# THE MUBBLE PARAMETER - PASTAND PRESENT

"Theories crumble, but good observations never fade" - Harlow Shapely

# >4 SIGMA!

z<1

 $H_0 = 67.4 \pm 0.5 \ km/sec/Mpc$  $H_0 = 67.4 \pm 1.2 \ km/sec/Mpc$ 

Z>1

 $H_0 = 74.0 \pm 1.4 \, km/sec/Mpc$  69.8 + -1.9 73.6 + -3.9 73.3 + -1.8 74.8 + -3.176.5 + -4.0

### OUTLINE

- Precision Cosmology measuring ALL parameters at 1% accuracy
- What is the Hubble Parameter?
- History of Measurements
- Two examples of current methods:
  - 1) Inferring H<sub>0</sub> from CMB observations
  - 2) Direct Measurement of H<sub>0</sub> with SNIa
- Current Conundrum.

### **Brief History of Astronomy**



#### Aristotle, 384 BCE





Copernicus, 1473





#### Galilei, 1564



## **Key Observations**







Large scale structure





- X-ray, UV, Gamma-rays, Radio observations
- Gravitational waves
- Exoplanets











### COSMOLOGY-NOT A CONTROLLED EXPERIMENT

- Harnessing ALL fundamental interactions observations to understand the beginning, evolution and ultimate fate of the Universe
- EM force
- Weak Force
- Strong Force
- Gravity (from 2015, once gravitational waves were detected)



### Modern View on Cosmology



### Looking Deeper in Space = Looking Earlier in Time

Observations: photons, travel at finite speed Today we can observe traces of big bang, the very first stars etc.

#### Observation 2 Nearby, older





Observation 1 Far, young



### SPACE-TIME FROM STATIC TO DYNAMIC

- Shapely-Curtis debate: Nebulae beyond the Milky Way- "Island Universes" or part of our galaxy (1920)
- General Relativity made spacetime a dynamical entity! (1915)
- Measuring distances to nearby galaxies and discovery of Cepheids by Hubble - Expanding Universe! (1929)
- H<sub>0</sub> is the most important cosmological measurement and is relevant for fundamental physics as well.



### HUBBLE PARAMETER

- Consider a known luminosity source moving at some velocity
- v recessional velocity

 $v = H_0 D$ 

- D is the proper distance to the source
- Hubble discovered that the further you look, the faster objects are receding - the spectrum is *redshifted*
- the constant of proportionality is the Hubble constant.
- Two earlier predictions by Lemaitre and Robertson. (However heavily relied on Hubble data, which is why the credit is given to Hubble, who finally published in 1929)

#### **REPRODUCTION OF HUBBLE'S ORIGINAL PLOT**



### EVERLASTING CAVEATS



- Consider a known luminosity source moving at some velocity
- Known luminosity source? "Standard Candles"
- Velocity? But Andromeda and the Milky Way are attracting one another
   "Peculiar velocities"
- Cosmology is NOT a controlled experiment.
  - All data is always interpreted within a model.
  - We need to build a distance ladder.

# MEASUREMENTS OF H<sub>0</sub>



# MEASUREMENTS OF H<sub>0</sub>



# MEASUREMENTS OF H<sub>0</sub>



H<sub>0</sub> (km/s/Mpc)



$$ds^2 = g_{\mu
u} dx^{\mu} dx^{
u}, \quad g^{Minkowski}_{\mu
u} = diag(1, -1, -1, -1)$$

- Homogeneous, isotropic background + small perturbations
- Friedmann Robertson Walker metric

$$ds^2 = dt^2 - a(t)^2 \left(rac{dr^2}{1-kr^2} + r^2 d\Omega^2
ight)$$

- Scale factor a(t), spatial curvature k = 0, ±1
- Hubble parameter

$$H(t) = \frac{1}{a} \frac{da}{dt}$$

- Hubble constant  $H_0 = H(t_0) = 100h \text{ km/s/Mpc}, h \simeq 0.7, \text{ pc}=3.26 \text{Lyr}$
- Redshift  $1 + z = \lambda(t_0)/\lambda(t) = a(t_0)/a(t)$

 $H(z)^{2} = H_{0}^{2} \left[ \Omega_{m0}(1+z)^{3} + \Omega_{r0}(1+z)^{4} + \Omega_{k0}(1+z)^{2} + \Omega_{\Lambda 0} + \cdots \right]$ Hubble parameter and the relative densities

### GR CRASH SLIDE II

Consider the FLRW metric with no spatial curvature. Define the critical density

$$\rho_c = \frac{3H_0^2}{8\pi G}, \quad \Omega_{0i} = \frac{\rho}{\rho_c}, \quad w_i = EOS$$

$$H(z)^{2} = H_{0}^{2} \sum_{i} \Omega_{0i} (1+z)^{3+3w_{i}}, \quad \dot{H} = -H_{0}^{2} \sum_{i} \frac{3+3w_{i}}{2} \Omega_{0i} (1+z)^{3+3w_{i}}$$

For z<3400 (equality of matter and radiation), equations simplify further:</li>

$$H(z)^2 \simeq H_0^2 \left[\Omega_{m0}(1+z)^3 + 1 - \Omega_{m0}\right], \quad \dot{H} \simeq -\frac{3}{2}H_0^2\Omega_{m0}(1+z)^3$$

 $t_U \simeq -$ 

The age of the Universe to a good approximation

### METHODS FOR INFERRING THE HUBBLE PARAMETER

- Ages of stars z<<1
- Time Delay Distances (of strong lensing events)
- "Standard Sirens" and Gravitational Waves.

Type la Supernovae

• BBN+BAO+low-z

CMB Observations

z>1

PRECISION COSMOLOGY-ALL PARAMETERS TO ACCURACY OF 1%

### CMB OBSERVATIONS "EARLY UNIVERSE"



- CMB is the best black body around! T=2.73K
- Physics is well understood small fluctuations on top of a homogeneous background - FLRW., z~1100>>1
- Assume a basic, flat LCDM, 6 parameter model:  $H_0, \Omega_b, \Omega_c, \tau, \sigma_8, n_s; \quad \Omega_{m0} = \Omega_b + \Omega_c; \quad \Omega_{m0} + \Omega_{\Lambda 0} = 1$
- Measure the temperature and polarization anisotropies of the CMB across the sky.
- Fit model parameters to data.





 The model parameters affect the location and amplitude of the peaks of the spectrum and allow parameter estimation

### CMB OBSERVATIONS

- CMB observations measure a combination of the cosmological parameters- Degeneracy
- Data is fit through a likelihood analysis. Each parameter requires a 'prior'. Parameter values may change if additional parameters are added. (LCDM is pretty stable by now)
- Marginalizing over the parameters we get Maximal Likelihood values for the parameters with error bars.
- Can break the degeneracy using additional probes.

#### PLANCK'S LEGACY

COSMIC VARIANCE LIMITED TT, IMPROVED POL. EE,BB AND X-COR. FUTURE GROUND EXPERIMENTS OF POL. FOR THE NEXT DECADE







Parameters measured to the accuracy of a percent

 $H_0 = 67.4 \pm 0.5 \, km/sec/Mpc$ 

# POSSIBLE SYSTEMATICS IN CMB?

- WMAP value is higher with larger error bars: H<sub>0</sub>=70+-2.2, (WMAP only), H<sub>0</sub>=70.2+-1.4 (WMAP+BAO+H0)
- Planck's ell<800 agree well with WMAP. Planck ell>800 does not.
- Could be a problem in the Planck analysis? Especially ell>800
- Also, for high ell, lensing of CMB is important. Nuisance lensing parameter,  $A_L>1$ , another systematic concern.

#### OTHER EARLY UNIVERSE PROBES

#### SEEMS LIKE A COMBINATION OF H<sub>0</sub> AND SOUND HORIZON- OUR "STABDARD RULER " OF BAO TENSION

## Independent of CMB: $H_0 = 67.4 \pm 1.2 km/sec/Mpc$

#### Knox & Millea 2019



### TYPE IA SUPERNOVA LATE UNIVERSE

- Only assumption: Redshift is isotropic. A direct measurement of the Hubble parameter.
- The intrinsic luminosity of type Ia SN, L, does not vary with distance and has a small dispersion =>STANDARD CANDLE



 $4\pi d_T^2$ 

 Measurement of the bolometric flux ~d<sub>L</sub>-2, luminosity distance

$$d_{L}(z) = \frac{1+z}{H_{0}} \int_{0}^{z} \frac{dz'}{\sqrt{\Omega_{m}(1+z')^{3}+1-\Omega_{m}}} \approx \frac{z}{z < 1} \frac{1+\left(1-\frac{3}{4}\Omega_{m}\right)z}{H_{0}}$$

### INFERRING THE ACCELERATED UNIVERSE



Analyzed 1,050 SNIa [PS1+Low-z+SNLS+SDSS+HST] from z=0.01 to z=2.3

### BUILDING A DISTANCE LADDER



### TYPE IA SUPERNOVAE- DIRECT MEASUREMENT

Riess et al. 2019

 $H_0 \simeq \frac{z}{d_L}$ 

 $> 4.7\sigma!$ 

- At z<0.01 the Hubble flow is ill-defined, local velocities dominate.
- At z>0.1 the measurement is model dependent.
- By limiting ourselves to z<<1 we avoid the LCDM model, and have a direct measurement of H<sub>0</sub>! MODEL INDEPENDENT!

$$H_0^{SN} = 74 \pm 1.4 \, km/sec/Mpc$$

 $H_0^{CMB} = 67.4 \pm 0.5 km/sec/Mpc$ 

### TYPE IA SUPERNOVAE - FINE PRINT

- A lot of "gastrophysics":
- Need to build a distance ladder. Specifically sensitive to the accuracy of Cepheids - periodic variable stars with strict P-L relation. Need SN at the same galaxy to estimate the distance correctly.
- Need to standardize the luminosity curve
- Affected by the environment metallicity, star formation...
- Affected by inhomogeneities.

### IBD, M. Gasperini, G. Marozzi, F. Nugier, G. Veneziano 2012-2013 EFFECTS ON D<sub>L</sub> DUE TO INHOMOGENEITIES

- Valid for any geometry! Special use of light-cone coordinates and light-cone average to account for all effects.
- Stochastic inhomogeneities are known to exist (CMB).
- They bias the measurement. Biggest effect: z<<1 peculiar velocities. z>~1, weak lensing of SN (small distortion of the image).
- Standard Perturbation Theory, changes both the average  $d_L$  and its dispersion.

### EFFECTS OF INHOMOGENEITIES

• Different functions of  $d_L$  are biased differently. Large dispersion

### EFFECTS OF INHOMOGENEITIES ON H<sub>0</sub> - PECULIAR VELOCITIES

Single SN



- Average is shifted upwards by ~0.3%
- Sample requires full covariance, because the SN are correlated.
- 155 SN, 0.01<z<0.1, 2.2-3.3 % error. Reduces tension.
- BUT: dominated by the lowest redshift.
- By discarding z<0.03 it goes away, but H<sub>0</sub> unchanged, even if half the sample is lost.

IBD, R. Durrer, G. Marozzi, D. Schwarz 2014



### COMPILING PROBES, KITP 2019 Early vs. late universe, 4-6 sigma



### RESOLUTION?

#### Knox & Millea 2019

- Seems several systematic errors at several different probes are needed to explain the tension without New Physics.
- Possible NP are also highly constrained
- Possible Examples:
  - 1) More relativistic d.o.f at CMB decoupling.
  - 2) Early dark energy phase.
  - Most likely- modification right before recombination -still tightly constrained.





### "BRAVE" IDEA - NUMERICAL COINCIDENCE - WORK IN PROGRESS

- Can we theoretically predict H<sub>0</sub>?
- Rewriting  $H_0 = h \times 100 km/sec/Mpc$ . To about percent accuracy  $h = \Omega_{\Lambda 0}$ , both in CMB and SN measurements
- Postulating  $h\equiv\Omega_{\Lambda0}=1-\Omega_{m0}$
- Consider the possibility of a "meta-Universe" with all possible values of h.
- Using the Friedmann equations and varying the action w.r.t h gives

h = 2/3!

Very close to the CMB predictions. Currently performing likelihood analysis.

### SUMMARY

- The Hubble parameter is the Holy Grail of Cosmology, its most important number.
- Determining it has been plagued by systematic errors from the beginning.
- The amazing power of Precision Cosmology From an order of magnitude (!) error, we have reached a percent level within 90 years.
- The tension is consistently increasing for the past 6+ years and reached more than 4 sigma.
- It seems various probes differ mostly on whether they are late universe (z<1) or Early Universe (z>1) probes.
- NP? Systematics? both?

 Niyaesh Afshordi and I betted on systematics against David Spergel. I am beginning to regret it.

> "Theoríes crumble, but good observations never fade" - Harlow Shapely

