Preclinical studies

Further preclinical studies are on-going to investigate ¹⁶¹**Tb-SibuDAB** also with regard to potential undesired side effects.

Clinical study planned

A clinical study to investigate ¹⁶¹**Tb-SibuDAB** is foreseen for the near future.

Clinical study planned

A clinical study to investigate ¹⁶¹Tb-PSMA-I&T is in the

Müller et al. 2012 J Nucl Med 53:1951

Figurines ©Ekaterina Zimodro/123RF

PAUL SCHERRER INSTITUT Produ

Production of ¹⁵²Tb, ¹⁵⁵Tb & ¹⁴⁹Tb

ISOL = Isotope Separation On-Line

17.5 h 5.3 d 4.1 h

Production of ¹⁵²Tb, ¹⁵⁵Tb & ¹⁴⁹Tb

Chemical Separation

Chemical separation using chromatography

Müller et al. 2012 J Nucl Med 53:1951

¹⁴⁹Tb-PSMA-617: Preclinical Therapy

¹⁴⁹Tb-PSMA-617: Preclinical Therapy

¹⁴⁹Tb: Useful for α-Therapy and PET Imaging

Terbium-149

- Radiolanthanide for α -therapy (easy chelation using DOTA)
- Half-life of **4.1 h**
- Low α -energy of 3.9 MeV
- No α -emitting daughters

...and suitable for PET imaging? (Physical decay properties: $E\beta^+av = 730 \text{ keV}, I\beta^+ = 7.1\%$

¹⁴⁹Tb: Useful for α-Therapy and PET Imaging

Terbium-149

- Radiolanthanide for α -therapy (easy chelation using DOTA)
- Half-life of **4.1 h**
- Low α -energy of 3.9 MeV
- No α -emitting daughters

...and suitable for PET imaging? (Physical decay properties: $E\beta^{+}av = 730 \text{ keV}, I\beta^{+} = 7.1\%$

¹⁵²Tb & ¹⁵⁵Tb: Diagnostic Sisters

- ¹⁵⁵Tb and ¹⁵²Tb are of interest in combination with long-circulating targeting agents and/or for delayed imaging.
- They are promising for dosimetry prior to radionuclide therapy using ¹⁷⁷Lu, ¹⁶¹Tb or ¹⁴⁹Tb (or other radiolanthanides).

Müller et al. 2019 EJNMMI Res 9:68; Favaretto et al. 2021 EJNMMI Radiopharmacy and Chemistry 6:37.

Whole-Body PET Using ¹⁵²Tb-PSMA-617

Müller et al. 2019 EJNMMI Res 9:68

Prof. Richard Baum

Comparison of ⁶⁸Ga- & ¹⁵²Tb-based PET Images

Müller et al. 2019 EJNMMI Res 9:68

Prof. Richard Baum Zentralklinik Bad Berka

¹⁶¹Tb

- ¹⁶¹Tb is well established in terms of production and can be made available in **excellent quality**, but an up-scaling process will be necessary to make it available in quantities sufficient for **clinical translation**.
- Further preclinical investigations are on-going to explore the advantage of the Auger electron emission for the treatment of disseminated disease.
- A clinical study is planned to investigate ¹⁶¹Tb-DOTA-LM3 (Collaboration with Prof. Dr. Damian Wild, University Hospital Basel, Switzerland).

https://clinicaltrials.gov/ (NCT05359146)

- Currently on-going research focuses on the production methods and set-up of new facilities (TATOOS!)
- More preclinical research will be necessary, in particular with ¹⁴⁹Tb, which is promising for targeted α-Therapy.

Center for Radiopharm. Sciences (PSI) Prof. R. Schibli, Radiation Safety etc.

Laboratory of Radiochemistry (PSI) Dr. N. P. van der Meulen & Group

ISOLDE CERN, Geneva, Switzerland Dr. K. Johnston & Team

Institut Laue-Langevin, Grenoble, France Dr. U. Köster & Team

Necsa, Pelindaba, South Africa Dr. J. R. Zeevaart & Team

University of Gothenburg, Sweden Prof. P. Bernhardt & Team

ITM Medical Isotopes GmbH, Germany Prof. K. Zhernosekov & Team

Merck & Cie, Switzerland Dr. V. Groehn & Team

Strategic Focus Area Personalized Health and Related Technologies

Center for Nuclear Medicine &

Prof. H. Amaral & Team; Dr. V. Kramer

Zentralklinik Bad Berka, Germany Prof. R. Baum; Dr. A. Singh & Team

krebsforschung schweiz

recherche suisse contre le cancer ricerca svizzera contro il cancro swiss cancer research

PET/CT Positronmed, Chile

FONDS NATIONAL SUISSE SCHWEIZERISCHER NATIONALFONDS FONDO NAZIONALE SVIZZERO Swiss National Science Foundation

Thank you for your Attention!

