

SEARCHING FOR HIDDEN SECTORS WITH THE NA64 EXPERIMENT AT THE CERN SPS - LTP/PSI Kolloquium 5.11.2020

Paolo Crivelli, ETH Zurich, Institute for Particle Physics and Astrophysics

Dark Matter: Astro + Cosmology through Gravitational effects

Does DM interact only gravitationally?

particle physicist

Dark matter interacting only gravitationally

Nightmare scenario

Is there an interaction between DM-SM other than gravity?

Relic densities of Standard Matter (SM) and Dark Matter (DM) are "similar"

SUGGESTS COMMON ORIGIN BETWEEN SM and DM.

Can those be related with A SINGLE THEORY? ADDITIONAL DM-SM interaction? If it exists it should be very weak...

Weakly Interacting Massive Particles (WIMPs)

INTERACTS VIA WEAK FORCE (W and Z BOSONS)

The WIMP miracle

OBSERVED AMOUNT OF DARK MATTER TODAY

Thermal averaged **ANNIHILATION** RATE

VS.

"WEAK SCALE" MASS

m_x~100 GeV,

expansion of universe

IDEAL CANDIDATE: Lightest Super-symmetrical Particle

E *zürich*

Status of direct Searches

Tough times for the WIMP miracle?

Light Mediators searches complementary to WIMPs

Mediator

For a review see e.g. https://arxiv.org/abs/2011.02157

Standard Model

OBSERVED AMOUNT OF DARK MATTER TODAY $\Omega_X \propto \frac{1}{\langle \sigma v \rangle} \sim \frac{m_X^2}{q_Y^4}$

The WIMP miracle

Dark Matter

 $(m_X, g_X) \sim (m_{\mathrm{weak}}, g_{\mathrm{weak}})$

 $rac{m_X}{q_X^2} \sim rac{m_{ ext{weak}}}{q_{ ext{weak}}^2}$

The WIMPless MIRACLE

J. Feng and J. Kumar Phys.Rev.Lett.101:231301,2008

Large range for g_X and m_X

Renormalizable Portals

B. Batell, M. Pospelov and A. Ritz, Phys. Rev. D80 (2009) 095024.

li 64 st li 200

NEW FORCE CARRIED BY MASSIVE **VECTOR** BOSON: **DARK PHOTON**

DARK SECTORS - THE VECTOR PORTAL

DARK SECTOR (DS) charged under a new U(1)' gauge symmetry and interacts with SM through kinetic mixing (ϵ) of a MASSIVE VECTOR MEDIATOR (A') with our photon. Dark matter with mass (m_x), part of DS.

Four parameters: $m_{A'}$, m_{χ} , $\alpha_D = e_D^2/4\pi$, ε

$$\begin{aligned} \mathcal{L} &= \mathcal{L}_{\rm SM} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{\epsilon}{2} F'_{\mu\nu} F^{\mu\nu} + \frac{m_{A'}^2}{2} A'_{\mu} A'^{\mu} \\ &+ i \bar{\chi} \gamma^{\mu} \partial_{\mu} \chi - m_{\chi} \bar{\chi} \chi - e_D \bar{\chi} \gamma^{\mu} A'_{\mu} \chi, \end{aligned}$$

DARK SECTORS - THE VECTOR PORTAL

In this framework DM can be produced thermally in the early Universe

OBSERVED AMOUNT OF DARK MATTER TODAY

$$\Omega_X \propto rac{1}{< v\sigma >} \sim rac{m_X^2}{y}$$
 where $y = \epsilon^2 lpha_D \left(rac{m_X}{m_{A'}}
ight)$

mmetric Targets for DM-e Scattering

DM PARAMETER SPACE c Scalar ric Fermion For a review see e.g https://arxiv.org/pdf/1707.04591.pdf Thermal and Asymmetric Targets at Accelerators 10^{-7} 10^{-8} "A Fermion **Probed** Solid lines 10⁻⁹ vmmetric Fermion 10^{-10} predictions from DM 10^{-11} Pseudo-Dirac Fermion (small splitting) 3 relic abundance 10⁻¹⁴ Majorana Fermion Thermal alar (small splitting) do-Dirac Fermion 10^{-15} 10^{2} 10 10^{3} 0 10^{2} 10³ m_X [MeV] $m_{\rm DM}$ DM -> SM annihilation rate is \sim y,

useful variable to compare exp. sensitivities

Some production mechanisms for Dark Photons

EHzürich

Decays of Dark Photons

Adapted from Natalia Toro, Dark Sectors 2017 (1608.03591)

SEARCHES FOR DARK SECTORS AT ACCELERATORS

INVISIBLE DECAY MODE m

 $m'_A > 2m_X$

1) BEAM DUMP APPROACH (MiniBooNE, LSND, NA62...)

Flux of X generated by decays of A's produced in the dump.Signal: X scattering in far detector

SEARCHES FOR DARK SECTORS AT ACCELERATORS

INVISIBLE DECAY MODE m^\prime

$m'_A > 2m_X$

2) NA64/LDMX APPROACH

NA64 **missing energy**: produced A's carry away energy form the active dump used to measure recoil e- energy

EHzürich

From positronium (search for massless dark photon) \rightarrow NA64

S. L. Glashow, Phys. Lett. B167, 35 (1986)

Signature: disappearance of 1 MeV energy

A. Badertscher, P. Crivelli et al., Phys. Rev. D. 75, 032004 (2007) Latest results 2020 C. Vigo, L. Gerchow, B. Radics, A. Rubbia, P. Crivelli, PRL124,101803

The NA64 collaboration (~50 researchers from 13 Institutes)

D. Banerjee^k, J. Bernhard^d, V.E. Burtsev^j, A.G. Chumakov^j, P. Crivelli^m, E. Depero^m, A. Dermenev^e, S.V. Donskovⁱ, R. Dusaev^j, T. Enik^b, V. Frolov^b, A. Gardikiotis^h, S.Gerassimov^{c,f}, S.N. Gninenko^e, M. Hösgen^a, A. Karneyeu^e, G. Kekelidze^b, B. Ketzer^a, D. Kirpichnikov^e, M.M. Kirsanov^e, I.V. Konorov^{c,f} S.G. Kovalenko^l, V.A. Kramarenko^{b,g}, L.V. Kravchuk^e, N.V. Krasnikov^e, S.V. Kuleshov^l, V.E. Lyubovitskij^{j,l}, V.M. Lysan^b, V.A. Matveev^b, Yu.V. Mikhailovⁱ, L. Molina-Bueno^m, D.V. Peshekhonov^b, V.A. Polyakovⁱ, B. Radics^m, A. Rubbia^m, V.D. Samoylenkoⁱ, D. Shchukin^f, V.O. Tikhomirov^f, D.A. Tlisov^e, A.N. Toropin^e, A.Yu. Trifonov^j, P. Ulloa^l, B.I. Vasilishin^j, B.M. Veit^d, P.V. Volkov^{b,g}, and V.Yu. Volkov^g

^a Universität Bonn, Helmholtz-Institut für Strahlen-und Kernphysik, 53115 Bonn, Germany

^bJoint Institute for Nuclear Research, 141980 Dubna, Russia

^c Technische Universität München, Physik Dept., 85748 Garching, Germany ^d CERN, European Organization for Nuclear Research, CH-1211 Geneva, Switzerland

^eInstitute for Nuclear Research, 117312 Moscow, Russia

^f P.N. Lebedev Physics Institute, Moscow, Russia, 119 991 Moscow, Russia ^g Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

^hPhysics Department, University of Patras, Patras, Greece

ⁱState Scientific Center of the Russian Federation Institute for High Energy Physics of National Research Center 'Kurchatov Institute' (IHEP), 142281 Protvino, Russia

^jTomsk State Pedagogical University, 634061 Tomsk, Russia

^kUniversity of Illinois, Urbana Champaign, Illinois, USA

¹Universidad Técnica Federico Santa María, 2390123 Valparaíso, Chile

^mETH Zürich, Institute for Particle Physics, CH-8093 Zürich, Switzerland

Proposed (P348) in 2014, first test beam in 2015 (2 weeks), Approved by CERN SPSC in March 2016 → NA64. 2016: 5 weeks, 2017: 5 weeks, 2018: 6 weeks.

1) The NA64 search for A' $\rightarrow \chi \overline{\chi}$

INVISIBLE DECAY MODE $m_A^\prime > 2m_X$

DS Lagrangian

$$\mathcal{L} = \mathcal{L}_{\rm SM} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{\epsilon}{2} F'_{\mu\nu} F^{\mu\nu} + \frac{m_{A'}^2}{2} A'_{\mu} A'^{\mu} + i \bar{\chi} \gamma^{\mu} \partial_{\mu} \chi - m_{\chi} \bar{\chi} \chi - e_D \bar{\chi} \gamma^{\mu} A'_{\mu} \chi,$$

mmetric Targets for DM–e Scattering

EHzürich

The NA64 method to search for A' $\rightarrow \chi \overline{\chi}$

The NA64 method to search for A' $\rightarrow \chi \overline{\chi}$

Paolo Crivelli | 28.04.2020 | 24

The NA64 method to search for A' $\rightarrow \chi \overline{\chi}$

The CERN SPS H4 electron beam

The CERN SPS H4 electron beam

CERN's Accelerator Complex

https://home.cern/science/accelerators

The Electromagnetic Calorimeter (ECAL)

EHzürich

The Electromagnetic Calorimeter (ECAL)

$$\Sigma \Delta E_{invis} + \Sigma \Delta E_{vis} = E_{invis} + E_{vis} = E_{absorbed}$$

- High hermeticity (~40 X₀)
- PbSc sandwich, 6x6 matrix, cells 38x38x490 mm3
- ◆ WLS fibers in spiral→ suppress energy leaks
- Energy resolution ~ $9\%/\sqrt[]{(E[GeV])}$
- Longitudinal (Pre-shower) and lateral segmentation
- \rightarrow shower profiles (hadron rejection)

The Hadronic Calorimeter (HCAL)

MU4

The magnetic spectrometer

IPA ETHzürich

D. Banerjee, P. Crivelli and A. Rubbia, Advances in HEP, 105730 (2015) and D. Banerjee, PhD Thesis, ETH Zurich (2017)

32

The magnetic spectrometer

The Synchrotron Radiation (SR) detector

The Synchrotron Radiation (SR) detector

ETH zürich

Particle identification SR emission ~ 1/m⁴

Bending magnet

34

E *zürich*

The NA64 search for A' $\rightarrow \chi \overline{\chi}$ - results (July 2016, 2 weeks)

★ **Region I:** e- Z → e-Zγ; $\gamma \rightarrow \mu+\mu$ -→ benchmark for MC

★Region II: SM events E_{ECAL} + E_{HCAL} ≃ 100 GeV

★Region III —> pile-up events

The NA64 search for A' $\rightarrow \chi \overline{\chi}$ - results (July 2016, 2 weeks)

Event Selection Criteria:

 Timing information → Pile up suppression.
 Clean incoming track: angle + single hit in all trackers, correct momentum.
 Synchrotron radiation → Hadron suppression
 Shower profile compatible with e⁻

No activity in Veto counters.

All selection cuts applied \rightarrow no event in signal region

THzürich

The NA64 search for A' $\rightarrow \chi \overline{\chi}$ - results (July 2016, 2 weeks)

 \rightarrow exclusion of most of g-2 muon favored region

M. Pospelov, A. Ritz and M. B. Voloshin, Phys. Lett. B 662, 53 (2008)

g-2 closed completely by BABAR results

BABAR collaboration, Phys. Rev. Lett. 119, 131804 (2017)

MASS OF THE DARK PHOTON

NA64 collaboration, Phys. Rev. Lett. 118, 011802 (2017)

E *H zürich*

The NA64 search for A' $\rightarrow \chi \overline{\chi}$ - results combined analysis 2016-2018

The NA64 search for A' $\rightarrow \chi \overline{\chi}$ - *Future prospects 2021-2023*

2) The NA64 search for A' \rightarrow e⁺e⁻

Pair production of SM particles

⁸Be anomaly and X boson

A. J. Krasznahorkay et al. Phys. Rev. Lett.116, 042501 (2015) and recent results for 4He arXiv:1910.10459

Could be explained by new 'protophobic' gauge boson X with mass around 17 MeV

J. L. Feng et al. Phys. Rev. D95, 035017 (2017)

Paolo Crivelli 28.04.2020 41

EHzürich

The NA64 search for A'/X17 \rightarrow e⁺e⁻ - experimental setup

THzürich

The NA64 search for A'/X17 \rightarrow e⁺e⁻ - experimental signature

Paolo Crivelli | 28.04.2020 | 43

The NA64 search for A'/X17 \rightarrow e⁺e⁻ - results (2017-2018)

The NA64 search for A'/X17 \rightarrow e⁺e⁻ - results (2017-2018)

The NA64 search for X17 \rightarrow e⁺e⁻ - prospects (2021-2023)

The NA64 ALP search - results

Production via Primakoff effect

$$e^{-}Z \rightarrow e^{-}Z\gamma; \gamma Z \rightarrow aZ; a \rightarrow \gamma\gamma$$

Closing the gap between beam dump and colliders

64 XA

ECAL VETO HCAL1 HCAL2 HCAL3

Paolo Crivelli | 28.04.2020 | 47

E *H* zürich

The NA64 ALP search - future prospects

Feasibility of combining ALPs with A' $\rightarrow \chi \overline{\chi}$ search under study

NA64 in muon mode- NA64 μ

CERN SPS M2 160 GeV muon beam offers unique opportunities to further searches for DS of particles predominantly weakly-coupled to 2nd second and possibly 3rd generations of the SM.

$$\mu + Z \rightarrow \mu + Z + Z_{\mu}, \ Z_{\mu} \rightarrow \nu \overline{\nu}$$

 L_{μ} - L_{τ} models Z could explain (g-2)_{μ}

NA64 in muon mode- experimental setup (pilot run 2021, 2 weeks)

The NA64 physics prospects

New Physics
Dark photon
sub-GeV Dark Matter (χ)
new gauge X - boson
Dark Sector, charge quantisation
Axion-like particles
gauge Z_{μ} -boson of $L_{\mu} - L_{\tau}, < 2m_{\mu}$
$L_{\mu} - L_{\tau}$ charged Dark Matter (χ)
Dark Sector, charge quantisation
non-universal ALP coupling
Lepton Flavour Violation
Current limits, PDG'2018
$Br(\pi^0 \to invisible) < 2.7 \times 10^{-7}$
$Br(\eta \rightarrow invisible) < 1.0 \times 10^{-4}$
$Br(\eta' \to invisible) < 5 \times 10^{-4}$
no limits
no limits

NA64 program: submitted as input to the European Strategy Group in the context of the PBC

CERN-PBC-REPORT-2018-007

CERN Council Open Symposium on the Update of European Strategy for Particle Physics

13-16 May 2019 - Granada, Spain

Summary and Outlook

DARK SECTORS: very interesting candidate for DM

NA64: Active beam dump + missing-energy approach is very powerful

2016: A' $\rightarrow \chi \overline{\chi}$

- July run: 2.75x10⁹ EOT: no signal \rightarrow most of g-2 muon favored region excluded (PRL118, 011802 (2017)) . - October run : 4x10¹⁰ EOT: no signal \rightarrow new constraints on TLDM (PRD97, 072002 (2018)).

2017-2018: - $\mathbf{A}' \rightarrow \chi \overline{\chi}$: 3x10¹¹ EOT collected PRL 123, 121801 (2019)

- X→ e⁺e⁻: 5x10¹⁰EOT@100 GeV PRL120, 231802 (2018), 3x10¹⁰ EOT@150 GeV PRD (2020)

Acknowledgments

NA64 collaboration and in particular S: Gninenko

ETH Zurich group L. Molina-Bueno, B. Radics, A. Rubbia, Graduate Students: Emilio Depero, H Sieber

Former members of the ETH group: D. Banerjee, D. Cooke

CERN

Undergraduate Students: C. Cazzaniga, P. Odagiu, L. Pedrelli, R. Schwarz and all the past students.

Funding: ETH Zurich and SNSF Grant No. 169133 and 186158 (Switzerland)

